
Providing transactional behavior to
services coordination

Alberto Portilla

LSR-IMAG Laboratory, BP 72
38402 Saint Martin d’Hères, France

Research Center of Information and Automation Technologies
Universidad de las Américas, Puebla

Sta Catarina Mártir s/n, 72820 San Andrés Cholula, México
e-mail: Alberto.Portilla@imag.fr

Abstract

Our research project proposes an approach
for providing transactional behavior to ser-
vices coordination. In service composition
functional aspects have been successfully ad-
dressed. However transactional properties
have been poorly addressed using ad-hoc so-
lutions at the back end of the systems. This
situation makes current applications not reli-
able and not adaptable to existing distributed
environments (i.e. Internet). The objective
of our research is proposing mechanisms for
adding transactional behavior to services co-
ordination.

1 Context and motivation

Service composition is an accepted paradigm for build-
ing information systems. This kind of systems are not
built from scratch, but using existing software com-
ponents called services. A service is an autonomous
software that offers some functionality through a net-
work [1, 2, 7, 25]. Furthermore, services coordination
can be used to abstract an application logic by captur-
ing the interactions and dependencies among services.
Functional requirements describe the application logic.
Several approaches have been proposed to tackle the
problem of describing and enacting the services coor-
dination [21, 6, 3].

Let us consider a simplified e-commerce application
implementing a purchase process (see Figure 1). Given
a purchase order and payment information, it is neces-
sary to get the bank authorization. Once the payment

c©2006 for the individual paper by the paper’ authors. Copying
permitted for private and scientific purposes. Re-publication
of material on this page requires permission by the copyright
owners.

Proceedings of the VLDB2006 Ph.D. Workshop,
Seoul, Korea, 2006

Figure 1: E-commerce application

has been authorized, the order is processed, the ac-
count is charged, the invoice is sent, and the item is
shipped. Notice that there are other issues that must
be considered, for instance: an account must be veri-
fied before being debited; a canceled order cannot be
processed; the invoice process must have been com-
pleted when the package is delivered and the account
is charged.

Actually when an application logic is modeled,
application requirements and exceptional situations
are also specified. Besides, there are non functional
requirements that describe how the execution must
be done with respect to some observable attributes
like performance, security, transactional behavior, etc.
The current approaches for specifying transactional
behavior to services coordination can be classified in
three groups. Transactional behaviour is specified:



1. as a part of the application logic, when it is mod-
eled (e.g. what to do if shipment process fails).

2. as a part of the underlying communication proto-
col. This approach is adopted by standards such
as BTP [14] and WS-Tx [8].

3. as coordination language constructors that are
combined with coordination operators (e.g. trans-
action policies [23], πt-calculus [5], etc.).

Such proposals are mostly based on well known ad-
vanced transaction models (e.g. SAGAs, flexible trans-
actions, etc.). Although non functional requirements
are independent of functional ones they are in general
weaved within the application logic. This situation
makes applications very complex in the sense that they
are hard to maintain, not flexible and not adaptable
[19, 24, 10].

This paper introduces our research project that
aims at providing transactional behavior to services
coordination. Section 2 states the problem of pro-
viding transactional behavior to services coordination.
Section 3 discusses the main characteristics of existing
solutions. Section 4 sketches the transactional coor-
dination approach that we propose. Finally, Section
5 concludes the paper and gives our research perspec-
tives.

2 Transactional behavior for services
composition

Transactional behavior models concurrent access to re-
sources. It is generally related to data. The consis-
tency and reliability of transactional behavior is re-
lated to four properties: atomicity, consistency, iso-
lation, and duration [9, 22], known as ACID proper-
ties. A classic transaction (ACID transaction) is a unit
of work composed of several database operations that
can be committed or aborted usually in milliseconds.
Transactional behavior has been tackled successfully
in centralized and distributed environments under the
support of Database Management Systems (DBMS)
[15, 26, 12]. In this environment, a transaction is a
unit of work composed of several database operations,
given a consistent database, it performs actions on it,
and generates a new consistent version of the database
which is unique and durable [9].

These concepts need to be addressed to services
composition under a new perspective and considering
the following aspects:

1. Transactions are not related only to data but to
execution processes. In the e-commerce example,
ensuring the withdrawal of the account, shipment
of the item and that the invoice sent are executed
atomically concern processes execution and not
data.

2. Applications are built by composing loosely cou-
pled services offered by different providers. In our
example there are two providers: the bank and
the shipment company. These providers do not
offer details about services implementation, and
in general they do not share data or execution in-
formation which are required for executing trans-
actions.

3. The lifetime of processes involved in a service
oriented application is expected to be long (i.e.
hours, days or weeks). While a classical trans-
action takes milliseconds to finish, a long trans-
action takes hours, days or weeks to finish. Long
transactions need to be addressed for ensuring the
quality of service (QoS) of the application and
for avoiding blocking critical resources. Recalling
the e-commerce example, the shipment of the item
can take several days to finish.

Given these characteristics, transactions manage-
ment strategies must be adapted as follows:

• Atomicity must be relaxed to avoid blocking re-
sources for long periods of time, given that the du-
ration of transactions is unpredictable and there
are some resources that cannot be blocked dur-
ing the whole lifetime of a transaction (e.g. bank
account).

• Consistency cannot be ensured by serial execution
when atomicity is relaxed.

• Isolation cannot be too strict when multiple
transactions operate upon common resources.

• Durability to maintain a consistent state across all
the transactions executed by the system instead
of ensuring persistency.

3 Existing approaches

Several research projects have addressed transactional
behavior for information systems, first in the context
of DBMS and after for process oriented systems.

In DBMS, transactional behavior has been tack-
led successfully to data through the concept of ACID
transactions [9, 22, 17] and advanced transactional
models [15, 12, 26]. These approaches are well suited
when data reside in one site and transactions lifetime
is short duration. Besides they operate with homoge-
neous execution units and therefore are not applicable
directly to others environments such as Internet.

In workflow systems there are several approaches
that aim at ensuring consistency among computations
using process as execution units. WAMO [11] intro-
duces a complex transactional language for workflows.
[19] introduces how to add atomicity and exception
handling for IBM-FlowMark. [18] proposes a work-
flow definition language to implement the saga model.



[10] addresses atomic behavior to workflows by means
of spheres. However these approaches address trans-
actional behavior in an ad-hoc fashion and they are in
general not implemented.

In Web services, transactions are used to ensure
sound interactions among business processes. Web ser-
vices transactions (WS-Tx) [8] and business transac-
tion protocol (BTP) [14] are the most accepted pro-
tocols for coordinating Web services. A coordination
protocol is a set of well-defined messages that are
exchanged between the participants of a transaction
scope. However, these approaches do not offer mech-
anisms to ensure the correctness in the specification
because the developer is on charge of implementing
the transactional behavior.

Other approaches provide transactional frame-
works. [13] introduces a model for transactional ser-
vices composition based on an advanced transactional
model. [4] proposes an approach that consists of a set
of algorithms and rules to assist designers to compose
transactional services. These approaches support the
definition of atomic behavior based on the termina-
tion states of activities. Besides, the execution control
flow is defined a priori. This characteristic makes the
approaches not flexible.

Transaction policies [23], πt-calculus [5] and trans-
actional Web services orchestration [20] address trans-
actional behavior based on existing protocols (BTP
and WS-Tx). Transactional behavior is partially im-
plemented without a clear separation between the ap-
plication logic and transactional aspects.

In contrast to the above approaches, we consider
that transactional aspects can be separated from the
application logic and adapted to the characteristics of
the services participating in a coordination, and to the
application requirements of the target application.

4 Towards a transactional services co-
ordination

In our approach the specification of transactional be-
havior for services coordination is addressed as follows:

• Application logic must be captured by using a co-
ordination approach (i.e. workflow technology).

• Transactional behavior must be defined indepen-
dently of the application logic by using atomicity
contracts and associating a well defined behavior
to coordination participants. For example the ac-
tivities bank authorization and process order of
the e-commerce application (see Figure 1) need
to be treated as an execution unit that must be
atomically executed because according to the ap-
plication, orders can be processed only if the pay-
ment has been authorised by the bank.

We propose an applications development cycle with
the following steps (see Figure 2):

Figure 2: Development cycle of service oriented appli-
cations

1. Specification. Given a service coordination that
specifies the dependencies among services and the
corresponding exchanged messages a developer
can specify the intended transactional behavior
(transactional specification) according to a model
and its associated language that we propose (see
below).

2. Preprocessing. In this phase, coordination and
transactional specifications are weaved by a pre-
processor. This process automatically generates
a coordination specification and the information
required to enact the specification.

3. Execution. Transactional coordination is enacted
by a transactional coordination engine that has a
behavior evaluation module responsible of ensur-
ing the specified transactional requirements.

4.1 Transactional behavior model

We propose a transactional behavior model based on
the following concepts:

• Activity. It abstracts a service method call. It
can be classified according to its behavior on fail-
ure [16] by three scenarios: (1) the side effects
that can be caused by undoing the activity (e.g.
an extra charge for cancelling the activity debit
account), (2) the possibility or not of undoing an
activity (e.g. the activity ship item cannot be un-
done when the order contains underclothes), and
(3) the possibility of trying several times an activ-
ity (e.g. send invoice cannot be retried because
the invoice cannot be expedited several times).
The behavior of an activity depends on the ap-
plication semantics. In our example, the activity



bank authorization is vital because no shipment
will be authorized without the corresponding pay-
ment.

• Sphere. It groups a set of activities. It has an as-
sociated state, behavior and contract. The notion
of sphere is used for modeling atomic properties
for execution paths in workflows.

• Contract. It specifies the transactional behavior
of a sphere and a reaction in case of failure. The
behavior is related to well known transactional
requirements (e.g. atomicity, isolation, durability,
etc.).

The model we propose fulfills the current spirit
of reusing practices existing in software engineer-
ing. Consequently, it characterizes existing coordina-
tion approaches and advanced transactional models.
Thereby we ensure that non functional requirements
are well abstracted and the resulting specification is
sound.

4.2 Execution engine

We have specified the general architecture of an exe-
cution engine that consists of two main modules:

• Behavior evaluator detects execution failures and
generates actions for ensuring the required trans-
actional behavior according to given contracts for
a target application.

• Coordination engine enacts the coordination spec-
ification. We are not interested in proposing a
new engine, we define components that can inter-
act with existing engines (i.e. transactional man-
agers, security controllers, etc.).

We are currently conducting the implementation of an
execution engine that uses ECA rules for implementing
the behaviour evaluator and that can be plugged to a
BPEL engine.

5 Conclusion

Emerging paradigms to build information systems,
based on services as building blocks, promise to tackle
the problems related to distribution through standard-
ization. There are other QoS aspects that need to
be addressed to ensure the success of this approach.
Transactional behavior has been addressed success-
fully for managing data and processes execution in
centralized and distributed environments. Proposed
strategies and models do not necessary apply to ser-
vices coordination where data is not the unit of trans-
actions, applications are built by using loosely coupled
distributed units and transactions are expected to be
long duration (hours, days or even weeks). We noticed
that existing coordination approaches have addressed
non functional aspects in an ad-hoc fashion. We also

noticed that current transactional services approaches
are not flexible.

The main contribution of our approach is a transac-
tional behavior model that clearly promotes a separa-
tion of concerns among application logic and the trans-
actional behavior of services. Addressing transactional
behavior by, i) implementing a separation of concerns
strategy, ii) characterizing execution units, and iii) us-
ing recovery strategies, instead of implementing well
known transactional models, makes our approach flex-
ible and extensible.

We are currently finalizing the state of the art and
detailing our approach. Then, we will propose a frame-
work for specifying transactional behavior managers
for services oriented systems. We will also explore how
to extend our model to other transactional properties
such as isolation and durability.

References

[1] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vi-
jay Machiraju. Web Services - Concepts, Architectures
and Applications. Springer Verlag, first edition, 2004.

[2] Khalid Belhajjame. Définition et orchestration des
services ouverts pour la construction des systèmes
d’information répartis. PhD thesis, Institut National
Polytechnique de Grenoble, LSR-IMAG, Juin 2004.

[3] Boualem Benatallah, Quan Z. Sheng, and Marlon Du-
mas. The self-serv environment for web services com-
position. IEEE Internet Computing, 7(1):40–48, 2003.

[4] Sami Bhiri, Claude Godart, and Olivier Perrin. Reli-
able web services composition using a transactional
approach. In IEEE International, editor, O. e-
Technology, e-Commerce and e-Service, volume 1 of
eee, pages 15–21, March 2005.

[5] Laura Bocchi, Paolo Ciancarini, and Davide Rossi.
Transactional aspects in semantic based discovery of
services. In Jean-Marie Jacquet and Gian Pietro
Picco, editors, COORDINATION, volume 3454 of
Lecture Notes in Computer Science, pages 283–297.
Springer, 2005.

[6] Fabio Casati. eflow: an open, flexible and configurable
approach to service composition. In Heiko Ludwig,
Yigal Hoffner, Christoph Bussler, and Martin Bichler,
editors, ISDO, volume 30 of CEUR Workshop Pro-
ceedings. CEUR-WS.org, 2000.

[7] Christine Collet. The nods project: Networked open
database services. In 14th European Conference on
Object-Oriented programming (ECOOP-2000), June
2000.

[8] William Cox, Felipe Cabrera, George Copeland, Tom
Freund, Johannes Klein, Tony Storey, and Satish
Thatte. Web services transaction (ws-transaction).
Technical specification, BEA Systems, International
Business Machines Corporation, Microsoft Corpora-
tion, Inc, November 2004.

[9] Claude Delobel and Michel Adiba. Bases de données
et systèmes relationnels. Dunod, Informatique, 1982.



[10] Wijnand Derks, Juliane Dehnert, Paul Grefen, and
Willem Jonker. Customized atomicity specification for
transactional workflows. In Proceedings of the Inter-
national Symposium on Cooperative Database Systems
and Applications, pages 155–164. IEEE, April 2001.

[11] Johann Eder and Walter Liebhart. The workflow ac-
tivity model WAMO. In Conference on Cooperative
Information Systems, pages 87–98, 1995.

[12] Ahmed K. Elmagarmid, Y. Leu, W. Litwin, and
Marek Rusinkiewicz. A multidatabase transaction
model for interbase. In Proceedings of the sixteenth in-
ternational conference on Very large databases, pages
507–518, San Francisco, CA, USA, 1990. Morgan
Kaufmann Publishers Inc.

[13] Marie-Christine Fauvet, Helga Duarte, Marlon Du-
mas, and Boualem Benatallah. Handling transactional
properties. In Springer-Verlag LNCS, editor, WISE
2005: 6th International Conference on Web Informa-
tion Systems Engineering, volume 3806, pages 273–
289, Octobre 2005.

[14] Peter Furniss. Business transaction protocol. Techni-
cal specification, OASIS, November 2004.

[15] Héctor Garćıa-Molina and Kenneth Salem. Sagas. In
ACM, editor, 9th Int. Conf. on Management of Data,
San Francisco, California, USA, pages 249–259, 1987.

[16] Jim Gray. The transaction concept: Virtues and lim-
itations (invited paper). In Very Large Data Bases,
7th International Conference, September 9-11, 1981,
Cannes, France, Proceedings, pages 144–154. IEEE
Computer Society, 1981.

[17] Jim Gray and Andreas Reuter. Transaction process-
ing: concepts and techniques. Morgan Kaufmann Pub-
lishers, 1993.

[18] Paul Grefen, Jochem Vonk, and Peter Apers. Global
tansaction support for workflow management systems:
from formal specification to practical implementation.
Very Large Data Base Journal, 10(4):316–333, 2001.

[19] Claus Hagen and Gustavo Alonso. Exception han-
dling in workflow management systems. IEEE Trans-
actions on Software Engineering, 26(10):943–958, Oc-
tober 2000.

[20] Peter Hrastnik and Werner Winiwarter. Twso trans-
actional web service orchestrations. Journal of Digital
Information Management, 4(1):–, 2006.

[21] Amaia Lazcano, Gustavo Alonso, Heiko Schuldt, and
Christoph Schuler. The WISE approach to electronic
commerce. International Journal of Computer Sys-
tems Science and Engineering, 15(5), 2000.

[22] M. Tamer Ozsu and Patrick Valduriez. Principles of
distributed database systems. Prentice Hall, second
edition, 1999.

[23] Stefan Tai, Thomas Mikalsen, Eric Wohlstadter, Nir-
mit Desai, and Isabelle Rouvellou. Transaction poli-
cies for service-oriented computing. Data Knowl.
Eng., 51(1):59–79, 2004.

[24] Genoveva Vargas-Solar, Luciano Garćıa-Banuelos,
and Jose-Luis Zechinelli-Martini. Toward aspect ori-
ented services coordination for building modern infor-
mation systems. In Encuentro Internacional de Com-
putacion 2003. ENC-SMCC, IEEE, sep 2003.

[25] W3C. World wide web consortium. Online
http://www.w3.org/, April 2005.

[26] Helmut Wachter and Andreas Reuter. The contract
model. In Ahmed K. Elmagarmid, editor, Database
Transaction Models for Advanced Applications, chap-
ter 7, pages 219–263. Morgan Kaufmann Publishers,
1992.

This research is partially related to the project
DELFOS of the Franco-Mexican Laboratory of Informat-
ics (LAFMI) of the French and Mexican governments.

Alberto Portilla is a first year PhD student (double pro-
gram) at the National Polytechnical Institute of Grenoble
(INPG), Laboratory LSR-IMAG, and the Universidad de
las Américas (UDLA), CENTIA. He works under the su-
pervision of Prof. PhD. Christine Collet (INPG, France),
PhD. Genoveva Vargas-Solar (full time researcher CNRS,
France), Prof. PhD. José-Luis Zechinelli-Martini (UDLA,
México) and Prof. PhD. Luciano Garćıa-Bañuelos (UATx,
México). His research focusses on non functional aspects of
services based applications. His studies are expected to be
finished in August 2008. His studies are supported by the
Mexican Education Council through the program for im-
proving the teaching system in Mexican public universities
(PROMEP-SEP), the Autonomous University of Tlaxcala,
México and the Jenkins Excellence Fellowship Program at
UDLA.


