
Document Exchange Considered Useful – Extending the
Reach of DBMS-Functionality to Document Driven

Processes
Alexander Hilliger von Thile

DaimlerChrysler Research and Technology
P.O. Box 2360, 89013 Ulm

Germany
+49 (0) 731 505 4840

alexander.hilliger_von_thile@daimlerchrysler.com

ABSTRACT
In today’s enterprises documents are preferred by most users for
data exchange in spontaneously started and frequently changing
processes because documents (e.g. spreadsheets) are easy to create
and to edit. This causes well known problems such as poor data
quality due to missing constraint checks, no up-to-date data in
backend systems (e.g. for analysis), and missing multi-user
support. These problems could be avoided by using special
applications that store their data in a DBMS. But for end users
this is significantly more complex and expensive than just creating
a new spreadsheet.

Instead of refraining from document exchange this paper
describes how the reach of well-known database concepts (e.g.
multi-user support, data quality checks, and trigger) can be
extended to support document-driven data exchange.

To this end, this paper presents a novel approach to handle data
inside common documents as objects that are under control by a
DBMS. This is realized by extending the concept of common
views to materialized external views. Afterwards, this paper
describes how documents can be turned into a DBMS themselves
by combining data, meta-data, and execution logic within a single
file. These ‘smart’ files can be exchanged like other documents
but they are able to check their data for integrity and propagate
changes to backend systems automatically.

1. INTRODUCTION
Many processes of an enterprise span between changing networks
of external partners, are started spontaneously, and are subject to
frequent changes. As a consequence, they need to be highly
flexible. Due to development time and cost, for most of these
processes no enterprise application and no database for data
analysis exist. Furthermore, such processes are executed by non-
IT-experts without deeper knowledge of DBMS. Thus, in these
processes documents (flat files) are used for data exchange
because they are easy to create, edit (even offline), and exchange.

From a technical perspective, highlighting advantages of
documents might seem absurd because disadvantages are

predominating. However, for non IT experts in many cases other
criteria such as simplicity, flexibility, and cost-effectiveness of
just creating a desktop document without the need to code are key
criteria. It is important to understand that the main reasons for
document exchange are non-technical. This explains why
documents are still preferred even though plenty of alternatives –
such as WfMS or groupware systems – are available.

Today, using documents causes serious problems because in
contrast to DBMS, they are not stored centrally, they contain
minimal (schema) information defining consistency, and they
offer no control mechanism enforcing these constraints by
preventing inconsistent changes. As a consequence, data from
these processes is not accessible for up-to-date data analysis (real-
time data warehousing) and data quality is unpredictable because
it is unchecked during process execution.

In this paper, we tackle these issues by asking the research
question whether and how proven functionality of DBMS such as
multi-user support, data quality checks (constraints), trigger and
alerter (for real-time and active data warehousing) can be made
available in the domain of personal data management and ad hoc
processes that are executed using documents from desktop
applications (e.g. cad, office) as described above.

2. OVERVIEW OF THE PROPOSED
APPROACH

To answer the question of how to overcome the disadvantages of
document exchange this paper first describes how the reach of
DBMS functionality can be extended to documents. Therefore, in
section 3, an approach is presented that handles data from
common documents (such as spreadsheets) as objects that are
under control by a DBMS. This approach extends the concept of
common views to materialized external views (MEV). These
views store their physical content outside the database by
mapping the view’s data to file formats that are commonly used
for document exchange.

To support offline editing and exchange of documents, in section
4, this approach is extended to cover the entire document-driven
process by turning documents into stand-alone DBMS. This is
achieved by combining data, metadata, and execution logic within
a single file we refer to as smart file. Smart files can be exchanged
like common documents but they are able to check their data for
integrity and propagate changes to backend systems automatically.

© 2006 for the individual paper by the paper' authors. Copying permitted
for private and scientific purposes. Re-publication of material on this page
requires permission by the copyright owners.
Proceedings of the VLDB2006 Ph.D. Workshop
Seoul, Rep of Korea, 2006

This concept combines the advantages of cost-effective and easy
document exchange with the powerful features of today’s DBMS.

3. HANDLING DOCUMENT DATA AS
DATABASE OBJECTS

Most process relevant data that is exchanged using documents
consists of excerpts of data which is maintained by backend
systems that access a DBMS. Within a DBMS, (updateable) views
can be used to get a customized perspective on data that is
relevant within a process. However, these views are materialized
in the tablespace of the DBMS. To map data between a DBMS
and documents (and vice versa), our work extends the concept of
views as they are used in today’s DBMS by using a concept we
refer to as materialized external views (MEV). An MEV uses a
relational expression (like common views do) to create a custom
view on data. However, the physical materialization of the view is
not held within the database but is stored externally (e.g. in a file
share). Instead of a proprietary file format, the view’s data is
mapped to file formats that are commonly used for document
exchange using a wrapper that maps rows to records (binary files)
or nodes (XML) and vice versa.

As a general concept, we define a materialized external view as
follows:

1. its content is defined by a relational expression (select-
query) on a base relation or another view

2. results of the view’s relational expression are
materialized (physically stored)

3. the materialized data is maintained outside the
tablespace of the DBMS in a file format that is used by
desktop applications

Figure 1. Mapping views to MEV-documents

The figure above depicts necessary steps to make data – which is
managed by a DBMS – available as documents. In contrast to
simple import/export processors it should be denoted that these
documents are virtual files (views) that are managed by the
DBMS itself. To realize this idea, creation of an MEV, mapping
its data, and working with an MEV (editing the document and
integrating changes back to the database) is described next.

3.1 View creation
To create an MEV, a select-statement like in common updateable
views is used (see line 6-7). We extended the create-materialized-
view SQL statement to support an externalize-in clause (line 5)
that defines where the physically materialized content has to be
stored.

1 CREATE MATERIALIZED VIEW name [<COLUMN- LI ST>]
2 [EXTENDED BY (<TYPED- COLUMN- LI ST>)]
3 USING (<TRANSFORM- WRAPPER- ALI AS
4 [WRAPPER- OPTI ONS] > | <TRANSFORM- STATEMENT>)
5 EXTERNALIZE <OPTI ONS> IN <DI RECTORY- ALI AS>
6 AS <FULL- SELECT- STATEMENT>
7 [WITH <CHECK- OPTI ONS>]

How the transformation is performed can be specified by using a
transformation statement (e.g. as done with Oracle’s external
tables) or by using a wrapper. Today, descriptive approaches are
used for text or XML files primarily. Binary files are usually
handled by wrappers.

If the DBMS does not support updateable views, this statement is
also used to generate instead-of triggers to handle updates. The
view can optionally be extended by new columns (line 2). Data of
these columns is stored in a new table (tuples within this table
reference tuples of the view). In this case, instead-of triggers are
used to merge and update the content originating from the view’s
select statement and the new columns.

The materialized MEV-files are made accessible in a directory
denoted by the externalize-in clause (e.g. as a shared directory).

3.2 Data mapping
The primary intention of an MEV is to make the view’s data
accessible by users who are using desktop applications. Therefore,
the rows inside the base relation(s) must be mapped to a file
format that can be handled by such applications. To integrate
changes performed on these documents, the transformation has to
be performed in the reverse direction as well. Therefore, a
bijective mapping description is required.

We specified and implemented two transformation descriptions.
The first is a general mapping that can be used with XML-
documents. Recently, XML has become more important for
desktop applications due to initiatives such as the open document
alliance as well as Microsoft’s open XML which is used in Office
2007.

<company>
<?MEV %SELECT *
 FROM Employees ?>
 <empl oyee i d=” %id” >
 <f i r st name>%fname</ f i r st name>
 …
 <?MEV %SELECT *
 FROM Projects
 WHERE leader = $parent.id ?>
 <l eader Of i d=” %projects.id” / >
 <?MEV / ?>
 </ empl oyee>
<?MEV / ?>

</ company>

The example above shows a simple transformation statement to
bijectively map rows to XML-nodes. To transform rows from the
view to the file, this transformation statement is firstly translated
to an SQL/XML statement consisting of a set of XMLELEMENT
and XMLGEN operators. This temporary result set is then
transformed to the file format used by desktop applications by
using XQuery.

The statements for the inverse transformation are generated as
well from the mapping shown above. It uses XQuery and

central share document
exchange

MEV

DB

DB

enterprise
systems

 In
te

gr
at

io
n

operational
datastores

view creation
(data

selection)

materialization/
bijective transformation

SQL/XML’s XMLTABLE operator to reconstruct the view’s
rowset from the document. Using SQL/XML has the advantage
that the entire mapping process can be executed by the DBMS
itself.

Figure 2. Template based mapping definition

The second way of specifying the MEV-mapping is based on a
template document. In our experiments, we used binary Excel
files as an example because they are commonly used for personal
data management and ad-hoc business processes. We specified
statements to map 1:1, 1:N, and N:M relations.

Using an Excel wrapper, the template can easily be mapped to the
format described above. For end users the template based
approach is more intuitive.

3.3 Working with MEV-documents
In contrast to commonly used import/export processors the
mapped content of the view is not stored as a file. Instead, the
MEV-document is a virtual file that is being managed by the
DBMS itself and that is accessible to desktop applications via a
virtual (shared) drive. This mechanism is required to allow ‘one’
file to be edited by multiple users concurrently. To make DBMS
features such as those provided by the ACID-paradigm available
we compared two approaches in our experiments.

To allow access for legacy applications, a conflict avoiding
approach that uses locks is used (comparable to transactions
compliant to the ACID-paradigm). This approach is not applicable
for end users due to long edit-periods (locks) and loss of changes
due to constraint violations (rollback of work). For end users, we
evaluated a conflict-resolving approach that does not require locks
but saves changes to an isolated shadow copy. To avoid anomalies
due to conflicting changes by multiple users (detected using the
wrapper that reconstructs rowsets from the MEV-file and
compares them to change-timestamps or change-logs) these have
to be handled manually. Compared to other CSCW [9]
approaches to detect and handle conflicts in this case a significant
difference must be denoted: desktop applications usually access
entire files and therefore read all tuples of an MEV. Therefore,
dependencies between tuples (e.g. tuples t1 and t2 have been read
before t3 has been updated) cannot be discovered. This prevents
automatic detection of read-write conflicts. Such dependencies
could only be checked by additional constraints. For automatic
conflict detection, only write-write conflicts can be considered.

After the detected conflicts have been resolved, constraints are
checked. In this approach (and related approaches such as used
for snapshot isolation [10]) it is insufficient to just check changes
to guarantee serializability. Since integration of changes happens
rarely (started by the user after editing of one or all documents is
complete), constraints are checked on the entire MEV as well as
dependent MEVs in our prototype.

Using this approach, end users can work concurrently on a single
file (even the base relation can be changed) and conflicts and
errors can be detected without rolling back the transaction
(explicit rollback only).

Figure 3. Conflict resolving approach

The figure above depicts how users work with documents using
the conflict resolving approach. At the beginning of an activity
(BOA) by a user, an isolated shadow copy (SC) is created that is
invisible to other users. The SC stores all changed documents
(after-images) during this activity by this user as well as the
original documents (before-images). These images among with
the mapping definition are used to reconstruct performed
operations. At the end of an activity (EOA) – which is comparable
to a commit in the transactional case – firstly, the change
operations are reconstructed. Secondly, these changes are
compared for conflicts with changes made by other users. Finally,
the changes are checked for integrity (constraint-checks). As
mentioned above, constraint violations do not rollback changes.
Instead, the user can correct the violations by editing the
document again. However, in order to successfully integrate an
activity, all conflicts and all constraints must be handled by the
user.

4. TURNING DOCUMENTS INTO A
STAND-ALONE DBMS

The MEV approach requires users to be connected to the file
share provided by the DBMS. Downloading and exchanging
MEV-documents by email still bears the problem that only data is
being exchanged in documents. Thus, constraints cannot be
checked and changes cannot be propagated to backend systems as
soon as a user downloads a document (macros are potentially
dangerous and are filtered by most enterprise firewalls).

Since all benefits of a DBMS are lost if the document is being
exchanged, we turned the document itself into a stand-alone
DBMS by combining the document’s data with metadata and the
execution logic of a DBMS.

Template

Doc ument

align rows
horizontally

align rows
vertically

BOA WORK
on workset

EOA
(conflict resolution)

t

begin of concurrent
activity

locks are set during
integration, only

ACID transaction

begin of activity (BOA)

work in activity

end (commit) of activity (EOA)

begin of transaction

commit
BOT

CMT

BOT CMT

Figure 4. Components of a smart file

The basic principle is based on a mobile DBMS consisting of a
single file (fig. 4) that can easily be exchanged by e-mail. This file
is executable and contains a managed resource part where
common documents (files) can be stored. Metadata can be
attached to these files to define integrity constraints or access
rights as done in a data dictionary of a DBMS. Since this concept
enhances traditional file usage paradigms it is called ‘smart’ file
(SF) [12]. A SF is a file container, comparable to self-extracting
zip-archives. It mounts its resource part as a virtual drive.
However, any read/write access is managed by the SF itself, it
controls who can do what, when, and where. This concept enables
a SF to be autonomous and therefore responsible for its contents
which opens great possibilities for consistency and security.
Because a SF allows storage of documents and still can be e-
mailed as easily as any other file, all advantages of document
exchange are preserved. For end users, accessing documents
managed by a smart file is as simple as accessing them on a file
share.

Figure 5. Nested activity based approach

To support reintegration of pending changes and handling of
concurrent changes we extended the conflict resolving approach
to a so called nested activity based approach depicted in fig. 5.

Downloading a smart file can be compared to starting a new
activity. All changes performed on a smart file are stored in its
container (similar to the shadow copy approach described above).
This approach is referred to as nested because every copy of a
smart file (with all changes) is reintegrated into its originating
source, only. At the time of reintegration all changes made in
activities on that smart file are handled as one activity that has
been executed on the originating smart file. Reintegration of this
activity can be compared to ending an activity (see section 3.3).

5. EXPERIENCES
To proof that the benefits of working with documents can be
combined with proven functionality from DBMS we implemented
a prototype that realizes the presented concepts of materialized
external views and smart files.

We used this prototype in ad-hoc processes that were executed by
non IT experts using spreadsheets. These processes could
seamlessly be executed using MEVs and smart files. Compared to
other approaches (see table on next page) only mapping
definitions had to be defined, the process did not need to be
changed and the benefits of working with documents were
preserved.

Using the prototype data changed in documents can instantly
(online only) be propagated to a central DBMS which e.g. allows
real-time data warehousing and monitoring of process execution
(BPM). By adding constraints the unpredictable data quality was
improved drastically.

6. RELATED WORK
Related work can be categorized into three parts. First, approaches
to solve the problems of document exchange. Second, approaches
to materialize views and third, approaches that combine data with
metadata and execution logic.

In contrast to other approaches, we do not substitute document
exchange, even though plenty of alternatives are available today
(e.g. WfMS or groupware systems). As described in the
introduction, documents are preferred by end users for non-
technical reasons that are not preserved by these alternatives (cost,
development time).

Instead, we are using well known concepts from DBMS to bridge
the gap between DBMS and documents by extending the concept
of views. In the literature, plenty of work exists in this domain
(e.g. Gray/Reuter, [1]). Especially in the context of data
warehouses, problems of view materialization [2] and
maintenance [3], [4] are of great importance. Since MEVs are
materialized externally, our work is also related to the domain of
external data management.

However, since support for document driven processes is not in
the scope of today’s mainstream DBMS, such processes are
usually handled with a mix-up of concepts from federated
databases (see [5]), data integration (e.g. with foreign tables in
SQL/MED [6]) and data transformation. In contrast to data links,
our approach handles external data not as a blob but on a fine
grained (attribute based) granularity.

Since all benefits of a DBMS are lost if MEV-documents are
being exchanged, we turned such document into a stand-alone
DBMS by combining the document’s data with metadata and the
execution logic of a DBMS. Related work can be found in the
domain of electronic forms. These store data, metadata (for layout
and simple data types) and scripts to check integrity constraints.
Recently, electronic forms gain popularity due to efforts by Adobe
(Intelligent Document Platform) and Microsoft (InfoPath).
However, this approach is primarily intended for forms. Common
documents such as CAD-files or spreadsheets can only be handled
as attachments. In Active XML [11], concepts to include data
from backend-system into XML documents are described.

execution logic

metadata
(accessed as virtual files)

managed files
(data)

managed resource part

work on
shadow copy

end of activity (conflict resolution)

integrate using log

download SF

forward as e-mail offline

integrate

x

x

ACID transaction

begin of activity

work in activity

work offline

end (commit) of activity

abort of activity
pre-notification of changes

forward as e-mail

t

begin of
activity

A more general approach is based on active documents (AD) [7].
ADs contain data and control over that data. Therefore, they are
commonly referred to be autonomous. Most work with ADs is
related to the concept of mobile agents utilizing artificial
intelligence. Support for common document driven processes is
out of scope. Living documents [8] (LD) are a special kind of
ADs (without artificial intelligence) that are used as lightweight
document management systems. However, for document driven
processes, issues of concurrent editing and concepts of today’s
DBMS such as transactions to rollback inconsistent changes are
important for our approach which are out of scope of LDs.

7. SUMMARY AND CONCLUSION
Documents – such as spreadsheets – are widely (and wildly) used
in ad-hoc processes that are executed by non IT-experts. In
contrast to enterprise applications and WfMS they can be created
and used instantly, and they can be exchanged by e-mail.
However, using documents causes problems such as poor data
quality and missing up-to-date data in backend systems: good
reasons to argue against them.

But document exchange does not necessarily determine loss of all
benefits from DBMS. In this paper we described an approach to
combine the flexibility of document exchange with proven DBMS
functionality.

Firstly, our approach handles data processed in documents as
objects that are managed under control by a DBMS. We extended
the well-known concepts of views to materialize their contents
externally in file formats that are commonly used by desktop
applications. Wrappers along with end user maintainable template
documents are used to externalize data managed by a DBMS
outside the tablespace, i.e. as documents that are used in
document driven processes.

Secondly, we focused on the problem that when documents are
downloaded, edited offline, and exchanged between users, only
data is available. We extended the previous approach by turning
documents into a DBMS themselves. Such a smart file combines
data, metadata and executable data within a single file that can be
exchanged in ad-hoc processes just like a common document.
Changes performed on MEV-documents managed by a smart file
are checked for integrity and conflicts automatically.

8. REFERENCES
[1] Karenos, K., Samaras, A, et. al.: Mobile agent-based services

for view materialization. ACM SIGMOBILE, Special Issue,
Volume 8, 2004.

[2] Blakely, J.A., Larson, P., Tompa, F.: Efficiently updating
materialized views. Proceedings of the ACM SIGMOD 1986.

[3] Hammer, J., Garcia-Molina et al: The Stanford Data
Warehousing Project. IEEE Data Engineering Bulletin,
Special Issue on Materialized Views and Data Warehousing,
18(2):41-48, June 1995.

[4] Zhuge, Y., Garcia-Molina, H., Hammer, J., and Widom, J.:
View Maintenance in a Warehousing Environment.
Proceedings of the ACM SIGMOD, pages 316-327, San Jose,
USA, May 1995.

[5] Sheth, A. P., Larson, J. A.: Federated database systems for
managing distributed, heterogeneous, and autonomous
databases. ACM Computing Surveys 22(3), Sep. 1990.

[6] SQL/MED: see ISO/ANSI SQL-99 part 9

[7] Werle, P.: Active Documents to Support Work Processes in a
Ubiquitous Computing Environment, Proceedings of the first
workshop on Resource Sensitive Mobile Human-Computer
Interaction, Bristol, September 2000.

[8] Schimkat, R.-D., Küchlin, W.: Living Documents – Micro
Servers for Documents, XML-Based Data Management and
Multimedia Engineering. EDBT 2002 Workshops, LNCS
2490, Prague, Czech Republic, March 2002.

[9] Lee, Y.W.; Leung, K.S.; Satyanarayanan, M.: Operation-
based Update Propagation in a Mobile File System.
Proceedings of the USENIX Annual Technical Conference,
Monterey, USA. June 1999.

[10] Berenson, H., Bernstein, P., Gray, J, Melton, J, O’Neil, E.,
O’Neil, P.: A Critique of ANSI SQL Isolation Levels.
Proceedings of the ACM SIGMOD, San Jose, USA. 1995

[11] Abiteboul, S., Bonifati, A., Cobena, G., Manolescu, I., Milo,
T.: Dynamic XML Documents with Distribution and
Replication. SIGMOD, 2003

[12] Hilliger von Thile, A.; Melzer, I.: Smart Files: Combining
the advantages of DBMS and WfMS with the simplicity and
flexibility of spreadsheets. BTW. Karlsruhe, Germany.
March, 2005.

criteria application based document based MEV smart file
spontaneous creation - + + +
qualification: easy to create - + + +
training time + + + +
multi-user support + - + +
offline data availability - + + +
offline data integrity checks - - - +
up to date data availability + - + +
data quality + - + +
execution monitoring + - (-) +
ad hoc changes - + + +
cost -- + + +

Table 1. Comparison of the approaches

