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The question, how true concurrency differs  from interleaving,  has  been studied
intensively,  beginning with the works of Mazurkiewicz [Maz], Milner [Mil], Pratt
[Pra]  and many others.  The Mazurkiewicz trace theory requests for  specifying the
dependency  relation,  which  makes  such  difference  explicit.  If  in  some  state  the
sequences  ab and  ba are executable, then if  a and b are independent, then both the
sequences describe the same behavior. Moreover, we can say about a concurrent step
allowing the execution of a and b in parallel. However, if a and b are dependent, then
such two sequences describe two different sequential processes. 

Pratt  in  [Pra]  makes  an  interesting  geometrical  interpretation  of  concurrency,
letting it be considered as the creation of a new dimension. If we imagine the progress
of executing a and b as segments: a on OX axis and b on OY axis, both originating in
O, then executing ab in a sequential way means that we first go along the segment a,
next come to the corner of a rectangle, from which we traverse the segment b. On the
other hand, when a and b are concurrent, we can imagine the space of possible states
as the whole interior of the rectangle spanned on a and  b as sides. 

In  many  situations,  when  we  consider  the  reachability  graph  of  a  concurrent
system, whenever two actions can be executed in parallel, we can see a diamond-like
shape. 



The diagonal  ab reflects the parallelism. Actions  a and  b can occur in any order
(left-hand and right-hand paths) or they can occur in parallel. 

The situation gets more complex if we allow multiple actions to be performed in
parallel.  The  diamond-like  pattern  can  no  longer  be  sufficient.  The  question  of
interleaving becomes inappropriate. Let's illustrate this phenomenon on one physical
example. From now on we assume that we have ideally resilient identical balls of
negligible radius. We will consider collisions without energy loss, satisfying the laws
of physics, so exchanging the momentum and energy (perfectly elastic collisions). 

Let's start with a simple example of three balls on a straight line. The left-hand ball
is moving with constant velocity v to the right, the right-hand ball is moving with
velocity v to the left, while the middle ball does not move. Let's encode the state of
the system by three letters: R for right, S for stand and L for left. So the initial state of
the system is RSL. 

There are three actions possible in the initial state: 
1. The first ball hits the middle one, stopping immediately and transmitting all

the momentum to the second ball leading to the state SRL. 
2. The third ball hits the middle one, leading to the state RLS

3. The first and the third ball hit the middle one, bouncing backwards, without
moving  it,  so  leading  to  the  final  state  LSR.  Two first  of  them lead  to



consecutive events that must happen next. The complete picture of the states
is given on Fig 3. The labels on edges name the balls, which take part in the
collision. Mind that they reflect different actions (for instance 12 means just
that the ball 1 collides with ball 2, without specifying what kind of collision
it is). 

The diagonal labeled 123 reflects the event in which the first and the last ball hit
the middle one in the same moment. In fact it can be interpreted as 12 || 23, but this
time no interleaving is possible. The event 123 is not a combination of 12 and 23. 

Such hexagonal shape can be typical for 3 objects, which interact in more complex
situations, like one billiard ball hitting the two other ones,  which stick together;  a
situation of great instability. 

We can presume that the multi-event parallelism can create much more complex
patterns. Let's consider one more example. Imagine 4 balls, like on Fig 4, targeting to
one common centre: ball 1 going South, ball 2 West, ball 3 North and ball 4 East. We
do not assume that the balls are equidistant from the center. It can happen that, for
instance, ball 1 hits ball 2 before any other event happens. According to the laws of
physics, in this case ball 1 and ball 2 will exchange the momentum, hence ball 1 will
start going West, and  ball 2 will go South. Observe, that if any collision happens, it
will take place in the common center  and the resulting directions will  be like the
original ones, so S-W-N-E. Eventually we expect that the four balls, after possible
bounces, will pass the center and leave the initial area going to infinity. 



Let us encode the states by four letters assigned to each of the balls, so the initial state
will be SWNE. 

On Fig. 5 we can see a part of the big state graph, again hiding some information,
like where the ball actually is with respect to the center. Some of the possible runs are
not shown, like the one, in which none or only one collision takes place.

In  the last  case  we can  see  an octagonal  shape (among many)  SWNE-WSNE-
WNSE-ENSW-NESW-NEWS-NWES-SWEN,  which  makes  sequentially  the  same
result as the main diagonal SWNE-NESW. The diagonal run reflects the situation, in
which all the balls are equidistant and reach the center at the same time. Each of them
will bounce symmetrically the two neighboring ones and go immediately,  without
intermediate steps into the final direction. Mind that inside the diagram we can see
two typical diamond-like occurrences of concurrent events. 

So again, here we cannot replace the concurrent behavior by the composition of the
sequential ones. Concurrency, like in the previous example, creates new run, which
has little to do with the partly sequential ones, leading to the same result. 

On Fig 5 we also see an interesting case of a diamond non-concurrency: the outer
edges, however they form a diamond shape, cannot be replaced by a diagonal 13 || 24.
Bouncing ball 1 against ball 3 can never happen in the same moment as bouncing ball
2 against ball 4. 



With the increase of the number of parallel events, one can expect other shapes of
concurrency,  not  necessarily  being  planar.  Usually  they  reflect  unstable  physical
systems --  a  small  change  in  the  initial  state  can  cause  a  dramatic change  in  the
behavior. Such instability is well recognized by the physicists. Let us look deeper into
some other part of the state graph of the behavior of the system from Fig. 4. For the
moment let us concentrate on three balls 1,4,2, assuming that the ball 3 is far away
from the common center. So the initial state of these  balls is  SWNE, but the ball 3
will not change its status for a while. 

Fig.6 Unstable collision of 3 balls 

If all the three considered balls collide in the center simultaneously, then the ball 1
will go North, but the two balls 4 and 2 will exchange their momentums and absorb
the momentum of ball 1. As a result they will bounce in two directions a bit South, as
depicted in Fig.6. Let us call this state N(SE)N(SW) No other collision would happen,
so this would be a final state of the system. 

This will differ a lot from the case, in which the ball 2 would find itself a little bit
towards East in the initial position. In such a case two collisions between the balls
1,4,2 would happen. First the ball 1 would collide with the ball 4 exchanging their
momentums and transforming the system state to EWNS, next the ball 1 and 2 would
collide reaching the state WENS, quite different from the final state of Fig 6. So a
small change in the initial position would result in a major qualitative difference of
the final state.  This is an illustration of an instability phenomenon, in which case the
multi-collision  of  balls  cannot  be  factorized  as  a  result  of  interleaving  the  bi-
collisions.  

Anyway,  the  world  of  concurrency  seems  to  hide  some  mysteries.  Here  we
demonstated  a  set  of  examples  showing  why  interleaving  models  can  be  not
aproppriate for modeling true concurrency. 
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