
Towards a performance-aware power capping orchestrator

for the Xen hypervisor

⇤

Marco Arnaboldi

Politecnico di Milano

marco1.arnaboldi@mail.polimi.it

Matteo Ferroni

Politecnico di Milano

matteo.ferroni@polimi.it

Marco D. Santambrogio

Politecnico di Milano

marco.santambrogio@polimi.it

ABSTRACT
In the last few years, multi-core processors entered into the
domain of embedded systems: this, together with virtualiza-
tion techniques, allows multiple applications to easily run on
the same System-on-Chip (SoC). As power consumption re-
mains one of the most impacting costs on any digital system,
several approaches have been explored in literature to cope
with power caps, trying to maximize the performance of the
hosted applications. In this paper, we present some pre-
liminary results and opportunities towards a performance-
aware power capping orchestrator for the Xen hypervisor.
The proposed solution, called XeMPUPiL, uses the Intel
Running Average Power Limit (RAPL) hardware interface
to set a strict limit on the processor’s power consumption,
while a software-level Observe-Decide-Act (ODA) loop per-
forms an exploration of the available resource allocations to
find the most power e�cient one for the running workload.
We show how XeMPUPiL is able to achieve higher perfor-
mance under di↵erent power caps for almost all the di↵erent
classes of benchmarks analyzed (e.g., CPU-, memory- and
IO-bound).

Categories and Subject Descriptors
H.4 [Cloud Computing, Adaptive Systems, Power
Management, Virtualization]

1. INTRODUCTION
Computing systems changed considerably in the last few

decades [20]: multi-core processors entered into the domain
of embedded systems, allowing multiple embedded applica-
tions to run on the same SoC in a wide range of application
fields, like automotive, Internet TV, mobile and other em-
bedded use cases like low-power microservers for lightweight
scale-out workloads [2, 15]. On the one hand, this im-
proves overall resources utilization, while, on the other hand,
some applications can obtain performance improvements via
greater concurrency and parallelism.

In this context, virtualization enables to run multiple
applications on the same physical resources, still ensuring
strong isolation to each of them [23, 7]. Unfortunately, this
can only lead to a better utilization of the hardware plat-
forms if the hypervisor is able to perform a good resource
allocation of the tenants [16, 25]. This task is made di�-
cult by both hardware and software heterogeneity : a stan-
dard behavior can not be always defined“a priori”, as di↵er-

⇤EWiLi’16, October 6th, 2016, Pittsburgh, USA. Copyright
retained by the authors.

ent systems may not be equipped with the same amount of
memory and processors, as well as di↵erent tenants may be
characterized by di↵erent workload profiles (e.g., memory-
bound, I/O-bound and/or CPU-bound).

Moreover, this scenario gets even worse when considering
power consumption, a major concern for almost every digi-
tal system. As embedded devices may be power-constrained
or even battery-powered, tools and interfaces need to be in-
troduced to control and limit power consumption, i.e., to set
a power cap. To face this first requirement, Intel introduced
the RAPL interface since its second generation of Sandy
Bridge processors [10]: this interface enforces a strong and
precise limit on the power consumption of a processor, i.e.,
the component that contributes the most on the dynamic
power consumption of a common workstation[26].

RAPL uses Dynamic Voltage and Frequency Scaling
(DVFS) techniques to guarantee the desired power cap but
is not aware of the impacts that these have on the perfor-
mances of the hosted applications. Of course, these perfor-
mances need to be maximized even when a power cap is en-
forced: we want to find the most power e�cient hardware
configuration under a certain power cap, thus maximizing
the performance-per-watt ratio. In order to accomplish our
goal, a uniform metric of performance has to be defined, as
well as a smart orchestration policy to guarantee the stabil-
ity of the system as soon as its runtime conditions change.

In this paper, we propose XeMPUPiL , a hybrid hardware
and software power capping orchestrator for the Xen hyper-
visor, based on the PUPiL ODA control loop [27], that aims
at maximizing the performance of a workload under a power
cap. The main contributions of this work are the following:

1. we propose an Observe phase that takes into account a
generic performance metric for all the hosted tenants,
avoiding any instrumentation of the workloads;

2. we improved the decision phase of PUPiL, to deal with
the resources available in a multi-tenant virtualized
environment;

3. we implemented a new Actuation phase, to support all
the knobs that Xen provides to control the resources
assigned to each tenant.

The rest of the paper is organized as follows: Section 2
discusses some related work, while Section 3 presents the
proposed approach and some implementation details; pre-
liminary results are detailed in Section 4, discussing the
limitations of this work in Section 5, finally drawing some
conclusions in Section 6.



2. RELATED WORK
Several works in the literature propose di↵erent ap-

proaches to both performance maximization under a power
cap and power consumption minimization under perfor-
mance constraints. For instance, some of them exploit DVFS
techniques and try to pack together similar threads [9], while
others try to minimize the times the cores go into idle states,
in order to save the power spent in going from an idle state
back to an active one [18]. Most of these works aims at re-
ducing costs in data centers [14, 21, 24] or to increase battery
life in power-constrained devices [19, 22, 11], while our main
focus is performance maximization under a strict power cap.

A remarkable work with our same goal is PUPiL, a frame-
work that aims to minimize and to maximize respectively
the concept of timeliness and e�ciency: timeliness is in-
tended as the ability of the system in enforcing a new cap,
while e�ciency is meant as the performance delivered by
the applications under a fixed power cap [27]. In order to
achieve these goals, PUPiL exploits both hardware (i.e., the
Intel RAPL interface [10]) and software (i.e., resource par-
titioning and allocation) techniques inside a canonical ODA
control loop, one of the main building blocks of self-aware
computing.

Even though the approach proposed by PUPiL is e↵ective,
we identified two non-negligible limitations of the proposed
solution: first, the applications running on the system need
to be instrumented with the Heartbeat framework [13, 12],
in order to provide a uniform metric of throughput to the
decision phase; second, the tool is meant to work with appli-
cations running bare-metal on Linux. Both these conditions
might not be met in the context of a multi-tenant virtu-
alized environment, in which a virtualization layer allows
the execution of multiple workloads and ensures isolation to
each of them. This is the case of the Xen hypervisor [8], a
bare-metal type-1 hypervisor widely adopted in real produc-
tion environments [6], that runs directly as an abstraction
layer between the hardware and the hosted virtual machines,
called domains in the Xen terminology. It is based on a mi-
crokernel design, providing services that allow multiple op-
erating systems to concurrently run on the same hardware.
A privileged domain, called Dom0, is in charge of manag-
ing the DomU unprivileged domains. In this context, the
high isolation of each tenant, seen as a black box, makes any
instrumentation of the code of the hosted applications not
feasible in a real production environment.

In this paper, we want to extend the current implementa-
tion of PUPiL1 to make it work in a virtualized environment
based on the Xen hypervisor, without requiring any instru-
mentation of the guest workloads, as discussed in the next
sections.

3. SYSTEM DESIGN AND IMPLEMENTA-
TION

XeMPUPiL is a hybrid hardware and software power cap-
ping orchestrator for the Xen hypervisor. It is hybrid as it
makes use of the RAPL hardware interface to set a strict
limit on the processor’s power consumption, while a soft-
ware-level ODA loop structure performs an exploration of
the available resource allocations, to find the most power

1All source code, scripts, inputs, and patches are available
at: https://github.com/PUPiL2015/PUPIL.git

Figure 1: Overview of the proposed approach

e�cient one for the running workload. Of course, the in-
novation does not lie in the exploitation of the well-known
ODA loop structure, but in the adoption of an hybrid power
capping approach in a virtualized environment.

An overview of the system is presented in Figure 1. Each
di↵erent phase of the ODA loop needs to interact with di↵er-
ent tools throughout all the layers of the stack: some tools
are available in Dom0, while other APIs are provided by
specific hypercalls to the Xen hypervisor, that allows XeM-
PUPiL to set the domains configurations and guarantees a
controlled access to the underlying hardware.

In more detail, a brief description to the high-level flow is
here given:

• XeMPUPiL observes the power consumption of the
system and a set of hardware events of interest for
each running domain;

• the traced events are then used as metrics of perfor-
mance, in order to decide which hardware configura-
tion is the most power e�cient for the current work-
load;

• finally, the actuation phase sets the system to the best
configuration found, to maximize the performance un-
der the desired power cap enforced through the RAPL
interface.

In this section, we present the design and the implementa-
tion of the three ODA loop phases, describing the limitations
faced while working in a virtualized environment.

3.1 Observe
This first phase is in charge of monitoring the system and

the hosted domains, gathering all the information needed by
the subsequent decide phase.

As stated in the previous sections, we need to choose a
uniform metric of performance without any instrumentation
of the guest workloads: each domain remains a black box
to the hypervisor, as well as by the other domains (e.g.,
Dom0 itself). We decided to use hardware event counters



as low level metrics of performance, exploiting the Intel Per-
formance Monitoring Unit (PMU) to monitor the number of
Instruction Retired (IR) accounted to each domain in a cer-
tain time window. Among all the available hardware events
that can be monitored, we chose to count the IR events on
purpose, because these give an insight on how many micro-
instructions were completely executed (i.e., that successfully
reached the end of the pipeline) between two samples of the
counter, thus representing a reasonable indicator of perfor-
mance, as the same manufacturer suggests in [1].

In order to monitor these hardware events, we chose to use
the XeMPower tool2, a lightweight monitoring solution for
the Xen hypervisor designed to: (i) provide precise attribu-
tion of hardware events to virtual tenants, (ii) be agnostic to
the mapping between virtual and physical resources, hosted
applications and scheduling policies, and (iii) add negligible
overhead. It uses hypervisor-level instrumentation to mon-
itor every context switch between domains and it does not
require any instrumentation of the code of the workload, a
strong requirement of the approach proposed in this paper.
We patched the XeMPower tool to provide XeMPUPiL the
amount of IR counted for each running domain over the last
second : more details on how we use this rate are provided
in the following section.

3.2 Decide
The decision phase is similar to the one implemented in

PUPiL. The major changes are in how we evaluate the met-
rics gathered in the previous phase and in how we assign the
physical resources to each virtual domain.

The evaluation criterion is based on the average IR rate
measured over a certain time window: this allows the work-
load to adapt to the actual configuration in that time win-
dow before a new decision is taken. The comparison of the
two IR rates highlights which one makes the workload per-
form better, thus discarding the worse one.

Once the configuration has been chosen, the second part
of the decision phase begins: it concerns the allocation of
resources to each domain. We chose to work at a core-level
granularity: on the one hand, each domain owns a set virtual
CPUs (vCPUs), while, on the other hand, we have a set of
physical CPUs (pCPU) present on the machine. Each vCPU
can be mapped on a pCPU for a certain amount of time,
while it may happen that multiple vCPUs can be mapped
on the same pCPU.

We wanted our allocation policy to be as fair as possible,
covering the whole set of pCPUs if possible; given a workload
with M virtual resources and an assignment of N physical
resources, to each pCPUi we assign:

vCPUs(i) =

2

66666666

M �
iX

j=0

vCPUs(j)

N � i

3

77777777

(1)

where i is an integer between 0 and N �1, i.e., it spans over
the set of pCPUs.

2Source code has been made available at: https://bit-
bucket.org/necst/xempupil

3.3 Act
The act phase essentially consists in: 1) setting the desired

power cap and 2) actuating the selected resource configura-
tion.

On the one hand, we decided to implement the same hard-
ware technique proposed by PUPiL to set the power cap, i.e.,
exploiting the Intel RAPL interface. This provides a fast and
strict response to power oscillations, harshly cutting the fre-
quency and the voltage of the whole CPU socket, ignoring
the performance of the applications actually running on the
system.

On the other hand, we had to support the knobs made
available by the hypervisor to assign resources to each do-
main. This second step allows a fine tuning of the resources
to improve domains’ performance, but it is of course slower
than the hardware actuation in responding to power varia-
tions.

This is the reason why we use both the approaches to
provide a fast response, still trying to find the best resource
allocation to maximize the performance of each domain un-
der the power cap.

3.3.1 Hardware power cap
A bare metal operating system can easily access the RAPL

interface to set a power cap on the system by writing data
into the right Model Specific Register (MSR) of the pro-
cessor. The two registers of interest to our purposes are
MSR_RAPL_POWER_UNIT and MSR_PKG_RAPL_POWER_LIMIT: the
former contains processor-specific time, energy and power
units, used to scale each value read or written on the RAPL
MSR, in order to obtain a valid power or energy measure;
the latter can be written to set a limit on the power con-
sumption of the whole CPU socket.

In a virtualized environment, these registers are not di-
rectly accessible by the virtual domains, even from the priv-
ileged tenant Dom0. However, this limitation can be over-
come by invoking custom hypercalls that can directly access
the underlying hardware. To the best of our knowledge, the
Xen hypervisor does not natively support specific hypercalls
to interact with the RAPL interface: as a consequence, we
implemented our custom hypercalls to this purpose. In or-
der to be generic enough, we implemented two hypercalls:
"xempower_rdmsr" and "xempower_wrmsr”. The first one al-
lows to read, while the second one allows to write a specified
MSR from Dom0.

Each hypercall needs to be declared inside the kernel of
the hypervisor, that runs bare metal on the hardware. The
kernel keeps track of the list of hypercalls available and the
input parameters they accept. For each of them, a callback
function has to be declared and implemented to be accessi-
ble by the kernel at runtime: our implementation makes use
of two Xen build-in functions to safely read and write MSR
registers, i.e., wrms_safe and rdmsr_safe; these raise ex-
ceptions if something goes wrong in accessing the registers,
avoiding errors and faults to undermine the kernel stability.

We then implemented our own Command Line Interface
(CLI) tools to access these hypercalls from Dom0: xem-

power_RaplSetPower to set and xempower_RaplPowerMon-

itor to read the power consumption of the socket. Argu-
ments (e.g., the desired value of power cap and the power
consumption measured) are passed through the whole stack
using a set of bu↵ers that allow a fast and safe communica-
tion between di↵erent hierarchical protection domains [17]



(i.e. ring0 for Xen and ring3 for Dom0). The CLI tools
are in charge of performing some checks on the input pa-
rameters, as well as of instantiating and invoking the Xen
command interface to launch the hypercalls.

3.3.2 Software resource management
The current implementation of XeMPUPiL exploits two

tools provided by the Xen hypervisor to tune the perfor-
mance and assign resources to domains.

The first one is the cpupool tool: this is part of the Xen
xl CLI and allows to cluster the physical CPUs in di↵er-
ent pools. Once a pool is declared, it is possible to create
a domain that uses that pool: a new scheduler is instan-
tiated in order to manage the pool. It will then schedule
the domain’s vCPUs only on the pCPUs that are part of
that cluster. Our approach exploits this tool to assign more
pCPUs to a domain at runtime: as a new resource alloca-
tion is chosen by the decide phase, we increase or decrease
the number of pCPUs in the pool and pin the domain’s vC-
PUs to these, to increase workload stability. The domain
still has the same amount of virtual resources, that XeM-
PUPiL distributed over the maximum number of physical
ones available, potentially causing more vCPUs to be time-
multiplexed on the same core.

The second tool supported is xenpm: this allows to set a
maximum and minimum frequency for each pCPU. After a
first evaluation, we decide to leave the actuation of the core
frequencies out of the decision phase, as it may interfere
with the actuation made by RAPL.

4. EXPERIMENTAL RESULTS
The goals of our experiments are twofold: (i) we want

to show how the metric of performance we propose in this
paper behaves when subject to a power limit and (ii) that
XeMPUPiL is able to maximize that metric given a certain
power limit.

Tests have been performed on a system equipped with a
2.8-GHz quad-core Intel Xeon E5-1410 processor (4 hard-
ware threads, TurboBoost and HyperThreading disabled)
with 32GB RAM. The system runs the Xen hypervisor ver-
sion 4.4, with a paravirtualized instance of Ubuntu 14.04 as
Dom0, pinned on the first core and with 4GB of RAM.

We set up three distinct paravirtualized domains, each of
those running one of the following four di↵erent microbench-
marks, each one representing a di↵erent computational class:

1. NPB3.3 Embarrassingly Parallel (EP), a CPU-bound
benchmark;

2. IOzone, an IO-bound benchmark;

3. cachebench, a memory-bound benchmark;

4. NPB3.3 Block Tri-Diagonal solver (BT), a mixed-class
benchmark.

EP generates pairs of Gaussian random deviates: this is
quite typical of many Monte Carlo simulation applications
[4]. IOzone is a filesystem benchmark tool, generating
and measuring a variety of di↵erent file operations [3].
Cachebench is designed to test memory and cache band-
width performance [5]. BT is a pseudo application, more
specifically a Block Tri-diagonal solver [4]. Experiments
have been repeated multiple times, to improve the accuracy
of the results.

0

0.2

0.4

0.6

0.8

1.0

NO RAPL
RAPL 40
RAPL 30
RAPL 20

No
rm

al
ize

d 
Pe

rfo
rm

an
ce

0

0.2

0.4

0.6

0.8

1.0

EP cachebench IOzone BT

Figure 2: Benchmarks’ performance normalized
with respect to NO RAPL, under di↵erent power
caps

Our first set of experiments aims to show how the number
of IR over a certain time window decreases as the power cap
becomes stricter. We run each benchmark in a domain with
three virtual CPUs assigned and pinned on the three avail-
able physical CPUs, to avoid interferences and to maximize
resource utilization. We repeated the tests in four di↵erent
scenarios, namely:

1. NO RAPL, as no power limit was set;

2. RAPL 40, as a 40W power limit is set (using RAPL);

3. RAPL 30, as a 30W power limit is set (using RAPL);

4. RAPL 20, as a 20W power limit is set (using RAPL);

We chose 40W and 20W as the maximum and minimum
power caps as we observed that, in an idle state, the entire
socket consumes around 17W, while the maximum power
consumption we reached was around 43W. The comparison
between the performance of each single benchmark under
di↵erent power caps is shown in Figure 2, where the Y-axis
reports the performance expressed as the average IR over a
time window of 5 seconds. All the results have been nor-
malized with respect to the performance obtained under the
NO RAPL condition: as expected, the chosen metric is a rea-
sonable indicator of the performance of the application and
decreases with a stricter power cap. More in details, with
CPU-bound benchmarks (i.e., EP and BT) the di↵erence
are greater than in benchmarks where the bottleneck are
IO and memory accesses: in these cases, the performance
degradation is less significant between di↵erent power caps.

The second set of experiments is meant to achieve our
second goal: we want to compare the performance of the
workloads when XeMPUPiL performs its resource allocation
in the same scenarios described above, i.e., under a power
cap of 40W, 30W and 20W respectively. Results, normal-
ized with respect to the ones obtained in the NO RAPL
configuration, are shown in Figures 3, 4 and 5.

XeMPUPiL is able to achieve higher performance under
the same power cap in all the scenario and for all the bench-
marks: this is due to the decision of assigning in a smart
way all the possible domain’s vCPUs on fewer pCPUs than
the available ones. However an exception to this trend is
represented by the EP benchmark, where in any case the
performance gets better for the same benchmark with a cap



0

0.5

1.0

PUPiL 40
RAPL 40

No
rm

al
ize

d 
pe

rfo
rm

an
ce

0

0.5

1.0

EP cachebench IOzone BT

Figure 3: Benchmarks performance normalized with
respect to NO RAPL under a cap of 40W, imposed
by RAPL and by XeMPUPiL

0

0.5

1.0

PUPiL 30
RAPL 30

No
rm

al
ize

d 
pe

rfo
rm

an
ce

0

0.5

1.0

EP cachebench IOzone BT

Figure 4: Benchmarks performance normalized with
respect to NO RAPL under a cap of 30W, imposed
by RAPL and by XeMPUPiL

0

0.5

1.0

PUPiL 20
RAPL 20

No
rm

al
ize

d 
pe

rfo
rm

an
ce

0

0.5

1.0

EP cachebench IOzone BT

Figure 5: Benchmarks performance normalized with
respect to NO RAPL under a cap of 20W, imposed
by RAPL and by XeMPUPiL

of 20W, as the framework redistributes the virtual resources
over just two physical cores, thus obtaining a configuration
that is more power e�cient.

As mentioned before it is interesting to note how the per-
formance achieved in case of the IO-bound, the memory-
bound and the mixed benchmark are even better than the
ones achieved by the NO RAPL experiment: for IOzone and
cachebench, XeMPUPiL converged to a configuration with
just one core assigned to the domain, while two cores have
been assigned to the BT benchmark. These assignments are
more power e�cient, as they reduce memory and IO con-
tention for non strictly CPU-bound workloads.

5. LIMITATIONS
This paper presents some preliminary results and oppor-

tunities towards a performance-aware power capping orches-
trator for the Xen hypervisor. A first limitation is related to

the infrastructure used during our test, that does not provide
a reasonable amount of resources to explore all the potentials
of the proposed approach. Then, a richer set of benchmarks
needs to be taken into consideration to reproduce some real-
world scenarios, as well as conditions of colocation of bench-
marks of the same class or of di↵erent classes. Finally, the
adopted version of Xen (i.e., version 4.4) presents some per-
formance drawbacks when hyper-threading is enabled: a
more recent version of the hypervisor needs to be instru-
mented to produce interesting results with hyper-threading
enabled.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented XeMPUPiL , a performance-

aware power capping orchestrator for the Xen hypervisor.
We extended the current implementation of PUPiL [27] to
make it work in a virtualized environment based on the
Xen hypervisor, without requiring any instrumentation of
the guest workloads. The proposed solution exploits the
Intel RAPL hardware interface to set a strict limit on the
processors’ power consumption, while a software-level ODA
loop performs an exploration of the available resource al-
locations, to find the most power e�cient for the running
workload. We showed how XeMPUPiL is able to achieve
higher performances under di↵erent power caps for almost
all the di↵erent classes of benchmarks analyzed (e.g., CPU-,
memory- and IO-bound ones).

Future work revolves around a more portable and general
implementation of the whole framework, as well as the de-
velopment of a better decision algorithm, to minimize the
duration of the decide phase: in fact, its duration currently
depends on both the size of the time windows considered and
the time required by the workload to reach stable perfor-
mance once the configuration is chosen and applied. More-
over, we want to improve the observe phase, digging deeper
into the XeMPower tool to weight the Instruction Retired
metric on the number of the “clock-ticks” in the observed in-
terval, thus obtaining a Clockticks per Instructions Retired
(CPI) metric. Finally, we want to improve the actuation
phase, implementing custom fine-grain tools, since the ac-
tual CLI provided by Xen allows only a limited set of re-
sources to be tuned.

7. REFERENCES
[1] Clockticks per instructions retired (cpi).

https://software.intel.com/en-us/node/544403.
Accessed: 2016-06-01.

[2] The embedded and automotive team within the xen
project. https://www.xenproject.org/developers/
teams/embedded-and-automotive.html. Accessed:
2016-09-17.

[3] Iozone filesystem benchmark. http://www.iozone.org.
Accessed: 2016-06-01.

[4] Nas parallel benchmarks.
http://www.nas.nasa.gov/publications/npb.html#url.
Accessed: 2016-06-01.

[5] Openbenchmarking.org.
https://openbenchmarking.org/test/pts/cachebench.
Accessed: 2016-06-01.

[6] The xen project - success stories.
http://www.xenproject.org/users/success-stories.html.
Accessed: 2016-06-01.



[7] I. Ali and N. Meghanathan. Virtual machines and
networks-installation, performance study, advantages
and virtualization options. arXiv preprint
arXiv:1105.0061, 2011.

[8] P. R. Barham, B. Dragovic, K. A. Fraser, S. M. Hand,
T. L. Harris, A. C. Ho, E. Kotsovinos, A. V.
Madhavapeddy, R. Neugebauer, I. A. Pratt, and A. K.
Warfield. Xen 2002. Technical report, 2002.

[9] R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda.
Pack & cap: adaptive dvfs and thread packing under
power caps. In International Symposium on
Microarchitecture (MICRO), 2011.

[10] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna,
and C. Le. Rapl: Memory power estimation and
capping. In International Symposium on Low Power
Electronics and Design (ISPLED), 2010.

[11] M. Ferroni, A. Cazzola, D. Matteo, A. A. Nacci,
D. Sciuto, and M. D. Santambrogio. Mpower: gain
back your android battery life! In Proceedings of the
2013 ACM conference on Pervasive and ubiquitous
computing adjunct publication, pages 171–174. ACM,
2013.

[12] H. Ho↵mann, J. Eastep, M. D. Santambrogio, J. E.
Miller, and A. Agarwal. Application heartbeats: A
generic interface for expressing performance goals and
progress in self-tuning systems. In 4th Workshop on
Statistical and Machine learning approaches to
ARchitecture and compilaTion (SMART), 2010.

[13] H. Ho↵mann, J. Eastep, M. D. Santambrogio, J. E.
Miller, and A. Agarwal. Application heartbeats for
software performance and health. Technical report,
August 2009.

[14] T. Horvath, T. Abdelzaher, K. Skadron, and X. Liu.
Dynamic voltage scaling in multitier web servers with
end-to-end delay control. In Computers, IEEE
Transactions. IEEE, 2007.

[15] Intel. Flexible, low power microservers for lightweight
scale-out workloads. Technical report, White paper,
Intel Corporation, 2013.

[16] J. M. Kaplan, W. Forrest, and N. Kindler.
Revolutionizing data center energy e�ciency.
Technical report, Technical report, McKinsey &
Company, 2008.

[17] P. Karger and A. Herbert. An augmented capability
architecture to support lattice security and
traceability of access. In IEEE Symposium on Security
and Privacy, 1984.

[18] D. H. K. Kim, C. Imes, and H. Ho↵mann. Racing and
pacing to idle: Theoretical and empirical analysis of
energy optimization heuristics. In International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2013.

[19] M. Kim, M. O. Stehr, C. Talcott, N. Dutt, and
N. Venkatasubramanian. xtune: A formal
methodology for crosslayer tuning of mobile embedded
systems. In ACM Trans. Embed. Comput. Syst. 11.4.
ACM, 2013.

[20] R. Kumar and S. Charu. Comparison between cloud
computing, grid computing, cluster computing and
virtualization.

[21] D. Meisner, C. M. Sadler, L. A. Barroso, W. Weber,
and T. F. Wenisch. Power management of online data

intensive services. In International Symposium on
Computer Architecture (ISCA).

[22] S. Mohapatra, R. Cornea, H. Oh, K. Lee, M. Kim,
N. Dutt, R. Gupta, A. Nicolau, S. Shukla, and
N. Venkatasubramanian. A cross-layer approach for
power performance optimization in distributed mobile
systems. In International Parallel & Distributed
Processing Symposium (IPDPS). IEEE, 2005.

[23] A. A. Semnanian, J. Pham, B. Englert, and X. Wu.
Virtualization technology and its impact on computer
hardware architecture. In Information Technology:
New Generations (ITNG), 2011 Eighth International
Conference on, pages 719–724. IEEE, 2011.

[24] K. Shen, A. Shriraman, S. Dwarkadas, X. Zhang, and
Z. Chen. Power containers: An os facility for
finegrained power and energy management on
multicore servers. In IEEE 3rd International
Conference on Cyber-Physical Systems, Networks, and
Applications. IEEE, 2015.

[25] A. Vasan, A. Sivasubramaniam, V. Shimpi,
T. Sivabalan, and R. Subbiah. Worth their watts?-an
empirical study of datacenter servers. In High
Performance Computer Architecture (HPCA), 2010
IEEE 16th International Symposium on, pages 1–10.
IEEE, 2010.

[26] C. Xu, Z. Zhao, H. Wang, and J. Liu. On the interplay
between network tra�c and energy consumption in
virtualized environment: An empirical study. In 2014
IEEE 7th International Conference on Cloud
Computing, pages 392–399, June 2014.

[27] H. Zhang and H. Ho↵mann. Maximizing performance
under a power cap: A comparison of hardware,
software, and hybrid techniques. In International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2016.


