
Querying XML With Lambda Calculi

Pavel Loupal

Dept. of Computer Science, FEE CTU Prague,
Karlovo nám. 13, 121 35
Prague, Czech Republic

loupalp@fel.cvut.cz

Abstract

The aim of this paper is to outline an uni-
form functional approach useful both for con-
structing query languages for XML and also
for formal description of their semantics. This
framework offers an alternative way to to-
day’s mainstream query languages – XPath
and XQuery. With respect to the goal of the
VLDB PhD Workshop it is focused more on
the concept than on the complete solution.

1 XML and Query Languages

No doubt XML [4] is nowadays moving the world and
thus not surprisingly it might be found almost every-
where. Querying XML data is the essential operation
for many algorithms and therefore many researchers
focus on this field. Mainstream query languages –
XPath [5, 7], used for locating nodes in an XML in-
stance, and XQuery 1.0 [3] (more or less a SQL–like
language) – are the results developed by the wide com-
munity of contributors.

The XML specification itself does not define any
data model for XML instances therefore successive
query languages had to define a theoretical base for
their syntax and semantics. XPath 1.0 is based on the
XML Infoset [8], XQuery 1.0 grounds on a newly de-
veloped ”XQuery 1.0 and XPath 2.0 Data Model” [12].
Based upon this data model its semantics is formally
described in [10].

There are various different query languages for
XML – especially those used as predecessors of XQuery
– e.g. Lorel [1], Quilt [6] or XML-QL [9].

From our perspective one of the most interesting
languages is the SXML framework. It seems to be the
only framework for manipulating XML in a functional

c© 2006 for the individual paper by the paper’s authors. Copying
permitted for private and scientific purposes. Re-publication
of material on this page requires permission by the copyright
owners.

Proceedings of the VLDB2006 Ph.D. Workshop,
Seoul, Korea, 2006

way. The goal of its authors is to implement some of
W3C standards – XML, XPath, XSLT – in the Scheme
language [11]. SXML takes in account only first ver-
sions of these specifications but not the latest drafts.
The main components of the project are SSAX, SXML,
SXPath, and SXSLT [13, 14].

The key idea is the usage of S-expressions. S-
expressions are known from the LISP language where
there can be either single objects such as numbers,
LISP atoms including the special atoms or pairs. The
framework claims its fully conformant to XML speci-
fication. Regarding to [13] there is a formal algorithm
how to rewrite XPath queries to SXPath expressions
with identical semantics. SXSLT is apparently an im-
plementation of XSLT 1.0 semantics. Unfortunatelly
from published papers it is not exactly obvious that
the full XSLT standard was implemented, authors only
mention their experiments with real XML documents.

2 Motivation

Evolution of a query language usually brings some
changes in its syntax or/and the semantics. For ex-
ample, the progress from XPath 1.0 to XPath 2.0 (i.e.
sub–specification of XQuery 1.0) brought a new data
model for XML. It was a logical and necessary step
forced by requirements given for the new language.
Our idea is to use such formalism (formal system) as a
base for the language that is universal enough to avoid
big changes when enriching the language with new con-
structs. Therefore the idea of a functional approach
combined together with basic lambda calculi opera-
tions (lambda abstractions and lambda applications)
seems to be very simple and not restrictive, rather it
allows to be easily extended in the future.

Our work tries to link to the idea of the XML-λ
Framework (see Section 3), explore it further and
study its various aspects from different points of view.
Its author already identified some issues and draw-
backs of the framework. We see one of the biggest
issues the missing comparison of the proposed query
language with the XQuery language. The question of
expressive power of these two languages is very chal-

lenging because these approaches represent different
formal systems and seems to be not solved yet.

To lay out more specific goals for our consecu-
tive work we formulate the following aims: (a) Uti-
lize the XML-λ Framework for formal description of
XQuery semantics, (b) Construct a XQuery-to-XML-λ
query compiler (and vice–versa) and compare expres-
sive power of XQuery and XML-λ query languages,
(c) Evaluate functional approach for various aspects
related to querying XML.

3 The XML-λ Framework

XML-λ framework is an idea of using functional ap-
proach together with lambda calculi [2] and utilize it
for querying XML data. The proposal was originally
developed by Pokorný [16, 17].

The following sections outline the theoretical base
of the XML-λ Framework and the query language built
upon it. In Section 3.3 we show an example of a query
evaluation.

3.1 Concept

The type system is built on base B – a set contain-
ing a finite number of base types S1, . . . , Sk (k ≥ 1).
Type hierarchy is then created by following inductive
definition:

Type System T . Let B is a set of primitive types
S1 . . . Sn, n ≥ 1. Type System T over base B is the
least set containing types given by 1.-4.

1. base type: each member of B is type over B

2. functional type: if T1 and T2 are types over B,
then (T1 → T2) is also a type over B

3. n-tuple type: if T1, . . . , Tn (n ≥ 1) are types over
B, then (T1, . . . , Tn) is type over B

4. union type: if T1, . . . , Tn (n ≥ 1) are types over B,
then (T1 + . . . + Tn) is type over B

Subsequently we define a regular type system Treg that
extends type system T with regular constructs:

Type System Treg. Let B= {String, Bool}, let
NAME be a set of names. Type System Treg is the
least set containing types given by 1.-6.

1. Every member of the base B is an (primitive) type
over B.

2. named character data: Let tag ∈ NAME. Then
tag : String is an (elementary) type over B,
tag : is an (empty elementary) type over B.

3. Let T be a group type or named character data.
Then

• zero or more: T∗ is a type over B.
• one or more: T+ is a type over B.

• zero or one: T? is a type over B.

4. alternative: Let T1 and T2 be types. Then (T1|T2)
is a type over B.

5. sequence: Let T1, . . . , Tn be types. Then
(T1, . . . , Tn) is a type over B.

6. named type: Let T be a type given by a step from
3.-5. Let tag ∈ NAME. Then tag : T is a type
of B.

Note here that this type system Treg is still suitable
to describe types not only in a concrete data structure
(in our case tree structure) but for all data that might
be tagged with name - for example data accordant to
the relational model.

Having the Treg type system we have to extend it
to be able to work with XML data. We build the
type system TE induced by Treg. Key idea is to define
abstract elements that are particular XML elements
with some content and also define a set containing all
abstract elements within an XML instance – E .

Type System TE. Let Treg over base B be a type
system from definition 3.1 and E is the set of abstract
elements. Then type system TE induced by Treg is the
least set containing type given by this rule:

• Let tag : T ∈ Treg. Then TAG : T is a member of
TE . (Replacement of all tags in tag : T by upper
case version)

Note one remark: we can see the type system TE

as function container that adds functions for extract-
ing data values from elements (via abstractions and
projections) with two ways

• simple element: if tag : String ∈ Treg, then (E →
tag : String) ∈ TE

• compound element: if tag : T ∈ Treg, then (E →
T ′) ∈ TE

3.2 XML-λ Query Language

A typical query has a main (body) part – an expression
to be evaluated over data – and a constructor part
that wraps query result and forms the XML output.
XML-λ’s Query Language (XLQL) is based on λ-terms
defined over the type system TE .

Main constructs of the language are variables, con-
stants, tuples, use of projections and λ-calculus op-
erations – abstractions and applications. Tagged
terms might be used for declaring functions. Syn-
tax of this language is similar to λ-calculus expres-
sion thus queries are structured as λ-expresions, i.e.
λ . . . (λ . . . (expression) . . .). In addition, there are
also typical constructs such as logical connectives, con-
stants or comparison predicates.

XML-λ Query Language is inductively defined as
the least set containing all terms created by applica-
tion of following rules:

Let T, T1, . . . , Tn, n ≥ 1 be members of T . Then

1. variable: each variable of type T is a term of type
T

2. constant: each constant (member of F) of type T
is a term of type T

3. application: if M is a term of type ((T1, . . . , Tn) →
T) and N1, . . . , Nn are (in the same order) types
T1, . . . , Tn, then M(N1, . . . , Nn) is a term of type
T

4. λ-abstraction: if x1, . . . , xn are distinct vari-
ables of types T1, . . . , Tn and M is a term of
type T , then λx1, . . . , xn(M) is a term of type
((T1, . . . , Tn) → T)

5. n-tuple: if N1, . . . , Nn are terms of types
T1, . . . , Tn, then (N1, . . . , Nn) is a term of type
(T1, . . . , Tn)

6. projection: if (N1, . . . , Nn) is a term of type
(T1, . . . , Tn), then N1, . . . , Nn are terms of types
T1, . . . , Tn

7. tagged term: if N is a term of type NAME and
M is a term of type T then N : T is a term of
type (E → T).

Simple implementation of this language is available
in [18].

3.3 Example of a Query

Following example should give more detailed view to
an evaluation of a XML-λ query. Let us consider the
DTD and a conforming XML instance as shown in
Figure 1 and Figure 2 and a query that will return
first names of all authors mentioned in the document.
<!ELEMENT book (author+,

title, price)>
<!ELEMENT author (first, last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT last (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT price (#PCDATA)>

Figure 1: A Document Type Definition Example

Solution First we specify a set E of all abstract
elements contained in XML instance as follows (note
that subscripts are here only to distinguish abstract
elements of the same type):
E = {book, author1, first1, last1, author2, first2,
last2, name, price}

<book>
<author>
<first> Jaroslav </first>
<last> Pokorny </last>

</author>
<author>
<first> Karel </first>
<last> Richta </last>

</author>
<title> XML Technology </name>
<price> 155.00 </price>

</book>

Figure 2: An XML instance

Upon this base we construct type system TE of func-
tions based by given XML schema (in our case DTD).
See the list of types available:

BOOK : (AUTHOR+, T ITLE, PRICE),
AUTHOR : (FIRST, LAST),
FIRST : String,
LAST : String,
TITLE : String,
PRICE : String

Now, let us have a look at the following simple query
solving our example:

λf (/book/author(a) and a/first = f)

Evaluation of this query takes place in following
way: this query is composed of one high-level λ-term
and contains two variables called a and f . Naviga-
tion over the structure of elements is implemented as
continuous λ-applications combined with projections
(performed by element name). When evaluating the
value of the query first the value of a is evaluated
(note that /book/author(a) is syntactically equivalent
to author(book(a))). This term is evaluated using se-
quent application of book and author functions. Then
the variable a contains an abstract element of type
author. We apply to this element function author that
returns a n-tuple of elements from E. Last step is pro-
jection from this n-tuple into the first component.
The result of this operation is a particular abstract
element.

Hereby we receive the output (without enveloping
elements): Jaroslav, Karel.

3.4 Utilizing the Functional Approach

In the previous sections we describe a query language
based on the XML-λ Framework. It uses functions
as a data model for XML documents and lambda cal-
culi abstractions and applications for development of
a query language suitable for querying XML.

Beside that we can also use this data model for dif-
ferent purposes. Due to universality of the λ-calculus,

we can construct a language for modifying XML
data. Generally it means performing changes (addi-
tions/removals) in the set E of abstract elements for
a particular XML instance and eventual changes in
the type system TE . With this approach we can also
be able to express integrity constraints for XML data.
This research direction however lays out of scope of
this paper.

4 Relationship Between XQuery and
XML-λ

XQuery [3] is a mainstream language for querying
XML. The language uses expressions as its fundamen-
tal constructs. Basic expressions are literals and vari-
ables, for navigating in XML documents it uses XPath
expressions. Related specification [15] contains an ex-
tensive list of predefined numeric, arithmetic, string or
date-time functions.

One important type of expression are the FLWOR
expressions. FLWOR is a shortcut for For, Let, Where,
Order-By, Return statements that are used in the same
way as in imperative languages. This type of expres-
sion is sometimes compared to SQL SELECT state-
ment known from relational databases.

The goal of our research is to explore the relation-
ship between XQuery and XML-λ. Thus, in XQuery
we can write a query returning all first names in our
bibliography database in following way:

<result> {
for $x in doc("bib.xml")/book/author

return (
<fname>
{$x/first/text()}

</fname>)
} </result>

A query with the same semantics but written in
XML-λ has (of course) different syntax as shown be-
low:

xmldata("bib.xml")
lambda fname f
(/book/author(a) and a/first = f)

Both queries however return the same result:

<result>
<fname> Jaroslav </fname>
<fname> Karel </fname>

</result>

We want to show that all queries in XQuery can
be rewritten into XML-λ and vice–versa. This claim
should be backed by formal description of denotational
and operational semantics of both languages and by
finding a transformation between semantic subtrees of
all language constructs.

5 Future Work

Future work should lead into a successful completion
of the dissertation thesis. Therefore we need to define
concrete tasks and formulate consecutive experiments.

The proposed dissertation thesis investigates an uti-
lization of the λ-calculus based framework for descrip-
tion of query language semantics. We plan to formu-
late both denotational and structured operational se-
mantics of the XQuery language. Having this formal-
ism available we will compare the expressive power
of these languages and further study their properties.
Our primary aim is to define the existing semantics
of XQuery in a functional way as a base for ongoing
experiments and then compare their expressive power
by finding transformations between queries in XQuery
and XML-λ.

There are two concrete ongoing tasks – specification
of XQuery semantics by using the XML-λ Framework
and consecutive construction of transformation engine
for converting XQuery and XML-λ queries.

5.1 Specification of XQuery Semantics Using
λ-calculus

The functional approach applied in XML-λ might be
used not only for constructing a query language but
also for a different purpose – description of seman-
tics of various query languages. Within our research
we want to describe the semantics of the mainstream
XML query language XQuery with help of the func-
tional approach based on λ-calculus – XML-λ. Tak-
ing into account the type system used we expect the
semantics to be easier to express in comparison with
existing W3C semantics.

With respect to the scope of the XQuery semantics
specification this topic represents a complex theoreti-
cal research.

5.2 Bi-directional Transformation of XQuery
and XML-λ Queries

Expression of the XQuery semantics with help of
λ-calculus gives us an opportunity to compare expres-
sive power of XQuery and XML-λ. Because of the fact
that the semantics of XML-λ query language is closely
related to its syntax we can propose a method for con-
version of queries based on language’s semantics. The
result of this aim is to have a transformation engine
and its implementation for converting XQuery queries
in XML-λ and vice–versa available. The conversion
process is generally a transformation of an input se-
mantic tree in one language to an output semantic
tree in the other language.

6 Conclusion

This paper outlines a framework for querying XML
data based on a functional approach combined with
lambda calculi operations. The functional approach

is not common nowadays but offers a universal way
that might be used as a base for constructing various
query languages for XML. Beside that it can be also
used for specifying semantics of these languages. Hav-
ing the semantics formalized with the same tool we
can compare their expressive power and evaluate their
relationship.

For consecutive work to lead into a dissertation the-
sis we plan to describe semantics of XQuery using the
functional framework. With this formalism we can
construct a XQuery-to-XML-λ compiler (and vice–
versa) by transformation of respective semantic trees.
These transformations describe relationships between
various language constructs. With knowledge of these
relationships we can then compare XQuery’s expres-
sive power with a query language based on lambda
calculi.

The main contribution of the thesis should be seen
in using functional approach for description of XQuery
semantics and for evaluation of properties of lambda
calculi based framework and its suitability for querying
XML.

7 Acknowledgements

This research has been partially supported by MŠMT
under research program MSM 6840770014.

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom,
and J. L. Wiener. The Lorel query language for
semistructured data. International Journal on
Digital Libraries, pages 68–88, 1997.

[2] H. Barendregt. Lambda calculi with types. In
Handbook of Logic in Computer Science, Vol-
umes 1 (Background: Mathematical Structures)
and 2 (Background: Computational Structures),
Abramsky & Gabbay & Maibaum (Eds.), Claren-
don, volume 2. 1992.

[3] S. Boag, D. Chamberlin, M. F. Fernández, D. Flo-
rescu, J. Robie, and J. Simeon. XQuery 1.0:
An XML Query Language, September 2005.
http://www.w3.org/TR/xquery/.

[4] T. Bray, F. Yergeau, J. Cowan, J. Paoli,
C. M. Sperberg-McQueen, and E. Maler. Ex-
tensible markup language (XML) 1.1, February
2004. http://www.w3.org/TR/2004/REC-xml11-
20040204/.

[5] D. Chamberlin, A. Berglund, and e. a. Scott Boag.
XML Path Language (XPath) 2.0, September
2005. http://www.w3.org/TR/xpath20/.

[6] D. Chamberlin, J. Robie, and D. Florescu. Quilt:
An XML query language for heterogeneous data
sources. WebDB, Lecture Notes in Computer Sci-
ence, volume 1997.

[7] J. Clark and S. DeRose. XML Path
Language (XPath) 1.0, November 1999.
http://www.w3.org/TR/xpath.

[8] J. Cowan and R. Tobin. XML infor-
mation set (second edition), April 2004.
http://www.w3.org/TR/2004/REC-xml-infoset-
20040204/.

[9] A. Deutsch, M. F. Fernandez, D. Florescu, A. Y.
Levy, and D. Suciu. XML–QL: A query language
for XML. The Query Language Workshop (QL),
Cambridge, MA, 1998.

[10] D. Draper, P. Fankhauser, M. Fernández,
A. Malhotra, K. Rose, M. Rys, J. Siméon,
and P. Wadler. XQuery 1.0 and XPath
2.0 formal semantics, September 2005.
http://www.w3.org/TR/xquery-semantics/.

[11] R. K. Dybvig. The Scheme Programming Lan-
guage. The MIT Press, 2003. Available online at
http://www.scheme.com/tspl3/.

[12] M. Fernández, A. Malhotra, J. Marsh,
M. Nagy, and N. Walsh. XQuery 1.0 and
XPath 2.0 Data Model, September 2005.
http://www.w3.org/TR/xpath-datamodel/.

[13] O. Kiselyov. SXML specification, 2004.
http://okmij.org/ftp/Scheme/SXML.html.

[14] K. Lisovsky. SXPath: XPath made functional.
In International Lisp Conference ILC 2003, New
York, US, October 2003.

[15] A. Malhotra, J. Melton, and N. Walsh.
XQuery 1.0 and XPath 2.0 Func-
tions and Operators, September 2005.
http://www.w3.org/TR/xpath-functions/.

[16] J. Pokorný. XML functionally. In B. C. Desai,
Y. Kioki, and M. Toyama, editors, Proceedings
of IDEAS2000, pages 266–274. IEEE Comp. So-
ciety, 2000.

[17] J. Pokorný. XML-λ: an extendible framework for
manipulating XML data. In Proceedings of BIS
2002, Poznan, 2002.

[18] P. Šárek. Implementation of the XML lambda
language. Master’s thesis, Dept. of Software En-
gineering, Charles University, Prague, 2002.

