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Abstract. We discuss the rough set approach to approximation of vague
concepts. There are already published several papers on rough sets and
vague concepts staring from the seminal papers by Zdzis law Pawlak.
However, only a few of them are discussing the relationships of rough sets
with the sorites paradox. This paper contains a continuation of discussion
on this issue.
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1 Introduction

The rough set (RS) approach was proposed by Professor Zdzis law Pawlak in
1982 [35, 36, 40] as a tool for dealing with imperfect knowledge, in particular with
vague concepts. Over the years many applications of methods based on rough
set theory alone or in combination with other approaches have been developed.

The rough set approach seems to be of fundamental importance in artificial
intelligence and cognitive sciences, especially in machine learning, data mining
and knowledge discovery from databases, pattern recognition, decision support
systems, expert systems, intelligent systems, multiagent systems, adaptive sys-
tems, autonomous systems, inductive reasoning, commonsense reasoning, adap-
tive judgement, conflict analysis.

Rough sets have established relationships with many other approaches such
as fuzzy set theory, granular computing, evidence theory, formal concept analy-
sis, (approximate) Boolean reasoning, multicriteria decision analysis, statistical
methods, decision theory, matroids have been clarified. Despite the overlap with
many other theories rough set theory may be considered as an independent dis-
cipline in its own right. There are reports on many hybrid methods obtained by
combining rough sets with other approaches such as soft computing (fuzzy sets,
neural networks, genetic algorithms), statistics, natural computing, mereology,
principal component analysis, singular value decomposition or support vector
machines.



In particular some relationships of the rough set approach with vague con-
cepts were shown (see, e.g., [2, 3, 5, 13, 29, 31, 32, 37, 38, 41, 45, 49–51, 55]). How-
ever, the relationships with sorites paradox are not explored well yet. In this
paper, we extend a discussion on this topic, especially presented in [25].

Let us also note that the relationships with vague concepts of other ap-
proaches to uncertainty such as fuzzy sets or graded consequence are elaborated
in the literature (see, e.g., [7–13, 17, 28, 43, 44]).

This paper is structured as follows. In Sect. 2 we present some preliminaries
on vague sets. Rudiments of rough sets, in particular approximations of concepts,
are discusses in Sect. 3. The rough set approach to sorites paradox is presented
in Sect. 4. The issue of higher order vagueness in rough sets is covered in Sect. 5.
In Sect. 6, we present some constraints on induced classifiers for vague concepts
related to the sorites paradox. They are making it possible to eliminate the
contradiction characteristic to sorites paradox which is related to behaviour of
the classifier when it passes through different approximation regions. Sect. 7
emphasizes the need for development the adaptive rough set approach.

2 Vague Sets

Mathematics requires that all mathematical notions (including set) must be
exact, otherwise precise reasoning would be impossible. However, philosophers
(see, e.g., [26] and recently computer scientists as well as other researchers have
become interested in vague (imprecise) concepts. Moreover, in the XX century
one can observe the drift paradigms in modern science from dealing with precise
concepts to vague concepts, especially in the case of complex systems (e.g., in
economy, biology, psychology, sociology, quantum mechanics).

Almost all concepts we are using in natural language are vague [1, 6]. There-
fore, common sense reasoning based on natural language must be based on vague
concepts and not on classical logic. Interesting discussion of this issue can be
found in [45]. The idea of vagueness can be traced back to the ancient Greek
philosopher Eubulides of Megara (ca. 400BC) who first formulated so called
“sorites” (heap) and “falakros” (bald man) paradox (see, e.g., [26]). There is a
huge literature on issues related to vagueness and vague concepts in philosophy
(see, e.g., [4, 14, 19, 26, 27, 46–48]).

Vagueness is often associated with the boundary region approach (i.e., ex-
istence of objects which cannot be uniquely classified relative to a set or its
complement) which was first formulated in 1893 by the father of modern logic,
German logician, Gottlob Frege (1848-1925) (see [15]). According to Frege (see
Grundgesetze der Arithmetik, vol. ii, Sect.56 [15, 16]) the concept must have a
sharp boundary:

To the concept without a sharp boundary there would correspond an
area that would not have any sharp boundary – line all around.

It means that mathematics must use crisp, not vague concepts, otherwise it
would be impossible to reason precisely. However, vagueness in opinion of Lud-
wig Wittgenstein is an essential feature of language with semantics specified by



’language games’. A language is not a calculus with rigid rules that provide for
all possible circumstances. There are many vague concepts in natural languages
[1, 6]. One should also note that vagueness also relates to insufficient specificity,
as the result of lack of feasible searching methods for sets of features adequately
describing concepts.

Discussion on vague (imprecise) concepts in philosophy includes the follow-
ing characteristic features of them [26]: (i) the presence of borderline cases,
(ii) boundary regions of vague concepts are not crisp, (iii) vague concepts are
susceptible to sorites paradox. In the sequel we discuss these issues in the RS
framework. The reader can find the discussion on application of the RS approach
to vagueness in [45].

3 Rough Set Based Concept Approximation

The starting point of rough set theory is the indiscernibility relation, which is
generated by information about objects of interest (defined later in this section
as signatures of objects). The indiscernibility relation expresses the fact that due
to a lack of information (or knowledge) we are unable to discern some objects
employing available information (or knowledge). This means that, in general, we
are unable to deal with each particular object but we have to consider granules
(clusters) of indiscernible objects as a fundamental basis for our theory.

¿From a practical point of view, it is better to define basic concepts of this
theory in terms of data. Therefore we will start our considerations from a data
set called an information system.

Suppose we are given a pair A = (U,A) of non-empty, finite sets U and A,
where U is the universe of objects, and A – a set consisting of attributes, i.e.
functions a : U −→ Va, where Va is the set of values of attribute a, called the
domain of a. The pair A = (U,A) is called an information system (see, e.g., [34]).
Any information system can be represented by a data table with rows labeled
by objects and columns labeled by attributes. Any pair (x, a), where x ∈ U and
a ∈ A defines the table entry consisting of the value a(x).

Any subset B of A determines a binary relation INDB on U , called an indis-
cernibility relation, defined by

x INDB y if and only if a(x) = a(y) for every a ∈ B, (1)

where a(x) denotes the value of attribute a for object x.
Obviously, INDB is an equivalence relation. The family of all equivalence

classes of INDB , i.e., the partition determined by B, will be denoted by U/INDB ,
or simply U/B; an equivalence class of INDB , i.e., the block of the partition
U/B, containing x will be denoted by B(x) (other notation used: [x]B or more
precisely [x]INDB

). Thus in view of the data we are unable, in general, to observe
individual objects but we are forced to reason only about the accessible granules
of knowledge (see, e.g., [33, 36, 42]).

If (x, y) ∈ INDB we will say that x and y are B-indiscernible. Equivalence
classes of the relation INDB (or blocks of the partition U/B) are referred to



as B-elementary sets or B-elementary granules. In the rough set approach the
elementary sets are the basic building blocks (concepts) of our knowledge about
reality. The unions of B-elementary sets are called B-definable sets.

For B ⊆ A we denote by InfB(x) the B-signature of x ∈ U , i.e., the set
{(a, a(s)) : a ∈ B}. Let INF (B) = {InfB(s) : s ∈ U}. Then for any objects
x, y ∈ U the following equivalence holds: xINDBy if and only if InfB(x) =
InfB(y).

The indiscernibility relation will be further used to define basic concepts of
rough set theory. Let us define now the following two operations on sets X ⊆ U

LOWB(X) = {x ∈ U : B(x) ⊆ X}, (2)

UPPB(X) = {x ∈ U : B(x) ∩X 6= ∅}, (3)

assigning to every subset X of the universe U two sets LOWB(X) and UPPB(X)
called the B-lower and the B-upper approximation of X, respectively. The set

BNB(X) = UPPB(X)− LOWB(X), (4)

will be referred to as the B-boundary region of X.
If the boundary region of X is the empty set, i.e., BNB(X) = ∅, then the set

X is crisp (exact) with respect to B; in the opposite case, i.e., if BNB(X) 6= ∅,
the set X is referred to as rough (inexact) with respect to B. Thus any rough
set, in contrast to a crisp set, has a non-empty boundary region.

Thus a set is rough (imprecise) if it has nonempty boundary region; otherwise
the set is crisp (precise). This is exactly the idea of vagueness proposed by Frege.

Let us observe that the definition of rough sets refers to data (knowledge),
and is subjective, in contrast to the definition of classical sets, which is in some
sense an objective one.

Due to the granularity of knowledge, rough sets cannot be characterized by
using available knowledge. Therefore with every rough set we associate two crisp
sets, called lower and upper approximation. Intuitively, the lower approximation
of a set consists of all elements that surely belong to the set, whereas the up-
per approximation of the set constitutes of all elements that possibly belong to
the set, and the boundary region of the set consists of all elements that can-
not be classified uniquely to the set or its complement, by employing available
knowledge.

4 Approximations of Concepts and Sorites Paradox

Let us consider the heap paradox.

1. 10,000 grains of sand is a heap of sand.
2. 10,000 grains of sand is a heap of sand, then 9999 grains of sand is a heap

of sand.
3. 9999 grains of sand is a heap of sand, then 9998 grains of sand is a heap of

sand.



4. . . .

5. Conclusion. 1 grain of sand is a heap of sand.

For a given set X by card(X) we denote the cardinality of X. Let us consider
the sequence of collections of grains of sand: x1, . . . , xi, xi+1, . . . , xN , such that
card(xi)− card(xi+1) = 1 for i = 1, . . . , N − 1.

It is worthwhile mentioning that the concept of heap is vague. This concept
may be perceived differently by different agents. Now let us consider an agent
ag having a decision system A = (U,A, d), where U ⊇ {x1, . . . , xi, xi+1, . . . , xN}
is a family of collections of grains and A is a set of conditional attributes over
U . The decision d assigns to each x ∈ U the decision d(x) equal to 1 if x is
a heap and 0, otherwise. This decision is made, e.g., by another agent agdec
on the basis of some attributes (usually different from attributes from A). We
denote by H the decision class {x ∈ U : d(x) = 1} and by −H the decision class
{x ∈ U : d(x) = 0}. In particular, the decision d is assigned to each xi from the
considered sequence. The agent ag defines a partition of U using the the lower
approximation of H, i.e., LOWA(H), the boundary region of H, i.e., BNA(H),
and the lower approximation of −H, i.e., LOWA(−H).

In our example, we assume that x1 ∈ LOWA(H) and xN ∈ LOWA(−H).

By a bounce we understand any i such that one of the following conditions
is satisfied: (i) xi ∈ LOWA(H) & xi+1 ∈ BNA(H), (ii) xi ∈ LOWA(H) & xi+1 ∈
LOWA(−H), (iii) xi ∈ BNA(H) & xi+1 ∈ LOWA(−H).

Now, we explain why such bounces may occur.

Let us consider the first case. The two remaining cases are analogous. One
could argue that we have a problem because there exists i such that xi ∈
LOWA(H) and xi+1 ∈ BNA(H) but the difference between cardinalities xi and
xi+1 is negligible (card(xi) − card(xi+1) = 1) from the point of view of the
concept heap. Observe that in the rough set approach the agent ag using the de-
cision system A is perceiving objects (i.e., in our example collections of grains)
by means of attributes from A. Let us assume that A = {card} and the con-
ditional attribute card assigns to any collection of grains x ∈ U its cardinality.
The decision d is taken by another agent agdec and it may be based, e.g., on the
basis of a shape of collection of grains. For example, d(x) = 1 if the shape of x
is trapezoidal with sufficiently large ratio of the trapezoid hight to the length
of the longest parallel sides of the trapezoid, and 0, otherwise. It may happen
in U that the decision made by the agent agdec for all collections of grains from
the elementary granule A(xi) (with the same cardinality, say n) are equal to
1, i.e., all collections of grains from A(xi) have the relevant trapezoidal shape
accepted by d as the positive examples of the concept heap. However, in case of
A(xi+1) (consisting of collections of grains with the same cardinality equal to
n − 1) there are in U collections x, y of grains such that d(x) = 1 (i.e., x ∈ H)
and d(y) = 0 (i.e., y ∈ −H). This explains that the considered case of bounce
is possible despite the fact that the difference between card(xi) and card(xi+1)
looks negligible from the point of view of the concept heap.



¿From the above considerations, we conclude that in general one can assume
that for any i:

xi ∈ LOWA(H) implies xi+1 ∈ LOWA(H) ∪ BNA(H) ∪ LOWA(−H), (5)

instead of
xi ∈ LOWA(H) implies xi+1 ∈ LOWA(H). (6)

Analogous conditions may be formulated when we change the condition in
the predecessor from the lower approximation of H, to the boundary region of
H, or to the lower approximation of the complement of H.

Of course, in some cases some arguments of the alternative on the right hand
side may be eliminated. For example, in some cases of decision table A of agent
ag in Eq. 5 may be eliminated on the right had side of implication the third
argument of the alternative.

5 Higher Order Vagueness and Rough Sets: Toward
Adaptive Rough Sets

In [26], it is stressed that boundaries of vague concepts are not crisp. In the
definition presented in this chapter, the notion of boundary region is defined
as a crisp set BNB(X). However, let us observe that this definition is relative
to the subjective knowledge expressed by attributes from B. Different sources
of information may use different sets of attributes for concept approximation.
Hence, the boundary region can change when we consider these different views.
Another reason for boundary change may be related to incomplete information
about concepts. They are known only on samples of objects [18]. Hence, when
new objects appear again the boundary region may change. ¿From the discussion
in the literature it follows that vague concepts cannot be approximated with
satisfactory quality by static constructs such as induced membership inclusion
functions, approximations or models derived, e.g., from a sample. Understanding
of vague concepts can be only realized in a process in which the induced models
are adaptively matching the concepts in dynamically changing environments.
This conclusion seems to have important consequences for further development
of rough set theory in combination with fuzzy sets and other soft computing
paradigms for adaptive approximate reasoning. For further details the reader is
referred, e.g., to [49, 50, 56].

¿From the above considerations it follows that for dealing with higher or-
der vagueness one should consider an extension of the rough set approach to
the adaptive rough set approach. In this approach, approximations of a vague
concept are considered over a family of decision systems {At}t∈T , where T is a
set of indices, e.g., time points. Hence, we obtain a family of the lower approx-
imations, upper approximations and boundary regions of the considered vague
concept which are changing, e.g., over time (see Figure 1).

It is worthwhile mentioning that the elements of this family are obtained
through interaction with the environment what is pointing to the necessity of
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Fig. 1. Adaptive rough sets.

embedding the adaptive rough set approach in the framework of interactive
granular computing and WisTech program (see, e.g., [22–24, 21]).

6 Constraints on Bouncing Between Different
Approximation Regions

If one would like to obtain some constraints on bouncing collections of sand
grains between different approximation regions of the concept ’to be a heap of
sand’ assuming that succeeding collections are obtained by individually remov-
ing one grain from the preceding ones, then more details on rough set based
approximations should be considered. For example, one may require that the
changes of membership functions on consecutive collections of sand grains are
below a given threshold. Let us consider an illustrative example to explain this
issue in more detail.

First of all, one should note that usually information about approximated
concept is partial, e.g., provided by a sample of cases ’for’ and ’against’ a given
concepts. Hence, in the rough set approach were developed methods for inductive
extensions of approximation spaces from samples U of objects represented by
decision systems on the universe U∗ of all objects [39, 30].

In Figure 2 is presented a simple example of classifier for a concept C ⊆ U∗.
The classifier is induced from a given partial information about C represented by
a decision system Ad = (U,A, d) with the set of objects U ⊆ U∗ and the decision
d equal (or almost equal) on U to the restriction to U of the characteristic
function of C. The classifier represents an approximation of the characteristic
function of the concept C ⊆ U∗.

The procedure of conflict resolution shown in Figure 2 between induced de-
cision rules matching a given new case x (belonging to an extension U∗ of U ,
i.e., U ⊆ U∗) (and perceived as a signature of x, i.e., InfA(x)) may be realized
using arguments ’for’ and ’against’ membership in C determined by these rules.
The arguments are aggregated using weights wk as it is presented in Figure 3
what finally leads to the classifier computing the membership function µC for a
given concept C.

Now, one can consider the membership function µH∗ as an approximation of
the characteristic function of the vague concept ‘to be a heap of sand’ H∗ ⊆ U∗
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Fig. 2. Rough set-based rule classifier for a concept C (partially) specified by a decision
system Ad = (U,A, d), where d is a characteristic function of a vague concept C ⊆ U∗

restricted to the sample U ⊆ U∗.

1 

Fig. 3. Rough set based rule classifier for a concept C partially specified by a deci-
sion system, where Θ,ω are thresholds specified by the user, strength(r) denotes the
strength of the rule r (e.g., defined by the support of the rule r [30]), and Rk(x) de-
notes the set of decision rules induced from a given decision system for the decision
k ∈ {C,C} (C = U∗ \ C) matching the case x.

induced (analogously as above) from a partial information represented by a deci-
sion systemAd = (U,A, d), where d is a characteristic function of a vague concept
H∗ ⊆ U∗ restricted to the sample U ⊆ U∗. We use µH∗ in considerations concern-
ing the paradox of heap of sand (Figure 4). Note that the induced approximations
of the concept H∗ are now defined as follows. The lower approximation of H∗

is defined by LOWA(H∗) = {x ∈ U∗ : µH∗(x) = 1}, the upper approximation of
H∗ is defined by UPPA(H∗) = {x ∈ U∗ : µH∗(x) > 0 ∨ µH∗(x) = undefined}
and the boundary region of H∗: BNA(H∗) = UPPA(H∗) \ LOWA(H∗).

In the considered example, we assume that the induced approximation of
H∗ represented by µH∗ is consistent with a given sequence x1, . . . , xN , i.e.,
for any xi and xi+1 representing consecutive collections of sand grains after
individually removing one grain in each step, we have µH∗(xi) = 1 if xi ∈ H∗ and



µH∗(xi) = 0 if xi /∈ H∗. In Figure 4 is presented a simple property of behavior
of the model of H∗ on elements of a sequence x1, . . . , xN . If some additional
constraints concerning weights are satisfied than one can see that the boundary
region cannot be omitted. Moreover, using the assumption about a ‘bounce size’
of the membership values in passing from xi to xi+1, one can see that it can
be necessary for the considered sequence to ’spend more time’ in the boundary
region before going out of it. One can specify such assumptions about ’bounce
size’ using the following constraints for induced classifiers: wC(xi)−wC(xi+1) ≤ δ
and wC(xi+1) − wC(xi) ≤ δ, where δ is a given threshold bounding bounces in
degrees of memberships of xi and xi+1.
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Fig. 4. Heap of sand - additional constraints on weights and their consequences.

7 Conclusions

We discussed the sorites paradox in the rough set approach. We have added a
discussion on possible new constraints which should be added and preserved by
approximations of vague concepts. These constraints are related to behavior of
induced classifiers approximating vague concepts on sequences of objects consid-
ered in the sorites paradox for these vague concepts. We have also pointed the
necessity of development of the adaptive rough set approach.

There are numerous logical approaches to vagueness (see, e.g., [20, 52, 54]).
However, from the above considerations it follows that adaptive logic based on
rough sets can be relevant for the outlined approach. It is worthwhile mentioning
here the following sentences from [53]:

Aristotle’s man of practical wisdom, the phronimos, does not ignore
rules and models, or dispense justice without criteria. He is observant of
principles and, at the same time, open to their modification. He begins



with nomoi established law and employs practical wisdom to determine
how it should be applied in particular situations and when departures are
warranted. Rules provide the guideposts for inquiry and critical reflection.

We plan to develop a logical approach to vagueness based on rough sets and
adaptive judgement [21–24].
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