
Superposition Principle in Composable Hybrid
Automata

Jafar Akhundov, Peter Tröger, and Matthias Werner

Operating Systems Group, TU Chemnitz, Germany
jafar.akhundov | peter.troeger | matthias.werner@cs.tu-chemnitz.de

Abstract. In the existing abundance of different hybrid automata for-
malisms concurrent composition is seldom considered or requires addi-
tional semantics which is not always defined. This work considers three
common reasons of problems with hybrid automata composition: con-
tradicting resets in the discrete transitions, global time reference with
contradicting initial conditions and redundant non-determinism for fir-
ing time. An overview is provided of the existing formalisms and the
attempts to solve these particular problems. A reduced hybrid automata
formalism, called linear time-invariant hybrid automata, is introduced.
It avoids all those problems and yet provides a powerful modeling tool
with practical applications. Also, a short discussion is provided for the
problem of Zeno behavior and what conditions are demanded for a model
to fulfill so that Zeno behavior would not arise during composition.

1 Introduction

Hybrid systems modeling has various applications in model-driven design and
verification of embedded and reactive systems. It has been a topic of intensive
research in the past 20 years [MMP91]. Their hallmark is the combination of
discrete and continuous behavior. Most hybrid systems include computational
components which operate in discrete steps and physical components with con-
tinuous behavior over time. Typical examples are aerospace systems, robotic
systems, or process control systems. Since most of these systems are too com-
plex to design and build as a whole, they are decomposed into subsystems and
components with reduced complexity and simpler behavior. This process can,
of course, be recursively repeated until complexity is manageable. In order for
this process to be supported on the modeling level, it is necessary that the
applied formalism allows for (de)compositionThe process of decomposition has
been historically used in the control systems engineering applications [Nis11].
An important property which is often used to simplify design and analysis is the
superposition1 principle which is mathematically defined as:

h(ax1 + bx2) = ah(x1) + bh(x2)

1 also called linearity

Since their introduction, hybrid automata formalisms have been emerging
with restricted properties to simplify analysis and sometimes composition [AD94]
[Hen96] [LSV03] [Ábr12]. Examples of subsets of hybrid automata are timed
automata [AD94], linear hybrid automata [Hen96], rectangular hybrid automata
[HKPV98], hybrid I/O automata [LSV03], etc. Several definitions of the general
hybrid automata exist as well, each with slight deviations in the underlying
semantics.

A handful of frameworks leave some of the semantics unspecified which makes
it difficult for the designer to apply them - separately or compositionally [Hen96]
[Ras05] [Ábr12] [LLL09]. An example is a general structural definition of HA
where each location has an invariant and several outgoing transitions with re-
spective guards [Hen96] [Ras05] [LLL09] [Ábr12]. The problem arises when the
invariant is violated thus forcing the automaton to switch its location to another
one but no guarding condition of the outgoing transitions is enabled. It remains
unspecified what happens to the model in such a situation. Another example
is the passage of time in several parallel composed automata with synchronis-
ing labeled transitions [Ábr12]. Since the event (action) semantics is not always
specified fully and consistently, i.e. are events buffered or ignored, or what is
the global time reference for two composed automata, it is unclear whether one
synchronising edge should wait for another one with the same label in the second
automaton. There are formalisms which allow for such ”waiting” which enables
to model physical systems where objects are floating in space waiting for some
other event to occur.

Thorough comparison of the existing HA formalisms has lead to the conclu-
sion that three common reasons of problems for hybrid automata composition
exist:

1. contradicting resets in the discrete transitions,

2. global time reference with contradicting initial conditions and

3. redundant non-determinism for firing time.

For the practical application of composable control systems a formalism is needed
which has none of the aformentioned problems and fulfills the property of su-
perposition of continuous functions.

The contribution of this work lies in the introduction of a new formalism for
modeling hybrid systems with a fully specified timing, firing, event and com-
position semantics and fulfilling the property of superposition motivated by the
applicability from the control systems engineering. Our approach is driven by the
motivating example of a dedicated domain specific language for the verification
of a space mission at the early design phases where superposition is a critical
issue [ASGW16], [ATW15], [STF+13].

The article starts with an overview of the existing hybrid automata for-
malisms which experience and/or partially solve the composition problems. The
general definition of the utilized hybrid automata variation is given in Section 3.
The text continues with a detailed discussion of composition semantics and the
arising problems. Section 4 shows how the LTI-HA solve these problems. The

paper is concluded by a discussion of further work and possible applications of
the formalism.

2 State of the Art

In the existing abundance of different hybrid automata formalisms concurrent
composition is seldom considered in full depth or requires additional semantics
which is not always defined [Ras05] [LLL09] [Ábr12]. In the general setting, HA
experience all of the three mentioned problems [Hen96] [Ras05] [Ábr12] [LLL09]
[Alu15]. In [Ábr12], an overview is provided of the existing hybrid automata for-
malisms with rising complexity, starting from labeled transition systems, timed
automata and ending with the general hybrid and rectangular automata. That
work provides a conceptualized structural view on the hybrid systems. All three
types of problems occur in the generalized HA and at least partially in the
other formalisms. Furthemore, many formalisms suffer from incompleteness of
semantics definition [Hen96] [Ras05] [LLL09] [Ábr12].

Hybrid I/O automata (HIOA) were introduced by Lynch et al. first in 1996
[LSVW96] but have been modified several times since [LSV03]. The definition
of hybrid I/O automata is unique in the sence that it eliminates a handful of
problems by defining the hybrid automata by the notion of hybrid traces. Hybrid
I/O automata have been demonstrated to be both composable and receptive2.
However, HIOA are too restrictive for some of the control applications where
explicit notion of superposition is important. For example, HIOA are required
to have disjunct output trajectories [LSV03, p.131,p.141] which excludes the
possibility of superposition.

Superposition of the flow functions of hybrid automata has been exploited
in the linear hybrid automata, however, the introduced formalisms still have
at least one of the semantic problems listed in the problem statement [Hen96]
[Pap98].

3 Linear Time-Invariant Hybrid Automata (LTI-HA)

3.1 Definition

Before the linear time-invariant hybrid automata are defined, several supporting
definitions are provided.

Definition 1 (Valuation of a variable). A valuation V (x) of a variable x is
the assignment to x of a value from its domain D: V (x) : x 7→ D(x).

This definition can be extended to a set of variables:

Definition 2 (Valuation of a set of variables). A valuation V (X) of a
variable set X is the union of all valuations for all x ∈ X of a value from
the corresponding domains D(x): V (X) : X 7→ V(X), where V(X) = D(x1) ×
D(x2)× ...×D(xn) is the set of all possible valuations.

2 Not experiencing Zeno behavior, even under the composition.

The

Definition 3 (State of a hybrid system). A state of hybrid system is a pair
(L,V)(t) consisting of two time-dependent components: the discrete state (L) and
the continuous state (V).

Definition 4 (LTI-HA). A linear time-invariant hybrid automaton H is a tu-
ple (L, T ,X ,SI ,SO, E ,A, G,F , I), where:

– L = (L1, . . . , Ln) is a set of discrete locations also called modes;
– T ⊆ L × L is a (not necessarily complete) multiset transition relation;
– X is a set of continuous state variables. To each x ∈ X , a value from
D(x) ⊆ Rm ∪ {dc} can be assigned where m ≥ 1 but is finite and dc is a
special term for unspecified (”don’t care”) value;

– SI and SO are two disjunct sets of input and output events, respectively,
which define the automaton’s event signature;

– E : T 7→ P(P(SI)) and A : T 7→ P(SO) are assignments of the interface
events SI ,SO to the transitions of the automaton;

– G : T ×V(X)×P(SO)×P(P(SI)) 7→ {true, false} is a guard function. For
all transitions τ , G(τ,V(X),A(τ), E(τ)) = gτ (V(X),A(τ), E(τ)) is called the
guard (function) of τ ;

– For any location L and for all variables from X there exists an ordinary
linear differential equation F(fL(x, t)) = g(x, t), x ∈ X , t ∈ R≥0 with g(x, t) :
X × R≥0 7→ Rm describing the change of the corresponding variable, where
fL(x, t) : X × R≥0 7→ V (X) is called a flow function, F(fL) is a linear

operator P0(t)f
(k)
L + P1(t)f

(k−1)
L + ...+ Pk(t)fL with f

(l)
L =

dlfL
dtl

and Pi(t) :

R 7→ R being any functions. The set of all flow functions in a given location
describe how the valuations of continuous state variables change over time
in that location;

– I is the initial state of the system (LI , VI), where LI ∈ L is the initial
active mode and VI = VI(X) is the initial valuation of all the variables in
X .

In contrast, the general definition of hybrid automata usually also includes
additional constructs such as location invariants, variable resets along the tran-
sitions, flow functions are uncostrained and events that are labels with a simple
synchronisation semantics.

Definition 5 (Time Semantics). Evaluation of flow functions is based only
on the duration of time interval spent in the corresponding location. In each
active location, time elapses at the same rate. Transitions are timeless.

Global time reference can be implemented by taking any fixed reference time
value which is progressing along with the automata execution. At any time,
exactly one location is active, beginning with the LI . Automaton’s state changes
either with time with respect to the flow functions of the corresponding locations
or the discrete transitions, starting in the initial state I.

Definition 6 (Transition Semantics). As long as an automaton has an active
location L, the valuation of continuous variables V (X) changes according the
location’s flow function fL. If no explicit flow function is given for some variables
from X their rate of change is assumed to be 0 at the given location. If at some
time point a guard gτ of an outgoing transition (Lc, Ld) evaluates to true, Ld
becomes the new active location without delay and all events e ∈ A(τ) occur.
If more than one guard of an outgoing transition evaluates to true, one of the
transitions is chosen non-deterministically.

Definition 7 (Event Propagation Semantics). The output events have a
one-to-all semantics, that is, every output event is broadcasted. The input events
have a one-to-one semantics and are therefore only generated by a single other
automaton. Each input event has to be defined and specified.

Definition 8 (Event Structure Semantics). The input events for a transi-
tion τ form a set E(τ) ∈ P2(SI) where P2(SI) is a power set of a power set
over the set of input events, that is complex events can be formed by coupling the
(elementary) input events in the following way: for the transition τ to become
enabled, at least one of the (complex) events S ∈ P2(SI) in the set E(τ) has to
occur. Occurrence of such an event implies that all participating events s ∈ S
have occurred (simultaneously).

Definition 9 (Event Timing Semantics). Events don’t have duration and
occurrences are not buffered.

There are two possibilities to describe interval events: by two events, one
for the start es and one for the completion ef , respectively, or by setting global
variables values. Problem with modeling by just events arises when they are
not caught thus leading to either offsets in the interval perceptions or overly
complex conditions for well-definedness and composability. Overlapping intervals
are easily modeled by global variables with constant values.

3.2 Semantics of the LTI-HA

Definition 10 (Timed Transition System (TTS)). A timed transition sys-
tem (TTS) is a tuple (Σ,Σ0,S,→) where Σ is a (possibly infinite) state space
with Σ0 ⊆ Σ being the initial state and S is a (finite) set of labels. Transition
relation is defined as →⊆ Σ × S ∪ R≥0 ×Σ.

Definition 11 (Trace Semantics of a Hybrid Automaton). Trace seman-
tics of a hybrid automaton H = (L, T ,X ,SI ,SO, E ,A, G,F , I) is defined as a
transition system where:

– the (possibly infinite) state space is the set of pairs (l, Vl(X)), where Vl(X)
is in the range of possible valuations in l, defined by fl

– initial state is I
– and the transitions ”→” are either:
• discrete: ∀T ∈ T ∃(li, Vi(X))→σ (lj , Vi(X)), σ ∈ P(S), li, lj ∈ L

• or continuous: ∃δ ∈ R≥0, δ being the time point when the location is
left, ∃(li, Vi(X)) →δ (li, Vj(X)) ∧ fli is differentiable on [0, δ] and the
following conditions hold:
1. fli(0) = Vi(X),
2. fli(δ) = Vj(X),and
3. fli [0, δ] is closed under subintervals.

Thus, a trace of a hybrid automaton is a finite sequence alternating between
continuous evolutions with finite durations and discrete transitions:

π = s0ε0s1ε1, ..., εn−1sn,

where si are the states in TTS, εi are the transitions (discrete or continuous)
between them and s0 = I. Duration of a trace d(π) is defined as the sum of all
durations along that trace. Since a HA can be non-deterministic, many different
traces are possible. Generating a control sequence of external events C ⊂ (S, t),
where S ⊂ SI and t is a time point with respect to the global time reference, is
not part of the model but a task for an external solver.

3.3 Composition of LTI Hybrid Automata

Definition 12 (Composability). Two LTI hybrid automata H1,H2 are called
composable, H1 f H2, iff ∀x ∈ X 1∩X 2 : V 1

I (x) = V 2
I (x), where dc = κ is always

true for all values of κ.

Definition 13 (Composition). Given two composable hybrid automata H1

and H2, the composition H1 ◦ H2 provides a new hybrid automaton
Hc = (Lc, T c,X c,ScI ,ScO, Ec,Ac, Gc, F c, Ic) where

1. Lc = L1 × L2 = {(L1
1, L

2
1), . . . , (L1

1, L
2
n2

), (L1
2, L

2
1), . . . , (L1

n1
, L2

n2
)}

= {Lc11, Lc12, . . . , Lc1n1
, . . . , Lcn1n2

};
2. T c = {t = (Lcij , L

c
kl)|t ∈ Lc × Lc, (L1

i , L
1
k) ∈ T 1 ∨ (L2

j , L
2
l) ∈ T 2}

3. X c = X 1 ∪ X 2,
4. ScI = (S1I ∪ S2I)\S1O\S2O
5. ScO = S1O ∪ S2O
6. ∀τ = ((Li, Lj), (Lk, Ll)) ∈ T , where (Li, Lj) ∈ T 1 and (Lk, Ll) ∈ T 2:
∀e ∈ S1 ∩ S2 6= ∅:
(a) e ∈ S | S ∈ E1((Li, Lj)) ∧ e ∈ A2((Lk, Ll))⇒
∀E ∈ E1((Li, Lj)) : Ec(τ) := Ec(τ) ∪ {E\e}

(b) e ∈ S | S ∈ E1((Li, Lj)) ∧ e /∈ A2((Lk, Ll))⇒
T c := T c\τ

(c) else Ec(τ) = E1(τ) ∪ E2(τ)
The same process is repeated with the inverted indexes 1 and 2.

7. ∀τ ∈ T : Ac(τ) = {e | τ = (Lcij , L
c
kl)∧

((e ∈ A1(L1
i , L

1
k) ∧ j = l) ∨ (e ∈ A2(L2

j , L
2
l) ∧ i = k)∨

(e ∈ (A1(L1
i , L

1
k) ∪ A2(L2

j , L
2
l))))}

8. Gc = {gc(Lcij ,Lckl) = g1
(L1
i ,L

1
k)
|(Lcij , Lckl) ∈ T ∧ j = l}∩

{gc(Lcij ,Lckl) = g2
(L2
j ,L

2
l)
|(Lcij , Lckl) ∈ T ∧ i = k}

9. ∀Lij ∈ Lc: fLij = fLi + fLj
10. Ic = (Lci1i2 , V

1
I ∪ V 2

I)

Properties from semantics definitions 5-9 remain preserved.

Properties 1 and 2 define the new location set which is now a cartesian
product of two initial location sets, and the transition in a new location set
exists if there was at least one transition in the corresponding locations of initial
automata H1 and H2. The variable set is defined as a union set. All variables
with the same names are to be considered global and can be adjusted in a
composed manner (property 9). Properties 4-7 describe how the input and output
events of the automata are composed. Since the input events have the one-to-one
semantics, if one of the two composed automata H1 and H2 has an output event
which is the input event for the second automata this event can be cancelled
out in the input set of the resulting composed automaton. This, however, does
not apply for the output events because of their one-to-all semantics. Properties
6-8 define how the input and output events and the guards are assigned to
their corresponding transitions in the initial automata. For assignment of input
interfaces to the new transitions four possibilities are distinguished: an edge
waiting for an event in one automaton is combined with the generating edge
of the other automaton, a waiting edge with non-generating edge, non-waiting
with the generating edge and non-waiting with non-generating edges. In the
first case, the generated event is removed from all the complex events of the
input assignment. In the second case, the transition will never be taken since a
waiting edge is waiting for an event which is not generated and not buffered. For
the remaining two combinations it is safe to just unite the input assignments.
Mildly speaking, G builds a cut set of enabling valuations in two composed
transitions and a union of the input and output events, respectively. Property
9 follows trivially from the linearity property of the superpositioned differential
equations. Since H1 and H2 are composable it is safe to apply property 10.

4 Semantics of Composition of Hybrid Automata

4.1 General Hybrid Automata

In the general setting, hybrid automata are defined as follows [Hen96, p.2] [Ras05,
p.4] [LLL09] [Ábr12]:

Definition 14. A hybrid automaton consists of:

– A set of continuous variables X;
– A finite directed multigraph (V,E) representing the discrete modes and the

transitions between them;
– Initial conditions describe how the continuous variables are reset after a time-

less discrete transition has been taken;

– Invariants are the predicates assigned to the discrete locations and must hold
in the respective location when it is active;

– Flow conditions describe how the variables in X change continuously with
time;

– Guard conditions which are the predicates over the values of variables of X
and are the enabling conditions for a transition to be taken;

– Events which are assigned to the transitions of the automaton. Transitions
with with the same labels in different automatas must synchronise.

There are some extensions and small differences between the definitions which
both solve some problems and introduce others. For instance, in [Ábr12] it is
proposed that discrete transitions in concurrent automata are interleaved, and
synchronisation is enhanced with special τ -transitions for the automaton which
is waiting on the synchronising edge. It is immediately clear that this extension
solves the problem of race conditions of the resets with non-determinism for the
case when, e.g. two transitions with different labels fire simultaneously with the
following resets: x = y + 1 and y = x + 1. However, introducing τ -transitions
allows for modeling of a satellite in the orbit which, while waiting for some
maneuver comand from an operations control center, suddenly freezes dead in
its orbit since τ -transitions are also timeless. Furthermore, it does not solve
a problem of possible Zeno behavior when time is prevented from passing. A
trivial example is given in Fig. 1. If the automata start in states A and C
with x = 0, y = 0, then after 10 time units, the system will converge and
generate an infinite amount of discrete events. The execution trace would be
(A→ B)⇒ (C → D)⇒ (B → A)⇒ (D → C)⇒ ...

A
y ≤ 10
ẏ = 1

start
B

x ≤ 200
ẋ = 1

x := 100

y := 15

C
x ≤ 20
ẋ = 1

start

D
y ≤ 10
ẏ = 1

x := 250

Fig. 1: Example of time convergence because of the discrete resets

In the general setting, usually no assumption is made3 about the type of
differential equations governing the continuous change of the state variables. If
those are not time invariant, it leaves the question open as to how the flow func-
tions are overlapped during parallel composition. Another important drawback

3 An exception would be [LLL09]

is the lack of specification of the semantics in the case when a state invariant is
violated prior to enabling of any outgoing transition [HKPV98] [Ras05] [LLL09]
[Ábr12].

4.2 Other Formalisms

Several other formalisms based on the general hybrid automata have been pre-
sented [Hen96] [Ras05] [LLL09] [Ábr12].

An overview of the three possible problems mentioned earlier occurring in the
HA formalisms is provided in table (1). Timed automata, being the simplest form
of the HA, avoid most of the problems of composition, as well as lack expressivity
to describe complex hybrid phenomena [LLL09] [Cas05]. Linear hybrid automata
have support for superposition but still have the invariants and resets, and,
hence, the implied problems that could arise. Rectangular automata, just as the
general automata, experience all of the three problems and also increase the
complexity by introducing randomness and uncertainties [Hen96] [HKPV98].

Hybrid I/O automata solve all of the mentioned problems of composition but
have explicitly eliminated the possibility for superposition of trajectories for the
continuous variables [LSV03, p.131,p.141].

HA Formalism
Problems with composition

Superposition Support
R IC FTND

Timed Automata [AD94] - - X -

Linear Hybrid Automata X - X X
I/O Hybrid Automata - - - -

General Hybrid Automata X X X -

Rectangular Hybrid Automata X X X -
Table 1. Compositional problems with the HA formalisms - R: resets; IC: initial
conditions; FTND: fire time non-determinism.

4.3 Composition in LTI Hybrid Automata

Since composition is the cornerstone of the new formalism that is introduced
in this paper, the absence of each of the three undesirable prooerties Pi can be
only guaranteed if and only if LTI hybrid automata as a formalism fulfill the
following two conditions:

1. the property Pi cannot exist in a single automaton;
2. the Pi-freeness is preserved and Pi not induced by composition,

where P1 ≡ R, P2 ≡ IC and P3 ≡ FTND.

Theorem 1. No contradicting resets are possible in the LTI hybrid automata.

Proof

1. Discrete transition resets are not a part of the LTI definition 4. Furthermore,
since there is no composition taking place, no contradictions are possible.
The proof follows trivially.

2. The proof of preservation also follows trivially from the definition 13 of
composition, since no rule introduces discrete resets. The only discrete jumps
of the variable values are possible due to Dirac impulses which do not violate
the superposition and time-invariance property.ut

Theorem 2. No global time reference exists with the contradicting initial con-
ditions in the LTI hybrid automata.

Proof

1. As per definition 5, time flow is identical for all discrete states, hence time
invariance. Definition 4 implies that the flow functions are also linear. Since
every variable can only be assigned with value once in the initial state, no
contradictions are possible.

2. Proving that this statement is preserved and not induced by composition is
equivalent to proving that if two automata are composed with each other
the induced automaton is also composable with some other third automaton,
since non-contradicting initial conditions are the necessary and sufficient
condition for composability.
We assume that automata H1,H2 and H3 are pairwise composable. Without
loss of generality, rules 3 and 10 of the composition definition 13 are applied
to automatas H1,H2:

Theorem 2
H1 f H2,H2 f H3,H1 f H3

(H1 ◦ H2) f H3

After applying rule 13.11, V 12
I = V 1

I ∪ V 2
I . Thus, set V 12

I can be divided to
three subsets, elements only from V 1

I , elements only from V 2
I and elements

from V 1
I ∩V 2

I . Let us assume that V 1
I ∩V 3

I 6= ∅ and V 2
I ∩V 3

I 6= ∅. Then, from
the initial assumption and the definition 12,

∀x ∈ X 1 ∩ X 3 : V 1(x) = V 3(x) ∧
∀x ∈ X 2 ∩ X 3 : V 2(x) = V 3(x)

Hence,

∀x ∈ X 1 ∩ X 2 ∩ X 3 : V 1(x) = V 2(x) = V 3(x)

Linearity and time-invariance are preserved with respect to superposition
[Nis11]. Since all of the flow functions in the LTI-HA are linear and time-
invariant, the same applies for the composed automata after applying rules
1 and 9 of definition 13. ut

Theorem 3. Execution of LTI-HA never stalls due to the contradicting invari-
ants and guard conditions.

Proof

1. Invariants are absent in the definition of the LTI-HA 4. Hence, it is not
possible for the behavior of the model to be unspecified due to a violated
invariant with no guards enabled.

2. The rule for guards in the composition definition, 13.8, combines several
guards of the initial automata. If the guards are contradicting each other,
transition is omitted altogether. No invariants are created and the firing
enforcement (definition 6) is preserved. ut

5 Discussion

Although some of the common problems mentioned in the introduction of this
work have been eliminated in the LTI-HA, others may remain which cannot
be completely excluded for hybrid systems or are implied by the semantics of
the modeled system itself. It is therefore useful to determine a set of properties,
which, combined, will introduce a notion of well-definedness of the model. A well-
defined model would guarantee correct behavior with respect to the property
of interest, that is, model would behave without experiencing unexpected or
unwanted behavior. One of such properties is divergence of time. If a model is
Zeno-free, time never converges, i.e. it is impossible to find a subsequence of the
model execution trace which includes an infinite amount of events in a finite
time. This notion has been extended by Lynch et al. in [LSV03] with the case
where a trajectory of a continuous variable is never asymptotic.

Introduction of such a notion into the LTI-HA formalism would allow for au-
tomatic checking if a model can or cannot end in a Zeno executionOne possible
condition for guaranteeing Zeno-freeness would be the absence of closed transi-
tion loops of length ≥ 1 consisting of only transient modes, i.e. modes for which
at least one outgoing transition is enabled when the mode is entered. If there
exists such a cycle, then the model will be executed, following the transition
semantics 6, endlessly without the progress of time.

6 Conclusion

We presented a formalism that allows the semantic description of linear control
systems based on hybrid automata. Several problems of composition of other
formalisms have been demonstrated with a comparative analysis to our method.

As next steps, we intend to derive the necessary and sufficient conditions
for non-Zenoness of the LTI-HA models and demonstrate that this property is
preserved by composition. Furthermore, the problem of analysis of liveness and
reachability and the implementation of a corresponding tool support will follow.

References

[Ábr12] Erika Ábrahám. Modeling and analysis of hybrid systems: Lecture notes,
April 2012.

[AD94] Rajeev Alur and David L. Dill. A Theory of Timed Automata. Theoretical
Computer Science, 126:183–235, 1994.

[Alu15] R. Alur. Principles of Cyber-physical Systems. 2015.
[ASGW16] Jafar Akhundov, Volker Schaus, Andreas Gerndt, and Matthias Werner.

Using timed automata to check space mission feasibility in the early design
phases. In IEEE Aerospace 2016 Proceedings, Big Sky, Montana, USA,
March 2016.

[ATW15] Jafar Akhundov, Peter Tröger, and Matthias Werner. Considering concur-
rency in early spacecraft design studies. In CS&P 2015 Proceedings, pages
22–30, Rzeszow, Poland, 9 2015.

[Cas05] B. Brard F. Cassez. Comparison of the expressiveness of timed automata
and time Petri nets. In In Proc. FORMATS05, vol. 3829 of LNCS, pages
211–225. Springer, 2005.

[Hen96] T. A. Henzinger. The theory of hybrid automata. In Proceedings of the 11th
Annual IEEE Symposium on Logic in Computer Science, LICS ’96, pages
278–, Washington, DC, USA, 1996. IEEE Computer Society.

[HKPV98] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.
What’s decidable about hybrid automata? Journal of Computer and System
Sciences, 57(1):94 – 124, 1998.

[LLL09] Jan Lunze and Franoise Lamnabhi-Lagarrigue, editors. Handbook of hybrid
systems control : theory, tools, applications. Cambridge University Press,
Cambridge, UK, New York, 2009.

[LSV03] Nancy Lynch, Roberto Segala, and Frits Vaandrager. Hybrid I/O automata.
Inf. Comput., 185(1):105–157, August 2003.

[LSVW96] Nancy Lynch, Roberto Segala, Frits Vaandrager, and H. B. Weinberg. Hy-
brid I/O automata, pages 496–510. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 1996.

[MMP91] Oded Maler, Zohar Manna, and Amir Pnueli. From timed to hybrid systems.
In Real-Time: Theory in Practice, REX Workshop, Mook, The Netherlands,
June 3-7, 1991, Proceedings, pages 447–484, 1991.

[Nis11] N.S. Nise. Control Systems Engineering. Wiley, 2011.
[Pap98] G. Pappas. Hybrid Systems: Computation and Abstraction. 1998.
[Ras05] Jean-François Raskin. An Introduction to Hybrid Automata, pages 491–517.

Birkhäuser Boston, Boston, MA, 2005.
[STF+13] Volker Schaus, Michael Tiede, Philipp M. Fischer, Daniel Lüdtke, and An-

dreas Gerndt. A Continuous Verification Process in Concurrent Engineer-
ing. In AIAA Space Conference, September 2013.

Appendix: A Modelling and Composition Example

To further motivate the use of composable hybrid automata as introduced in
this work, a small practical example for satellite functionality is discussed in
this Appendix.

In the early conceptual study phase of development, a satellite downlink
module which sends gathered information back to Earth can be modelled as
having only two distinct states: Sending, when a ground station is visible and
there is data to send, or Not Sending, when either no ground station is available
or no data is there to be sent (or both). In the Sending state the rate of change
of available data and sent data is the same with opposite signs, whereas in the
Not Sending state both parameters remain constant (Fig. 2).

Not Sending

˙datasent = 0

˙dataavailable = 0

start

Sending

˙datasent = κ

˙dataavailable = −κ

∀dataavailable > 0, ∀clkduration mod d 6= 0:

G((Not Sending, Sending), (dataavailable, clkduration), ∅, {∅}) = true

∀dataavailable ≤ 0:

G((Sending, Not Sending), (dataavailable), ∅, {∅}) = true

∀clkduration mod d == 0:

G((Sending, Not Sending), (dataavailable), ∅, {∅}) = true

Fig. 2: Downlink module model definition using a composable LTI hybrid au-
tomaton.

The automaton representing ground station availability is presented in Fig.
3. Here, as well, the system has only two states, since a ground station is ei-
ther available or not. For now, we ignore irregularities of this otherwise periodic
process, such as orbit perturbations and communication faults - they can be
integrated into the model by taking the worst, shortest possible availability pe-
riod. Ground station visibility is modelled by two running clocks, one for the
period and one for the duration. Once the period time is up, ground station
becomes visible for the possible duration time which is measured by the second
clock, clkduration. When the clock reaches its maximum value, the automaton
switches its discrete state back to the ”Not Visible” mode. Since there are no
resets in the LTI-HA formalism, it is not possible to reset the clocks. Hence,
modular arithmetic is applied. When either of the transitions is taken in the
ground station automaton, an output event is generated, one for the start of the
visibility period, and one for the end, so that other concurrent automatas could

synchronise their transitions with this periodic interval. However, it is also pos-
sible to model communication by using the global values of the two clocks of the
ground station automaton. This approach is used in the Fig. 2 - it is easy to see
that whenever the value of the clock clkduration is not zero modulo the interval
duration, the ground station automaton is in its visible state, so the transition
from ”Not Sending” to ”Sending” modes remains enabled. However, when the
value is zero modulo interval duration and the downlink module is active, or
there is no data to be sent, it should switch back to the ”Not Sending mode”.

Not Visible

˙clkperiod = 1
start

Visible

˙clkduration = 1

∀clkperiod mod (P − d) == 0:

G((Not Visible, Visible), (dataavailable),{gs visibility start},{∅}) = true

∀clkduration mod d == 0:

G((Visible, Not Visible), (dataavailable), {gs visibility end},{∅}) = true

Fig. 3: Periodic ground station visibility model definition using a composable
LTI hybrid automaton.

It is assumed that initial states for the initial automata are (”Not Sending”,
{datasent = 0, dataavailable = C}) and (”Not Visible”, {clkperiod = 0, clkduration =
0}). Obviously, both are composable, since the cut set of their initial valuations
does not have contradictions. The composed automaton is built by applying
composition rules 1-10 and its control graph is depicted in Fig. 4:

1. Lc = ((’Not Sending’, ’Not Visible’), (’Not Sending’, ’Visible’), (’Sending’,
’Not Visible’), (’Sending’, ’Visible’)) = (nsnv, nsv, snv, sv)

2. T c = { ((nsnv, nsv), (nsnv, snv), (nsnv, sv), (snv, nsv), (snv, nsv), (snv,
sv), (snv, nsnv), (snv, nsnv), (nsv, sv), (nsv, snv), (nsv, nsnv), (sv, nsv),(sv,
nsv), (sv, nsnv), (sv, nsnv), (sv, snv))}

3. X c = {dataavailable, datasent, clkperiod, clkduration} ∪ {clkperiod, clkduration} =
{dataavailable, datasent, clkperiod, clkduration},

4. ScI = ∅ ∪ ∅ = ∅
5. ScO = ∅∪{gs visibility start, gs visibility end} = {gs visibility start, gs visibility end}
6. It is clear that for all the cases when only one of the states in a pair changes,

transitions remain unchanged from the corresponding initial automaton. The
output events of the corresponding edges are:
– (nsnv, nsv): { gs visibility start };
– (nsnv, snv): ∅;
– (nsnv, sv): { gs visibility start };
– (snv, nsv): { gs visibility start };

– (snv, nsv): { gs visibility start };
– (snv, sv): { gs visibility start };
– (snv, nsnv): ∅;
– (snv, nsnv): ∅;
– (nsv, sv): ∅;
– (nsv, snv): { gs visibility end };
– (nsv, nsnv): { gs visibility end };
– (sv, nsv): ∅;
– (sv, nsv): ∅;
– (sv, nsnv): { gs visibility end };
– (sv, nsnv): { gs visibility end };
– (sv, snv): { gs visibility end }.

7. Since the set of input events is empty, {∅} is assigned as input events to the
all of the transitions.

8. The guards of the resulting transitions are:

– (nsnv, nsv): g((∀clkperiod mod (P−d) == 0), { gs visibility start }, {∅}) =
true;

– (nsnv, snv): g((∀dataavailable > 0,∀clkduration mod d 6= 0), ∅, {∅}) =
true; this transition will never be taken, since this condition cannot be
fulfilled before the ground station becomes visible;

– (nsnv, sv): g((∀dataavailable > 0,∀clkduration mod d 6= 0,∀clkperiod mod (P−
d) == 0), { gs visibility start }, {∅}) = true this transition is never
taken since decision about taking a transition falls before time starts
ticking in the ground station visibility mode which is required to enable
the second condition;

– (snv, nsv): g((∀dataavailable ≤ 0), { gs visibility start }, {∅}) = true;
this transition will never be taken, since the ground station should have
been visible for the sending to be possible before this transition;

– (snv, nsv): g((∀clkduration mod d == 0), { gs visibility start }, {∅}) =
true; same as the last point;

– (snv, sv): g((∀clkperiod mod (P−d) == 0), { gs visibility start }, {∅}) =
true; same as last point;

– (snv, nsnv): g((∀dataavailable ≤ 0), ∅, {∅}) = true; this transition will
never be taken since the automaton cannot send when the ground station
is unavailable;

– (snv, nsnv): g((∀clkduration mod d == 0), ∅, {∅}) = true; same as the
last point. The only exception is if the snv state is transitive and was
jumped in from the state sv;

– (nsv, sv): g((∀dataavailable > 0,∀clkduration mod d 6= 0), ∅, {∅}) = true
– (nsv, snv): g((∀dataavailable > 0,∀clkduration mod d 6= 0,∀clkduration

mod d == 0), { gs visibility end }, {∅}) = true; contradicting con-
ditions, transition will never be taken;

– (nsv, nsnv): g((∀clkduration mod d == 0), { gs visibility end }, {∅}) =
true

– (sv, nsv): g((∀dataavailable ≤ 0), {∅}, {∅}) = true

– (sv, nsv): g((∀clkduration mod d == 0), ∅, {∅}) = true this transition
will never be taken since the automaton cannot stop sending available
data while the ground station is available;

– (sv, nsnv): g((∀dataavailable ≤ 0,∀clkduration mod d == 0), { gs visibility -
end }, {∅}) = true

– (sv, nsnv): g((∀clkduration mod d == 0), { gs visibility end }, {∅}) =
true

– (sv, snv): g((∀clkduration mod d == 0), { gs visibility end }, {∅}) =
true; this transition will be immediately followed by the (snv, nsnv),
since the guard is also fulfilled

9. The flow functions of the resulting automaton are:
– nsnv: ˙datasent = 0, ˙dataavailable = 0, ˙clkperiod = 1, ˙clkduration = 0

– nsv: ˙datasent = 0, ˙dataavailable = 0, ˙clkperiod = 0, ˙clkduration = 1

– snv: ˙datasent = κ, ˙dataavailable = −κ, ˙clkperiod = 1, ˙clkduration = 0

– sv: ˙datasent = κ, ˙dataavailable = −κ, ˙clkperiod = 0, ˙clkduration = 1
10. Initial state of the composed automaton is given as:
Ic = (nsnv, {datasent = 0, dataavailable = C} ∪ {clkperiod = 0, clkduration =
0}) = (nsnv, {datasent = 0, dataavailable = C, clkperiod = 0, clkduration = 0})

nsnv snv

nsv sv

Fig. 4: The resulting control graph for the composed automaton. Labels are omit-
ted for simplicity. Since snv-state is transient, it is coloured.

