
Some Performance Issues in
Distributed Real Time Database Systems

Udai Shanker*, Manoj Misra and Anil K. Sarje

Department of Electronics & Computer Engineering
Indian Institute of Technology Roorkee, Roorkee-247 667, INDIA

udaigkp@gmail.com, {manojfec | sarjefec}@iitr.ernet.in

Abstract
Database performance is an important aspect of
database usability. Distributed real time database
systems (DRTDBS) must be designed on all
levels of database architecture to support timely
execution of requests. The primary performance
objective in DRTDBS is to minimize the number
of missed deadlines. Due to the demanding
nature of this objective, traditional approaches
are inadequate. However, the research in
DRTDBS has been mostly devoted to extending
traditional transaction processing techniques to
solve the issues important for the design of
DRTDBS. In this environment, new
policies/protocols must be designed to efficiently
handle the transactions execution. Our works
involves design of new priority assignment
policies and commit protocols and comparison of
their performances with existing
policies/protocols.

1 Introduction
Many applications such as military tracking, medical
monitoring, stock arbitrage system, network management,
aircraft control, factory automation etc. that depend
heavily on database technology for the proper storage and
retrieval of data located at different remote sites have
certain timing constraints associated with them. Such
applications introduce the need for DRTDBS [12]. A
DRTDBS is a collection of multiple, logically interrelated
databases distributed over a computer network. They
support transactions that have explicit timing constraints.
The timing constraint of a transaction is expressed in the
form of a deadline, which indicates that it must complete

on/before some specific time in future. The transactions
can be classified as hard, firm or soft type based on the
effect of missing their deadlines [13]. A hard real time
transaction must meet its deadline strictly. A missed
deadline may result in a catastrophe. A firm real time
transaction does not result in a catastrophe, if the deadline
is missed. However, the results have no value after the
expiry of deadline. A soft real time transaction has some
value even after expiry of its deadline, but the value
typically diminishes with time.

In contrast to traditional databases, where the primary
goal is to minimize the response time of transactions and
maximize throughput [14], the main objective of
DRTDBS is to minimize the percentage of the
transactions that miss their deadlines. The scheduling of
real time transaction is far more complex than traditional
real time scheduling as the database management
algorithms for accessing and manipulating data in
DRTDBS should not only ensure database consistency,
but should also satisfy the timing constraints. The goal of
this effort is to introduce various aspects of DRTDBS, the
issues and challenges involved and the work carried out.

 The following sections explore the basic issues and
research challenges having key importance to the
performance of DRTDBS followed by the contributions,
major findings of our experimentations and scope for
future work.

2 Performance Issues and Research
Challenges

The implementation of DRTDBS is difficult due to the
conflicting requirements of maintaining data consistency
and also meeting transaction’s deadlines. The difficulty
comes from the unpredictability of the transactions’
response times [15]. Each distributed transaction
accessing a data item takes a variable amount of time due
to concurrency control, I/O and communication delays.
While maintaining the consistency of underlying
database, scheduling and management of the system
resources in DRTDBS should also take into account the
timing constraints. Access to CPU, main memory, I/O

*M. M. M. Engg. College, Gorakhpur - 273010, India under QIP.
© Ï 2006 for the individual paper by the paper' authors. Copying
permitted for private and scientific purposes. Re-publication of material
on this page requires permission by the copyright owners.
Proceedings of the VLDB 2006 PhD Workshop,
Seoul, Korea, 2006

mailto:udaigkp@gmail.com

devices and shared data should be managed to make the
best effort to satisfy the transaction deadlines.

2.1 Priority Assignment Policy

One of the most important issues in design of DRTDBS is
transaction scheduling [16]. The transaction scheduling in
DRTDBS involves both the CPU scheduling and the data
scheduling and is done according to the priorities assigned
to the transactions. As a result, the role of the priority
assignment policy becomes an important issue in
deciding the performance of the system because
priorities determine the order of the transactions to
access resources which in turn affects their likeliness to
meet the deadlines. In traditional databases, when
conflicts occur, the preferences tend to be based either on
fairness or on resource consumption [14]. However, the
transaction scheduling in DRTDBS is done according to
the urgency of the transactions that decides their
priorities. The priority assignment problem has been
addressed by very few researches [17]. Generally, the
priority of a transaction is determined on the basis of its
deadline such as in earliest deadline first (EDF) priority
assignment policy; both fairness and maximum resource
utilization become secondary goal. This can cause two
major problems. First, more CPU resource is wasted if
closer to completion transactions are aborted in favour of
higher priority transactions [13]. Second, longer
transactions may be harder to finish creating a starvation
problem [18]. Execution of a global transaction in a
distributed system requires the execution of cohorts on
different sites. Most heuristics [19,20,21] for priority
assignment in DRTDBS consider that subtasks (cohorts)
of a transaction are executed sequentially. Except ultimate
deadline (UD), other heuristics are not suitable when the
subtasks (cohorts) of a transaction are executed in
parallel. The UD also becomes ineffective when data
contention is non - trivial [21]. Moreover, Victor C. S.
Lee et al. [21] have not studied the fairness property of
these schemes.

2.2 Distributed Real Time Commit Protocol

The atomic commit protocols play a key role in
supporting global atomicity for the distributed real time
transactions [22]. These protocols are used to ensure that
all cohorts agree on the final outcome of the transaction.
They typically require exchange of multiple messages in
multiple phases among the participating sites, and also
require to maintain logs of data to recover from failures.
This significantly increases the execution time of the
transactions and can adversely affect the system’s ability
to meet transaction deadlines. Due to distributed nature of
the transactions and in presence of other sources of
unpredictability such as data access conflicts, uneven
distribution of transactions over the sites, variable local
CPU scheduling time, communication delay, failure of
coordinator and cohort’s sites etc., it is not easy to meet

the deadline of all transactions in DRTDBS. The
unpredictability in the commitment phase makes it more
serious because the blocking time of the waiting cohorts
due to execute-commit conflict may become longer.
Hence, due to unique characteristics of the committing
transactions and unpredictability in the commitment
process, design of an efficient commit protocol is another
important issue that affects the performance of DRTDBS.

The Two Phase Commit (2PC) is still one of the most
commonly used protocols in the study of DRTDBS. Most
of the existing protocols proposed in the literatures are
based on it. The 2PC based optimistic commit protocol
(OPT) [24] for real-time databases try to improve system
concurrency by allowing executing transactions to borrow
data from the transactions in their commit stage. This
creates dependencies among transactions. If a transaction
depends on other transactions, it is not allowed to start
commit processing and is blocked until the transactions,
on which it depends, have committed. The blocked
committing transaction may include a chain of
dependencies as other executing transactions may have
data conflicts with it. Enhancement has been made in the
Permits Reading of Modified Prepared-Data for
Timeliness (PROMPT) commit protocol, which allows
executing transactions to borrow data in a controlled
manner only from the healthy transactions in their commit
phase [25]. However, it does not consider the type of
dependencies between two transactions. The abort of a
lending transaction aborts all the transactions dependent
on it. The technique proposed by Lam K. Y. et al.
maintains three copies of each modified data item (before,
after and further) for resolving execute-commit conflicts
[26]. This not only creates additional workload on the
system but also has priority inversion problems. Based on
the concepts of above protocols [25,26], Biao Qin and Y.
Liu proposed a commit protocol Double Space (2SC)
[27] which classifies the dependencies between lender and
borrower into two types; commit and abort. The abort of a
lending transaction only forces transactions in its abort
dependency set to abort. The transactions in the commit
dependency set of the aborted lending transaction
continue as normal. However, 2SC creates inconsistency
in case of write-write conflicts [2,11].

The protocols [24,25,26], that allow an executing
cohort to borrow data from a committing cohort, do not
allow the borrower to send WORKDONE/PREPARED
message and block it until the lender commits. These
protocols either use blind write model or update model
[1].

2.3 Memory Efficient Commit Protocol

Important database system resources are main memory,
CPU, disk and data items. Before the start of execution of
a transaction, buffer space in main memory is allocated
for the transaction. When the main memory is running
low, a transaction may be blocked from execution. The

amount of memory available in the system thus limits the
number of concurrently executable transactions. In large
scale real time database systems, the execution of
transactions will be significantly slowed down if available
memory is low. So, the effective use of available main
memory space in data intensive applications is another
challenging issue. During the execution of a transaction,
temporary records are created to maintain the status of the
transaction’s execution. These temporary records are kept
in the main memory until the transaction commits. This
consumes a substantial amount of main memory. Since,
unpredictability in the commitment phase may make the
transaction to stay for a long period in the system;
memory will be held up for a long period and will be not
available for other transactions. So, this necessitates the
design of commit protocols that save memory by creating
less temporary objects.

2.4 Other Challenging Issues

The design and implementation of DRTDBS introduce
several other interesting problems. Among these
problems, predictability and consistency are fundamental
to real time transaction processing, but sometimes these
require conflicting actions. To ensure consistency, we
may have to block certain transactions. Blocking of these
transactions, however, may cause unpredictable
transaction execution and may lead to the violation of
timing constraints. There are a number of other sources of
unpredictability such as communication delays, site
failures and transaction’s interaction with the underlying
operating system and I/O subsystems. Other design issues
of DRTDBS are data access mechanism and invariance,
new metrics for database correctness and performance,
maintaining global system information, security, fault
tolerance, failure recovery etc. Again, there is also no
adequately designed technique for scheduling the CPU as
being the primary resource in the DRTDBS.

Although, a lot of research has been done on these

issues, there still exist many challenging and unresolved
issues. Due to the heterogeneity of these issues, we have
confined our work to only some of these issues. Our work
involves design of new priority assignment policies and
commit protocols and the comparison of their
performance with existing policies/protocols. We
assumed that the transactions are firm real time and data
items accessed by the transactions are known before the
start of execution of the transactions. Two locking
approaches are used by the transactions to obtain a lock
on data items viz., static two phase locking (S2PL) and
dynamic two phase locking (D2PL). The deadlock
freedom and lower communication overhead of locking
by using S2PL makes it attractive for DRTDBS [23]. So,
we used S2PL with higher priority concurrency control
algorithm to access data in mutually exclusive way.

3 Contributions of Thesis
The work reported in the thesis provides better solutions
for some of the issues mentioned above. Major
contributions of our thesis may be described as follows:

1. A new scheme to determine the priorities of cohorts

executing in parallel along with the method to
compute the deadlines of the global and the local
transactions have been proposed. In our scheme, each
cohort is assigned an initial priority which is inversely
proportional to the number of locks required by the
cohort at its execution site. A temporary intermediate
priority of the cohort is calculated when a data
contention occurs and initial priority of newly arrived
cohort (TA) is higher than the priority of lock holding
cohort (TL). The intermediate priorities are based on
the remaining execution time needed by TL and the
slack time available with TA. This minimizes the abort
of near completion low priority lock holding cohorts.

The proposed priority assignment schemes have
been compared with EDF priority assignment policy
using S2PL concurrency control algorithm and 2SC
commit protocol. We have implemented distributed
real time simulator for main memory resident
database. The simulation results show that the
proposed scheme not only ensures fairness within the
real time constraints, but also reduces Miss Percentage
of transactions ranging from 3% to 10%. The proposed
priority assignment scheme is capable to cope with the
starvation problem encountered by long transactions.
In this case, the improvement in long transaction Miss
Percentage is up to 10%.

2. DRTDBS use a commit protocol to ensure transaction

atomicity. Most of the existing commit protocols used
in DRTDBS try to improve the system performance
by allowing a committing cohort to lend its data to a
lock requesting cohort, thus reducing data
inaccessibility. This creates a dependency between the
lender and the borrower. The dependencies created
due to read/update type locks have been redefined, and
then a static two phase locking with high priority
(S2PL-HP) based commit protocol named as SWIFT
[3] has been proposed. SWIFT is based on redefined
dependencies that are created when a lock holding
cohort lends its locked data to some other cohorts for
reading or updating. The WORKSTARTED message
is sent just before the start of processing phase of the
cohort in place of sending WORKDONE message at
the end of processing phase [9]. This improves
performance of the system by overlapping the
transmission time of WORKSTARTED message with
the processing time of the cohorts. SWIFT also
reduces the time needed for commit processing by
allowing commit dependent only borrower to send its
WORKSTARTED message instead of being blocked.

To ensure non-violation of the ACID properties,
checking of completion of processing and the removal
of dependency of cohort are done before sending the
YES VOTE message to coordinator by the cohort. The
important point of SWIFT is that the required
modifications are local to each site and do not require
inter-site communications. So, it is free from message
overhead [7].

The performances of SWIFT have been compared
with 2SC and PROMPT for both main memory
resident and disk resident databases with and without
communication delay. Results of simulation show a
performance improvement of the order of 5% - 10% in
transaction Miss Percentage. The performance of
SWIFT has also been analyzed for partial read-only
optimization, which minimizes intersite message
traffic, execute-commit conflicts and log writes
consequently resulting in a better response time. The
effect of partial read only optimization has been
studied both for the main memory and the disk
resident databases at communication delay of 0ms and
100ms. The performance improvement in transaction
Miss Percentage varies from 1% to 5%.

The impact of permitting the communication
between the cohorts of the same transaction (sibling)
in SWIFT has also been analyzed both for the main
memory and the disk resident database at
communication delay of 0ms as well as 100 ms. The
cohort sends the abort messages directly to its siblings
as well as its coordinator. A little improvement in
transaction Miss Percentage was observed, i.e., up to
3%.

3. A new locking scheme has been developed for the

database model that permits two types of write
operations: blind write and update. In this new locking
scheme, a lock not only shows the lock obtained by
the lender but also the lock obtained by the borrower.
The new locking scheme also ensures that a borrower
can’t be a lender simultaneously at the same site. This
relieves the system from the burden of checking that a
borrower is not trying to lend as compared with
PROMPT and 2SC. All types of dependencies, that
may arise by allowing a committing cohort to lend its
data to an executing cohort under both update (read-
before-write) model and blind write (write not ever
read) model, have been redefined. A memory efficient
commit protocol (MECP) has been proposed on the
basis of new locking scheme and these all kind of
dependencies that may arise by allowing a committing
cohort to lend its data to an executing cohort As a
result of the new locking scheme, in MECP, each site
maintains only a single set of borrowers in comparison
to PROMPT and 2SC [5,8], where two different sets
are required.

The performance of MECP is compared with
PROMPT and 2SC and is marginally better with these

commit protocols in term of Miss Percentage of the
transaction, but it reduces the memory requirement to
a great extent. This makes it suitable for data intensive
applications with high transaction arrival rate where
system’s main memory size is a bottleneck.

4 Conclusions
In this paper, we discussed major challenging issues
important for designing of DRTDBS. Our research
addresses three major challenges. The solution of first one
introduces new heuristic and temporary intermediate
priority assignment policy to determine the priorities of
transactions while for second issue, a static two phase
locking with higher priority based, write-update type,
ideal for fast and timeliness commit protocol has been
proposed. In third case, a new distributed real time
commit protocol MECP has been presented that uses a
new locking scheme. In nutshell, we have developed,
implemented and evaluated the new priority assignment
policies/commit protocols to deal with firm real time
cohorts executing in parallel fashion. By considering the
problem of DRTDBS, we believe that our insights and
solutions will significantly contribute to solving the
problems.

The work presented in our thesis is only a starting
point. Many other issues are still to be resolved and
warrant further investigation. Following are some
suggestions to extend this work.

• Alternative approaches such as analytical methods and
experiments in actual environment can be used to
evaluate the effects of the proposed priority
assignment policies, deadline computation method and
commit protocols on the performance of DRTDBS.

• Our performance studies are based on the assumption
that there is no replication. Hence, a study of relative
performance of various topics discussed here deserves
a further look under assumption of replicated data.

• The integration and the performance evaluation of
proposed commit protocols with 1PC and 3PC
protocols.

• Although tremendous research efforts have been
reported in the hard real time systems in dealing with
hard real time constraints, very little work has been
reported in hard real time database systems. So, the
performance of the proposed work can be evaluated
for hard real time constrained transactions.

• Our work can be extended for Mobile DTRDBS,
where memory space, power and communication
bandwidth is a bottleneck. The MECP will be well
suited to hand held devices and possibility of its use
for commit procedure can be explored.

• The fault tolerance and the reliability are highly
desirable in many real time applications because in
these applications, continued operation under

catastrophic failure and quick recovery from failure is
very crucial. These aspects may also be dealt.

• In our work, we assumed that each site has a system
with a single processor. An obvious extension of our
work is for multiprocessor environment.

• More work is needed to explore the impact of
communication in between cohorts of the same
transaction (siblings) on the overall system
performance.

• Our research work can also be extended for grid
database systems.

References
[1] Udai Shanker, Manoj Misra and Anil K. Sarje. Distributed Real

Time Database Systems: Background and Literature Review. In
International Journal of Distributed and Parallel Databases,
Springer Verlag (communicated)

[2] Udai Shanker, Manoj Misra and Anil K. Sarje. A Fast Distributed
Real Time Commit Protocol. In Journal of Computer Science &
Informatics, Computer Society of India, Vol. 35, No. 4, Oct.-Dec.
2005.

[3] Udai Shanker, Manoj Misra and Anil K. Sarje. SWIFT - A Real
Time Commit Protocol. In International Journal of Distributed and
Parallel Databases, Springer Verlag, Volume 20, Issue 1, July
2006, pages 29-56.

[4] Udai Shanker, Manoj Misra and Anil K. Sarje. Priority Assignment
Heuristic and Issue of Fairness to Cohorts Executing in Parallel. In
WSEAS Transactions on COMPUTERS, Issue 7, Volume 4, July
2005, pages 758-768.

[5] Udai Shanker, Manoj Misra and Anil K. Sarje. The MEWS
Distributed Real Time Commit Protocol. In WSEAS Transactions
on COMPUTERS, Issue 7, Volume 4, July 2005, pages 777-786.

[6] Udai Shanker, Manoj Misra and Anil K. Sarje. OCP-the Optimistic
Commit Protocol. In Proceedings of the 17th Australasian Database
Conference (ADC 2006), Hobart, Tasmania, Australia, Jan. 16-19,
2006 (Published by Australian Computer Society in Conferences
of Research and Practice in Information Technology, Vol. 49,
pages 193-202, ACS 2006 in association with ACM Digital
Library)

[7] Udai Shanker, Manoj Misra and Anil K. Sarje. Dependency
Sensitive Distributed Commit Protocol. In Proceedings of the 8th
International Conference on Information Technology (CIT 05),
Bhubaneswar, India, Dec. 20 - 23, 2005, pages 41-46.

[8] Udai Shanker, Manoj Misra and Anil K. Sarje. A Memory
Efficient Fast Distributed Real Time Commit Protocol. In
Proceedings of the 7th International Workshop on Distributed
Computing (IWDC 2005), Indian Institute of Technology
Kharagpur, India, Dec. 27-30, 2005, pages 500-505.

[9] Udai Shanker, Manoj Misra and Anil K. Sarje. Optimizing
Distributed Real-Time Transaction Processing During Execution
Phase. In Proceedings of the 3rd International Conference on
Computer Application (ICCA2005), University of Computer
Studies, Yangon, Myanmar, March 9-10, 2005, pages 1-7.

[10] Udai Shanker, Manoj Misra and Anil K. Sarje. Priority Assignment
to Cohorts Executing in Parallel. In Proceedings of the 3rd
International Conference on Computer Application (ICCA2005),
University of Computer Studies, Yangon, Myanmar, March 9-10,
2005, pages 39-45.

[11] Udai Shanker, Manoj Misra and Anil K. Sarje. A New Commit
Protocol for Distributed Real-Time Database Systems. In
Proceedings of the IASTED International Conference on Databases
and Applications (DBA 2005), Innsbruck, Austria, Feb. 14-16,
2005, pages 122-127.

[12] Lee Juhnyoung. Concurrency Control Algorithms for Real - time
Database Systems. PhD Thesis, Department of Computer Science,
University of Virginia, 1994.

[13] Kao Ben and Garcia - Monila H. An Overview of Real - time
Database Systems. In Advances in real - time systems, pages 463 -
486, 1995.

[14] Yu Philip S., Wu Kun - Lung, Lin Kwei - Jay and Son S. H. On
Real - Time Databases: Concurrency Control and Scheduling. In
Proceedings of the IEEE, Volume 82, No.1, pages 140 - 157, Jan.
1994.

[15] Ramamritham K. Real-time Databases. Distributed and Parallel
Databases, Special Issue: Research Topics in Distributed and
Parallel Databases, Vol. 1, Issue 2, pages 199 - 226, April 1993.

[16] Bowers David S. Directions in Databases. In Lecture Notes in
Computer Science, 826, Springer - Verlag, pages 23 - 54.

[17] Lee Victor C. S., Lam Kam - Yiu and Kao B. Priority Scheduling
of Transactions in Distributed Real - Time Databases. In
International Journal of Time-Critical Computing Systems, Vol.
16, pages 31 - 62, 1999.

[18] Huang Jiandong, “Real Time Transaction Processing: Design,
Implementation and Performance Evaluation,” PhD thesis,
University of Massachusetts, May 1991.

[19] Kao Ben and Garcia - Molina H. Deadline Assignment in a
Distributed Soft Real - Time System. In Proceedings of the 13th
International Conference on Distributed Computing Systems,
pages 428 - 437, 1993.

[20] Kao Ben and Garcia - Molina H. Subtask Deadline Assignment for
Complex Distributed Soft Real - time Tasks. Technical Report 93 -
149, Stanford University, 1993.

[21] Lee Victor C. S., Lam K. Y., Kao Benjamin C. M., Lam K. W. and
Hung S. L. Priority Assignment for Sub - Transaction in
Distributed Real - time Databases. 1st International Workshop on
Real - Time Database Systems, 1996.

[22] O'Neil Patrick, Ramamritham K. and Pu C. Towards Predictable
Transaction Executions in Real - Time Database Systems.
Technical Report 92 - 35, University of Massachusetts, August,
1992.

[23] Lam Kam-Yiu. Concurrency Control in Distributed Real - Time
Database Systems. PhD Thesis, City University of Hong Kong,
Hong Kong, Oct. 1994.

[24] Gupta Ramesh, Haritsa J. R. and Ramamritham K. More Optimism
About Real - Time Distributed Commit Processing. Technical
Report TR – 97 - 04, Database System Lab, Supercomputer
Education and Research Centre, I.I.Sc. Bangalore, India, 1997.

[25] Haritsa Jayant R., Ramamritham K. and Gupta R. The PROMPT
Real -time Commit Protocol. IEEE Transactions on Parallel and
Distributed Systems, Vol. 11, No. 2, pages 160 - 181, 2000.

[26] Lam Kam - Yiu, Pang C., Son S. H. and Cao J. Resolving
Executing -Committing Conflicts in Distributed Real - time
Database Systems. Journal of Computer, Vol. 42, No. 8, pages 674
- 692, 1999.

[27] Qin Biao and Liu Y. High Performance Distributed Real - time
Commit Protocol. Journal of Systems and Software, Elsevier
Science Inc., Vol. 68, Issue 2, November 15, pages 145 -152,
2003.

