
Enabling Performance Exploration and Analysis for
Multi-parametric Systems∗

Younghwan Go
†

KAIST
yhwan@ndsl.kaist.edu

Juan A. Colmenares
Samsung Research America
juan.col@samsung.com

ABSTRACT
Tuning third-party systems is time-consuming and some-
times challenging, particularly when targeting multiple em-
bedded platforms. Unfortunately, system integrators, appli-
cation developers, and other users of third-party systems
lack proper tools for conducting systematic performance
analysis on those systems, and have no easy way to re-
produce the systems’ advertised performance and identify
configurations that yield excellent, fair, or poor behavior.
To fill this void we introduce SPEX, a framework aimed at
making it easier to characterize third-party systems’ perfor-
mance in relation to configuration parameters. SPEX en-
ables automatic performance exploration for systems with
no need to access their source code. It offers the flexibil-
ity to define pluggable policies that steer the exploration
process by varying configuration parameters of the observed
system. Our results show that SPEX adds little overhead to
the monitored system, and suggest that it can be effective in
providing useful information to third-party system users.

CCS Concepts
•Software and its engineering → Software perfor-
mance;

Keywords
Performance characterization; performance reproducibility

1. INTRODUCTION
System integrators and application developers usually in-

clude third-party software systems (e.g., libraries, middle-
ware, and databases) in their products. These individuals
along with system maintainers, all referred to in this paper
as third-party system users, are often responsible for con-
figuring those systems to meet certain performance require-
ments. But, tuning third-party systems for performance is
time-consuming and sometimes even challenging, particu-
larly when targeting multiple embedded platforms. When
charged with this task, these users usually try numerous
configurations until acceptable performance is reached. Such
non-systematic approach often results in configurations that
yield far from optimal performance. Moreover, a good con-
figuration for one platform may not be so for another, forcing
users to redo the process on a per-platform basis.

In the case of an underperforming system, diagnosing the
problems may become a difficult task for users as they sel-

∗EWiLi’16, October 6th, 2016, Pittsburgh, USA. Copyright
retained by the authors.
†Y. Go was an intern at Samsung Research America.

dom have deep knowledge about the system’s internals. By
contrast, the developers of the system may easily come up
with plausible conjectures and directly attack the problems
in the code (e.g., bottlenecks).

A popular approach to troubleshooting a “black-box” sys-
tem is to profile its performance by collecting metrics such
as execution times of functions, hotspots in the code, CPU
load, and memory usage [1, 12, 13, 2]. Such information,
however, is of almost no help to users with little knowledge of
the system’s implementation. Instead, users of a third-party
system need to be able to easily characterize the system’s
performance as a function of configuration parameters, as
well as reproduce its advertised performance. For that, users
require information more specific to the system in hand [19,
5, 4], including coarse- and fine-grained performance met-
rics (e.g., throughput and latency as well as hardware event
counts), and their relation with configuration parameters.
Due to their overhead, logging and monitoring tools are of-
ten setup to only provide coarse-grained metrics, and they
are not designed to delineate a system’s configuration space
against performance and help users understand how config-
uration parameters affect those metrics.

Users are then underserved for conducting performance
analysis on third-party systems, and have no easy way to
determine the reasons when those systems do not perform
as their developers advertise. Hence, we introduce SPEX,
a framework for helping users characterize the performance
of unfamiliar systems and understand its relation with con-
figuration parameters. SPEX is designed to be easy-to-use,
flexible, and applicable to various platforms, and to add low
overhead to the observed system. We adopt an approach
in which developers, who have first-hand knowledge of the
system, instrument the code (as they usually do) and offer
users easy access to the system’s monitoring infrastructure.
At the other end, users or an automatic performance explo-
ration process decides which metrics to observe and, without
requiring access to the code, enables the instrumentation in
the system that is only relevant to the metrics under evalua-
tion. SPEX also controls the performance exploration of the
monitored system, following a policy that steers the process
by varying the system’s configuration parameters. It allows
users and developers to define different exploration policies
as these policies are specific to both the target system and
the performance metrics of interest.

In this paper, we report our experience in designing the
SPEX framework (§3) to support the aforementioned ap-
proach. This is our initial step toward effective and efficient
automatic performance exploration of third-party systems.
Besides SPEX’s low overhead and good thread scalability
(§5.1), we also illustrate its use in characterizing the per-

formance of SQLite,1 a popular embedded SQL database,
with a simple exploration policy (§5.2). Our results suggest
that SPEX can be effective in providing useful information
to third-party system users with little effort.

2. APPROACH
The salient aspects of our approach to designing a frame-

work for performance exploration and analysis are as follows.

Ease of profiling enabled by developers: Detailed per-
formance characterization of a real-life system usually re-
quires human involvement and good understanding of its
architecture and source code – knowledge firstly held by the
system’s developers. Thus, our approach exploits a natural
division of responsibilities where: 1) developers, leveraging
their knowledge, instrument the system’s code to make its
key performance metrics observable to users, and 2) users
decide which of the available metrics to observe and, without
accessing the source code, enable the relevant instrumenta-
tion in the system to evaluate its performance.

We believe this approach imposes a small burden on de-
velopers. First, they usually instrument their code as it is a
pervasive practice in software development. Second, SPEX
provides a set of probes (see Table 1) that greatly simplify
the task. Nevertheless, it is ultimately in the developers’
best interest that users are able to easily reproduce the sys-
tem’s advertised performance.

Low profiling overhead: Performance characterization of
a system is meaningless if the overhead of measuring and
data collection masks the monitored performance. SPEX
minimizes such overhead by adopting a widely used trace-
based approach [9, 3] in which instrumentation probes make
no calculations of performance metrics and just create com-
pact binary trace records with the values needed to compute
those metrics outside the monitored system. Besides ap-
plying several optimizations discussed in §3.1, SPEX allows
users to adjust the instrumentation overhead by collecting
traces only from the probes they enable.

Flexible performance exploration: SPEX separates the
mechanisms for collecting performance metrics from the
policies that guide system performance exploration. By do-
ing so, it offers developers and users enough flexibility to
define different policies. This feature is important because
policies are not only specific to the target system, but also
to the system’s performance characteristics developers and
users are interested in (e.g., response latency, write through-
put, thread scalability). Thus, developers can release their
systems along with exploration policies for users to easily
evaluate the performance, very much like unit tests as well
as functionality and performance tests are shipped with sys-
tems today. Users may also implement their own explo-
ration policies to understand the systems’ behavior under
conditions not anticipated by the developers.

Furthermore, such flexibility enables innovation in devis-
ing policies that efficiently and effectively explore system
performance in large configuration spaces. This is signif-
icant because systems often have numerous configuration
parameters that produce a very large number of possible
configurations (e.g., SQLite has ∼80 parameters and ∼150
compile flags, with some overlap between them). Note that
we leave the design of exploration policies for large configu-

1https://www.sqlite.org

Lock-free
FIFO

Queue

Observed System

Probe

System
Code

{ ...
 }

{ ...
 }

P0 Pn

Collector

Tracer Explorer

Thread(s)

Exploration
Policy

C
h
a
n
n
e
l

Data
Processing

PipelineDashboard

File
Logger Database

Exploration
Cycle:
1. Teardown
2. Configure
3. Run

Configuration
Agent

Figure 1: General architecture of SPEX.

ration spaces as a future work, and we focus on the SPEX
framework, which facilitates implementing such policies.

3. THE SPEX FRAMEWORK
Figure 1 shows SPEX’s architecture, which includes the

Collector, Tracer, Explorer, and Configuration
Agent components. The observed system is instrumented
with probes to collect system-specific, OS-level, and architec-
tural metrics. Probes are introduced into the system mainly
by its developers, but also possibly by users with access to
the source code. The observed system goes through multiple
trial runs with different configurations (teardown-configure-
run cycles) until the performance exploration completes,
and during this process the system is configured automati-
cally through its Configuration Agent.

The Collector and Tracer, along with the probes en-
abled in the observed system, form SPEX’s data collection
subsystem. This subsystem gathers performance traces and
passes them to the Explorer for analysis. The Explorer
orchestrates the performance exploration process following
a given policy, which is a pluggable module that determines
when to stop the current run and what configuration to use
in the next run, as well as when the entire exploration should
terminate. Upon receiving a trace record, the Explorer
asks the policy how to proceed.

As shown in Figure 1, the data processing pipeline, en-
compassing the Tracer and Explorer, and the observed
system run as separate processes either on the same or dif-
ferent machines, and communicate via inter-process commu-
nication (IPC) or remote procedure call (RPC) mechanisms.
The data processing pipeline is configurable and may con-
tain additional components that store, display, and perform
statistical analyses on the data from the Tracer. SPEX
includes a database, a file logger, and a dashboard, while few
other auxiliary components are currently being developed.

Probe API: Probes produce trace records with the format
shown in Listing 1, and insert them into lock-free queues, de-
scribed in §3.1. Each record is a compact binary log entry,
and this simple format is able to accommodate the infor-
mation necessary to monitor and analyze different system
performance metrics.

SPEX currently provides six predefined types of enclosing

Predefined Probes Description
CNT_PROBE_BEGIN(id,sc) Number of times the enclosed code has executed.
LAT_PROBE_BEGIN(id,sc) Number of CPU cycles the enclosed code takes to execute (for latency calcu-

lation).
TPT_PROBE_BEGIN(id,sc) Number of times the enclosed code has executed and the CPU cycles it has

taken (for throughput calculation).
LLC_PROBE_BEGIN(id,sc) Number of last-level cache references and misses.
FLT_PROBE_BEGIN(id,sc) Number of memory page faults.
CTXSW_PROBE_BEGIN(id,sc) Number of context switches.

Flexible Probes Description
PERFCNTR_PROBE_BEGIN(id,sc,pcid) Value of a performance counter setup via SET_PERFCNTR(pcid,event,mask).
SNAPSHOT_PROBE(id,sc,v0,...,vN−1) Developer-defined values. N = 6 by default.

Table 1: SPEX Probe API. Note that the X_PROBE_END(id) statements are not shown in the table.

Listing 1: Trace record format.
#define N (6) // Default maximum number of fields.
struct TraceRecord {

// Probe’s idendifier (value set by developer).
uint16_t probe_id;
// Probe type (bitmask).
uint32_t probe_type;
// Processor that captured the record.
uint16_t cpu_id;
// Thread that captured the record.
uint32_t thread_id;
// Timestamp counter ’s value
// when storing the record.
uint64_t timestamp;
// Number of fields in the record.
// Valid values: [0,(N-1)].
uint8_t field_count;
// Array of value fields.
uint64_t fields[N];

};

probes listed in Table 1, and more can be easily added. Each
type of enclosing probes assigns values to specific fields of the
trace records. The probes are given unique identifiers (id)
in order to be distinguishable to the users. Moreover, devel-
opers can adjust the system’s instrumentation overhead by
setting each probe’s subsampling counter (sc). This counter
indicates the number of times the probe needs to execute in
order to produce a trace record.

For flexibility, SPEX also offers the PERFCNTR_PROBE,
which is an enclosing probe type that developers can use
to read hardware performance counters of their choice. A
developer can setup a performance counter by specifing a
unique identifier (pcid) along with the event and mask val-
ues (e.g., event=0x2E and mask=0x41 for LLC misses on Intel
processors). Lastly, SPEX offers the single-statement SNAP-
SHOT_PROBE(...) that allows developers to store values of
their choice in the trace records.

Exploration setup: To run a performance exploration,
the user needs to set several Explorer’s options. The user
must indicate the XML file with the configuration param-
eters needed by the observed system, and can also specify
non-default values for generic exploration parameters, such
as trials_per_config. In addition, the user may tune the
parameters of the exploration policy in use (e.g., minimum
and maximum number of threads enabled in the system).

3.1 Performance Data Collection
The Collector gathers trace records from the lock-free

queues and passes them to the Tracer. At initialization,
SPEX creates communication channels between the Col-
lector and Tracer: one or more data channels for trace
records, and a control channel for commands. The number
of threads the Collector runs is configurable, and each

thread is assigned a disjoint set of queues to read records
from. The Collector’s threads continuously scan their
queues in round-robin, consume upto a configurable number
of records from each queue, and send the record batches to
the Tracer via the data channels. By enforcing a maximum
record count a collector thread can fetch from each queue, no
queue can monopolize data collection. The Collector can
also simulate workloads colocated with the observed system
by creating additional load on CPUs and storage devices,
and allocating extra memory.

The Tracer comprises one or more threads in charge of
processing records carried in messages from the Collector.
When a message arrives, a Tracer processing thread deseri-
alizes it, calculates the performance metrics, and passes the
metric values or trace records to the Explorer or auxiliary
downstream components.

Lock-free queues: Threads running in the observed sys-
tem call the (enabled) probes to produce and insert trace
records into in-memory queues, which are later consumed
by the Collector’s threads (see Figure 1). Each queue
allows multiple producer and consumer threads to exchange
records in a lock-free manner through a fixed-size circular
buffer. When a queue is full, we choose to sacrifice the old-
est records in order to: 1) prevent probes from blocking the
system’s execution, and 2) simplify pausing and resuming
data collection.

Reducing collection cost: Our probe implementation in-
corporates several techniques to minimize the performance
cost. First, trace records are compact binary log entries,
and arithmetic operations on them are performed outside
the observed system. Second, probes insert the records
into in-memory queues with a fast, non-blocking operation.
Third, by default SPEX creates a queue per CPU and per
probe type. Thus, a thread, calling a probe, can look up
the probe’s backing queue in constant time (O(1)) because
the queues are indexed by CPU ID and probe type. The net
result is that probes are able to produce trace records at low
cost and with good thread scalability (see §5.1).

SPEX dedicates a fixed-size memory space for data col-
lection in the observed system. But it gives users the ability
to adjust such memory space as trace record queues and
communication channels are of configurable sizes.

3.2 Performance Exploration
Exploring the performance of a target system involves cap-

turing its behavior under different configurations. In SPEX,
an exploration policy is the key module responsible for guid-
ing such process. The policy decides: 1) the configuration
the observed system should use in the next run, 2) the probes
to collect traces from, and 3) when to stop the current run

Pseudocode 1 Explorer’s main loop.
. pol: The performance exploration policy.

1: while (pol.has next config() = true) do
2: conf ← pol.next config()
3: duration ← pol.max duration(conf)
4: probe set ← pol.probes to enable(conf)
5: configure observed system(conf)
6: start observed system()
7: setup tracer(EXPLORATION MODE, probe set, ...)
8: start tracer collection()
9: Wait until (duration expires or Tracer finishes collection)

10: stop tracer collection()
11: teardown tracer()
12: stop observed system()

13: pol.process results()

Pseudocode 2 Tracer’s collection loop.
. channel: A data channel between Collector and Tracer.

1: while (exit = false) do
2: record ← channel.get record()

. . .
3: explorer.process record(record)
4: if (explorer.stop run() = true) then
5: break

. . .

and the entire exploration. Exploration policies adhere to
a common interface, which makes them easily interchange-
able and allows the Explorer to use a single and simple
logic to explore various performance characteristics of the
target system in different ways. Currently, the policies are
implemented as C++ classes and compiled into dynamically
linked libraries. Using a policy is thus a simple matter of
indicating its library’s location to the Explorer.

During performance exploration, the observed system
goes through multiple runs with different configurations.
These teardown-configure-run cycles are carried out by the
Explorer as shown in Pseudocode 1, with error handling
omitted for clarity. The cycles continue while the policy of-
fers configurations to explore (line 1). Once the Explorer
obtains a configuration (lines 2-4), it tells the Configura-
tion Agent to configure the system via a control message
with the configuration in XML, and starts the system. In
line 7, the Tracer is set up to run in exploration mode,
and starts collecting trace records from enabled probes until
duration expires or the Tracer finishes data collection.

While Tracer’s collection proceeds (Pseudocode 2), each
of its threads gets a record from a data channel and asks the
Explorer to process the record (line 3) and whether or not
it should stop the run (line 4). The Explorer delegates
the execution of the functions process_record(...) and
stop_run() to the policy . Then, if the policy decides to stop
the run, the Tracer terminates and sets a flag indicating
that data collection has finished.

Central to performing teardown-configure-run cycles is the
ability of the Explorer and the Configuration Agent,
which is system-specific, to configure the observed system.
Configurations often contain diverse and detailed informa-
tion, such as number of threads, file paths, names of remote
nodes, and other input parameters. We have adopted an
XML format for configurations. Developers as well as users
can create XML configuration files that match the intent of
their performance exploration policies (e.g., yield peak per-
formance, or analyze system’s sensitivity to the allocation of
certain resources). Policies use those XML files as templates
to generate configurations in function next_config(), which

(a) LLC refs and misses. (b) Memory page faults.

Figure 2: CPU cycles consumed by probes.

are interpreted and applied onto the observed system by the
Configuration Agent.

4. IMPLEMENTATION
SPEX is written in ∼6K lines of C++11 code. The

Tracer and Explorer run atop a data processing pipeline,
comprising actors and components. Actors are memory-
protected processes that exchange messages. The messages
are typed with Google Protobuf2 and exchanged over local
shared memory channels or the network via ZeroMQ.3 Ac-
tors encapsulate components, which are in-process loadable
modules that provide typed interfaces and receptacles that
can be dynamically inspected and bound (much like Mi-
crosoft’s COM architecture [15]). In addition, Configura-
tion Agents use TinyXML4 to parse XML configurations
for the observed system.

5. EVALUATION
In this section, we show that SPEX’s instrumentation

probes incur low overhead and exhibit good thread scala-
bility. We also exemplify how SPEX can be used to explore
the performance of a third-party system with SQLite3 and
a simple policy. Our test platform is a desktop running
Ubuntu 14.04.4 LTS (Linux kernel 3.13.0-79) and equipped
with a 3.2-GHz Intel Xeon processor (6 cores, 12 hyper-
threads), 8 GB of RAM, and a 500-GB HDD.

5.1 Probe Overhead and Scalability
We measured the average CPU cycles that the differ-

ent probe types in Table 1 take with increasing number of
threads. We evaluated each PROBE_BEGIN/PROBE_END pair
separately. Due to space limitations, we only report results
for two probes (LLC_PROBE and FLT_PROBE), but we verified
that the other probes incur less or similar overhead. Fig-
ure 2(a) shows that LLC_PROBEs spend ∼360 CPU cycles in
total: LLC_PROBE_BEGIN takes ∼100 cycles to retrieve the
initial value from the hardware performance counter, and
LLC_PROBE_END spends ∼160 cycles extra to create a trace
record and push it into the queue. Similarly, Figure 2(b)
shows that FLT_PROBE_BEGIN and FLT_PROBE_END take about
400 and 600 cycles, respectively, for a total of ∼1,000 cycles.
FLT_PROBE’s high cost comes mostly from getrusage system
call, but its impact can be easily reduced by increasing the
probe’s sub-sampling counter.

We also observed that the CPU cycles consumed by the
probes stay almost constant as the thread count increases.
Such nice scalability comes from our design choice of having
a trace record queue per CPU and per probe type.

2https://developers.google.com/protocol-buffers/
3http://www.zeromq.org
4http://www.grinninglizard.com/tinyxml/

Figure 3: SQLite query throughput (in queries per minute) for different configurations. The throughput
color scale, where darker is higher, is at the right side of the left-most plot and is the same across the plots.
Note that throughput is highest with three threads in all plots.

5.2 Exploring Query Performance of SQLite
Next, we show how SPEX can help an application de-

veloper explore the query performance of SQLite v3.8.7.4,
an embedded SQL database engine. We chose SQLite as
our target system because it is very popular and well docu-
mented. However, application developers often need to ex-
periment with its configuration parameters to find the right
values that meet their performance goals.

Setup: We wrote a simple application that continuously
queries a SQLite database. The application includes a
TPT_PROBE pair that encloses the function making the
queries. The subsampling counter for the probe was set to
1. We loaded the NYC Taxi Trips dataset5 (169M records)
into the database, occupying 35GB of storage. We use a
range query that computes the mean passenger count in
trips that start in a 100×100Km2 area (4 constraints); it
accesses about 200K records. Our test application also acts
as the Configuration Agent; it receives XML configura-
tions from the Explorer and applies them to SQLite via
PRAGMA statements.

Configuration space: From the parameters that may af-
fect query throughput, we select cache size, which is the
amount of memory in bytes SQLite uses for caching data. It
results from the multiplication of two SQLite’s PRAGMA
parameters: page size (in bytes) and cache size (in num-
ber of pages). Also, we are interested in how the throughput
varies with the number of threads issuing queries.

Thus, the explored configurations are as follows. We
choose four widely used page size values: 1KB (SQLite’s
default), 4KB, 2MB, and 1GB. We then select values for
the PRAGMA cache size parameter (in number of pages)
so that the calculated cache memory values are multiples
of 4, starting from 2MB up to 8,192MB. In the case of
page size = 1GB, we start from page size = 1 page up
to 16. The rest of SQLite’s parameters use their default val-
ues. Finally, thread counts simply go from 1 to 8, and each
thread opens a read-only connection to the database under
multi-thread and shared-cache modes.

Exploration policy: In this example, we use a simple,
brute-force policy (∼40 LOC) that evaluates all the config-
urations for each page size value (24 for 1GB, and 56 for
each of the other values). The policy stops each run after
receiving 20 trace records from each query thread.

Results: Figure 3 shows the query throughput for the dif-
ferent configurations in color scale (darker is higher). We
can see that the throughput consistently reaches the maxi-

5http://www.andresmh.com/nyctaxitrips/

mum with three threads and starts decreasing beyond that.
The scalability collapse [8] in SQLite at such a small number
of threads only doing reads may get an application developer
by surprise. Without sufficient knowledge of SQLite’s im-
plementation and access to relevant benchmark results, the
developer would have not known this, and may simply de-
cide to use 4 or more query threads for a (mostly) read-only
workload, obtaining far from optimal performance.

We also observe that the query throughput does not nec-
essarily increase with the cache size. The reason is that for
our test query and dataset, SQLite did not require much
memory to cache the results. However, with different data
and queries, the throughput could very well vary with the
cache size. Developers of cache-sensitive applications can
explore their performance with SPEX and find a cache size
that yields acceptable throughput.

This example suggests that SPEX can be effective and
useful. It is encouraging that an application developer could
obtain meaningful information about the performance of a
third-party system with relatively little effort (i.e., an explo-
ration policy with tens of lines of code and few probes). We
have had similar experience characterizing the performance
of libraries (e.g., FFTW6) and internal research prototypes
(e.g., a time-series datastore [17]), but the details are beyond
the scope of this paper.

6. RELATED WORK
From a large body of work, this section summarizes the

most relevant efforts compared to our SPEX framework.

Performance profiling: Profilers are tools commonly used
to understand systems’ performance characteristics. Sys-
tem statistics are obtained through performance events and
counters [1, 12], memory checkers [2], and call-graphs [13].
Profilers can be extended to monitor detailed system opera-
tions by inserting probes or progress points into the source
code [9, 3, 10], but many off-the-shelf systems keep their
code private, and even for those with accessible source code,
users unaware of the implementation details would not know
where to put the trace probes.

Researchers have proposed to profile systems by other
means. Aguilera et al. [4] monitor message traces to in-
fer causal paths between nodes in a distributed system,
while SNAP [19] collects TCP statistics and socket-call logs
of shared network resources to find correlations between
TCP connections. However, these solutions still require full
knowledge of the system’s topology and can only identify
bottlenecked nodes. Some works try to remove this require-

6http://www.fftw.org

ment by performing instruction-level analysis via dynamic
compilation [14] or taint tracking of binaries [5]. But, they
still offer limited usability as they require additional sys-
tem instrumentation and incur non-negligible performance
overhead due to logging and dynamic analysis.

Performance exploration: Another approach to improve
system performance is to tune configurations through train-
ing and exploration. Flex [7] tunes a database by explor-
ing different workloads, configurations, data, and resources.
Contrary to SPEX that uses C/C++, Flex requires users
to learn a new language, Slang, to define the exploration en-
vironments. Bodik et al. [6] train a statistical performance
model of a system to maintain optimal performance by pre-
dicting future workload based on change point detection.
They require a fixed policy, whereas SPEX lets user to de-
cide what policy to use.

Autonomous adaptation: Extensive work exists on self-
adaptive systems (e.g., [16, 11]) and auto-tuning (e.g., [18]).
In this case, configuration parameters (knobs) are automat-
ically adjusted to improve the underlying system’s runtime
performance. Our work is complementary since it facilitates
characterizing systems’ performance, a essential step in de-
signing adaptation and tuning strategies.

7. CONCLUSIONS AND FUTURE WORK
In response to the challenges that users face in tuning

third-party systems, we have presented SPEX, a framework
that allows users to characterize the performance of such sys-
tems by investing a modest effort. We exploit the natural
separation of responsibilities by 1) having developers instru-
ment their system with probes, and 2) allowing the users to
reuse the same instrumentation and enable only the probes
needed to explore certain performance characteristics of the
system. Moreover, SPEX offers great flexibility by permit-
ting users to not only choose exploration policies shipped
with the system, but also implement their own policies.

Our evaluation showed that SPEX’s instrumentation
probes add low overhead (within few hundred CPU cycles)
to the observed system thanks to our data collection opti-
mizations, particularly the lock-free queues. Furthermore,
our experience exploring SQLite’s performance showed that
SPEX can provide useful information with relatively little
effort, pinpointing unfavorable configurations with simple
exploration policies of tens of lines of code.

As part of our future work, we plan to design and evaluate
more sophisticated exploration policies (e.g., using adaptive
sampling) for various systems. The goal is to identify high-
performing configurations in reduced times when compared
with simple, brute-force policies. To ease SPEX’s adoption,
we also plan to support binary instrumentation as it elimi-
nates the need to modify the source code of existing systems.
Currently, SPEX is able to explore single-node systems, but
we want to extend it to support performance exploration of
multi-node systems. We are also looking into running SPEX
with other languages such as Java, Scala, and Python.

8. REFERENCES
[1] https://perf.wiki.kernel.org.

[2] http://www.valgrind.org.

[3] Xentrace. http://xenbits.xen.org.

[4] M. K. Aguilera, J. C. Mogul, J. L. Wiener,
P. Reynolds, and A. Muthitacharoen. Performance

debugging for distributed systems of black boxes. In
SOSP, 2003.

[5] M. Attariyan, M. Chow, and J. Flinn. X-ray:
Automating root-cause diagnosis of performance
anomalies in production software. In OSDI, 2012.

[6] P. Bod́ık, R. Griffith, C. Sutton, A. Fox, M. I. Jordan,
and D. A. Patterson. Automatic exploration of
datacenter performance regimes. In ACDC, 2009.

[7] N. Borisov and S. Babu. Rapid experimentation for
testing and tuning a production database deployment.
In EDBT, 2013.

[8] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao,
F. Kaashoek, R. Morris, A. Pesterev, L. Stein, M. Wu,
Y. Dai, Y. Zhang, and Z. Zhang. Corey: An operating
system for many cores. In OSDI, 2008.

[9] B. Cantrill, A. Leventhal, M. Shapiro, and B. Gregg.
Dtrace. http://dtrace.org.

[10] C. Curtsinger and E. D. Berger. Coz: Finding code
that counts with causal profiling. In SOSP, 2015.

[11] A. Filieri, H. Hoffmann, and M. Maggio. Automated
design of self-adaptive software with
control-theoretical formal guarantees. In ICSE, 2014.

[12] S. L. Graham, P. B. Kessler, and M. K. Mckusick.
gprof: a call graph execution profiler. In SIGPLAN,
1982.

[13] J. Levon and P. Elie. Oprofile: A system profiler for
linux. http://oprofile.sourceforge.net, 2004.

[14] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: Building customized program
analysis tools with dynamic instrumentation. In PLDI,
2005.

[15] D. Rogerson. COM. Microsoft programming series.
Microsoft Press, 1997.

[16] F. Sironi, D. B. Bartolini, S. Campanoni, F. Cancare,
H. Hoffmann, D. Sciuto, and M. D. Santambrogio.
Metronome: operating system level performance
management via self-adaptive computing. In DAC,
2012.

[17] D. G. Waddington and C. Lin. A fast lightweight
time-series store for iot data. CoRR, 2016.

[18] S. Williams, L. Oliker, J. Carter, and J. Shalf.
Extracting ultra-scale lattice boltzmann performance
via hierarchical and distributed auto-tuning. In SC,
2011.

[19] M. Yu, A. Greenberg, D. Maltz, J. Rexford, L. Yuan,
S. Kandula, and C. Kim. Profiling network
performance for multi-tier data center applications. In
NSDI, 2011.

