
Evaluating an Assistant for Creating
Bug Report Assignment
Recommenders

John Anvik
University of Lethbridge
Lethbridge, Canada
john.anvik@uleth.ca

Copyright is held by the author/owner(s).
EICS’16, June 21-24, 2016, Bruxelles, Belgium.

Abstract
Software development projects receive many change re-
quests each day and each report must be examined to de-
cide how the request will be handled by the project. One
decision that is frequently made is to which software devel-
oper to assign the change request. Efforts have been made
toward semiautomating this decision, with most approaches
using machine learning algorithms. However, using ma-
chine learning to create an assignment recommender is
a complex process that must be tailored to each individ-
ual software development project. The Creation Assistant
for Easy Assignment (CASEA) tool leverages a project
member’s knowledge for creating an assignment recom-
mender. This paper presents the results of a user study
using CASEA. The user study shows that users with limited
project knowledge can quickly create accurate bug report
assignment recommenders.

Author Keywords
bug report triage; assignment recommendation; machine
learning; recommender creation; computer supported work

ACM Classification Keywords
H.5.m [Information interfaces and presentation (e.g., HCI)]:
Miscellaneous; I.2.4 [Programming Languages and Soft-
ware: Expert system tools and techniques]; I.2.7 [Natural
Language Processing: Text analysis]

26



Introduction
Large software development projects can receive hundreds
of bug reports per day [5, 6]. Each of these bug reports
needs to be analyzed and decisions made about how the
report will be handled by the project. In cases where a
change to the source code is needed, a decision is made
about to whom the work will be assigned. This decision pro-
cess is called bug triage and must be done for all incoming
reports.

Bug triage takes significant time and resources [12]. Bug
report assignment recommenders have been proposed as a
method for reducing this overhead. Many researchers have
investigated different approaches for assignment recom-
mender creation, with most focusing on the use of machine
learning [5, 7, 15, 29, 31].

Conceptually, the creation of an assignment recommender
using machine learning is straightforward [3]. However in
practice creating an assignment recommender for a specific
software development project is challenging. The Creation
Assistant for Easy Assignment (CASEA) tool [1] was cre-
ated to assist software development projects in creating
machine learning assignment recommenders tailored to a
specific project.

This paper presents the results of a user study using CASEA
to create assignment recommenders for a large open source
project, and is the first such study. The study found that
subjects could quickly create an accurate assignment rec-
ommender using the tool, despite the users having no spe-
cific knowledge about the software project.

To our best knowledge, CASEA is the first system to ad-
dress the bug report assignment recommender creation
problem, and this paper presents the first study of its use.

This paper proceeds as follows. First, an overview of CASEA
is presented. Next, the results from a user study involving
subjects creating assignment recommenders for the Eclipse
Platform project are presented. The paper then concludes
with a discussion of some of the threats to the validity of
this work, related work and possible future improvements
to make CASEA more practical for software development
projects.

Background
This section presents background information about bug
reports, their life cycles, and machine learning.

Bug reports
Bug reports, also known as change requests, provide a
means for users to communicate software faults or fea-
ture requests to software developers. They also provide
a means for developers to manage software development
tasks. Bug reports contain a variety of information, some
of which is categorical and some of which is descriptive.
Categorical information includes such items as the report’s
identification number (i.e. bug id), its resolution status (e.g.,
NEW or RESOLVED), the component the report is believed
to involve, and which developer has been assigned the
work. Descriptive information includes the title of the report,
the description of the report, and discussions about possi-
ble approaches to resolving the report. Finally, a report may
contain other information, such as attachments or links to
other reports.

Bug report lifecycle
All bug reports have a lifecycle. When a bug report first en-
ters a project’s issue tracking system (ITS), it is in a state
such as UNCONFIRMED or NEW. The bug report will then
move through different states, depending on the project’s
development process, and arrive at a resolution state, such

27



as FIXED or INVALID. The lifecycle of a bug report can be
used to categorize bug reports [5]. Figure 1 shows an ex-
ample life cycle state graphs from the Bugzilla ITS [14].

Machine learning algorithms
Machine learning algorithms Machine learning is the devel-
opment of algorithms and techniques that allow computers
to learn [21]. Machine learning algorithms fall under three
categories: supervised learning, unsupervised learning,
and reinforcement learning. Bug report assignment recom-
menders primarily use supervised learning algorithms, such
as Support Vector Machines (SVM) [17], Naive Bayes [25]
and ML-KNN [30]. Understanding how a machine learning
algorithm creates a recommender requires understanding
three concepts: the feature, the instance and the class. A
feature is a specific piece of information that is used to de-
termine the class, such as a term that appears in one or
more of a set of bug reports. An instance is a collection of
features that have specific values, such as all of the terms
in the description of a specific bug report. Finally, a class is
the collection of instances that all belong to the same cate-
gory, such as all of the bug reports fixed by a developer. In
supervised machine learning, training instances are labeled
with their class. A recommender is created from a set of in-
stances and the output of the recommender is a subset of
the classes predicted for a new instance.

Creation assistant for easy assignment
The Creation Assistant for Easy Assignment (CASEA) [1]
is a software tool to assist a software project in creating
and maintaining bug report assignment recommenders.
CASEA guides a project member through the assignment
recommender creation process in four steps: Data Col-
lection, Data Preparation, Recommender Training, and
Recommender Evaluation. The remainder of this section
presents an overview of how CASEA assists with each of

these steps.

Data collection
The first step in recommender creation is to gather the data
to be used for creating the recommender. Specifically, bug
reports are extracted from the project’s issue tracking sys-
tem (ITS). The project member provides the URL of the
project’s ITS, a date range for data collection, and an op-
tional maximum limit for number of reports to gather. Re-
ports that have a resolution status of RESOLVED, VERI-
FIED or CLOSED are gathered chronologically, with every
tenth report selected as a testing report to create an unbi-
ased set for evaluation.

Data preparation
Having collected the data from the project’s ITS, the next
step is to filter the data to produce the highest quality train-
ing set. Two types of filtering are performed: automatic and
assisted.

The automatic filtering performs three actions on the textual
data. First, terms that are stopwords (i.e. common words
such as ’a’ and ’the’) are removed. Next, stemming is per-
formed to reduce all of the terms to their respective root
values so that words such as ’user’ and ’users’ are treated
as the same word, ensuring a common vocabulary between
the reports. Finally, punctuation and numeric values are re-
moved, except where the punctuation is important to the
term, such as URLs or class names (e.g. “org.eclipse.jdt”).

CASEA assists the user with two types of filtering: label fil-
tering and instance filtering. To assist with label filtering,
CASEA presents the user with a label frequency graph. For
an assignment recommender, this graph presents bug fix-
ing statistics, a type of activity profile [23], for the project
developers based on a random sample of all of the bug
reports in the training data set. Figure 2 shows the Con-

28



Figure 1: Bug report life cycle state diagram from the Bugzilla ITS.

29



Figure 2: The Creation Assistant for Easy Assignment (Configuration tab).

30



figuration tab and an example of label filtering. As can be
seen in the graph, developer activity follows a Pareto dis-
tribution curve with a few developers contributing the bulk
of the work, and many other developers making small con-
tributions [11, 18, 22, 26]. CASEA visualizes the project’s
development activity and allows the user to select a thresh-
old using a slider, such that only a core set of developers
are recommended. In Figure 2, a cutoff of 21 has been se-
lected.

Instance filtering is done using project-specific heuristics.
The heuristics have two parts: a grouping rule and a label
source. The grouping rule is used to categorize the data
into groups for which the label source will be used for la-
beling the instances. For an assignment recommender,
the grouping rule is a bug report lifecycle (called “Path
Group” in Figure 2) and the label source (i.e. data source
in Figure 2) is either a field from the bug report, such as the
assigned-to field, or other labelling information that can be
extracted from the bug report, such as the user that last at-
tached a patch or the developer who marked the report as
resolved.

Figure 2 shows an example of instance filtering in CASEA.
All of the training reports are used to determine the specific
bug report life cycles for the project and the user is pre-
sented with a statistical summary of the categories. The
figure shows that for the data set for the Eclipse Product
project, 30.6the reports have a NEW→FIXED (NF) lifecy-
cle, followed by 22.6% NEW→FIXED→VERIFIED (NFV),
and 15.6% being NEW (N). Using this information, the user
can create heuristics for the most common occurring cate-
gories. In this case, “FixedBy” was chosen for the NF cat-
egory, “Resolver” for the NFV category, and “Reporter” for
the N category. The user can also choose the number of

Figure 3: Recommender evaluation in CASEA (Analysis Tab).

heuristics to be applied, to a maximum of ten; six was cho-
sen in Figure 2.

Recommender Training
After filtering the data to create the set of training and eval-
uation instances for the recommender, the data is then for-
matted for use with the machine learning algorithm. Once
the user has filtered the data and the data is formatted, the
recommender is created using a multi-class Support Vector
Machines (SVM) algorithm with a Gaussian kernel. SVM is
a commonly used algorithm for assignment recommenda-
tion [5, 7].

Recommender Evaluation
Once the user starts the recommender creation process,
the user is moved to the Analysis tab that presents the rec-
ommender evaluation results (Figure 3 ). The user can then
return to the Configuration tab, adjust the values for label
and instance filtering, and create a new recommender. This
process continues until the user is either satisfied with the
created recommender, or the user has determined that an
assignment recommender cannot be created with a high
enough accuracy to benefit the project. At any time the user
can save the recommender configuration and return at a
later date.

31



CASEA uses the metrics of precision and recall to evalu-
ate a created recommender. It presents results for the top
recommendation (top-1), the top 3 recommendations (top-
3), and the top 5 recommendations (top-5). Figure 3 shows
an example of the evaluation results for a recommender
after eighteen trials. It shows that the first four configura-
tions did not create very accurate recommenders as the
activity threshold was too low, but when the threshold was
raised, a more accurate recommender was produced. After
about five more trials, a good heuristic configuration was
determined that produced an assignment recommender
with a high top-1 accuracy and reasonable top-3 and top-
5 accuracies. Further experimentation was done with the
heuristics with varying results, before determining that the
configuration from trial #10 was the best configuration.

User study of CASEA
A small user study was conducted to assess the potential
for CASEA to assist software projects in creating assign-
ment recommenders. Specifically, the study sought to an-
swer qualitative questions such as “What aspects of the
recommender creation process and the CASEA interface
do users find helpful? challenging? or confusing?". This
study was similar in intent to Stumpf et al [27], who con-
ducted a user study to determine how users interact with
a machine learning system. The study was conducted us-
ing a sample of eight computer science graduate and un-
dergraduate students. This study population was selected
under the assumption that using a group with no specific
project knowledge would provide a lowerbound for future
in-field user studies.

User Study Setup
The user study was conducted in the following manner.
First, subjects were asked to complete a prior knowledge
and experience survey. Specifically, subjects were asked

about their prior knowledge and experience in two areas:
technical experience and technical knowledge. For techni-
cal experience, subjects were asked about their level of ex-
perience with issue tracking systems, open source projects
and software testing. To assess prior technical knowledge,
subjects were asked about their familiarity with bug reports,
machine learning algorithms, classifiers or recommender
systems, user interface design principles, and data mining.
A Likert scale (Very Experienced/Familar, Some Experi-
ence/Familarity, Little Experience/ Familarity, Heard Of, No
Experience/Familarity) was used for the self-reporting of
their experience level. After completing the prior experi-
ence and knowledge survey, subjects were asked to cre-
ate an assignment recommender for the Eclipse Platform
project within fifteen minutes. Once the subjects expressed
that they were done using CASEA, a debriefing interview
was conducted. The subjects were asked to explain their
approach to creating an assignment recommender using
CASEA and what they recommended as improvements to
the tool, as well as any other comments about their experi-
ence with CASEA.

Prior knowledge and experience
Figure 4 shows a summary of the responses from subjects
regarding their prior experience. As shown, most of the
subjects had prior experience with issue tracking systems,
with four reporting some experience and four reporting little
experience. Overall testing experience was a bit less, with
six subjects reporting little experience, two reporting “heard
of” and one reporting no experience. Subjects had the least
overall experience with contributing to open source projects,
with two reporting little experience, three reporting “heard
of” and four reporting no experience.1 For technical knowl-
edge, Figure 5 shows a summary of the responses. Most of
the subjects reported either being very familar (2 subjects)

1Not all subjects provided answers to all of the questions.

32



or having some familiarity (6 subjects) with user interface
design principles from either recently or currently taking an
undergraduate course about this topic. Half of the subjects
reported familiarity with machine learning algorithms, and
slightly more (5 subjects) reported familiarity with classi-
fiers and recommender systems. The knowledge in these
areas came from either taking an undergraduate course in
computational intelligence or from other course projects.
Subjects reported the least familiarity with the bug report
lifecycle and data mining.

For technical knowledge, Figure 5 shows a summary of the
responses. Most of the subjects reported either being very
familar (2 subjects) or having some familiarity (6 subjects)
with user interface design principles from either recently or
currently taking an undergraduate course about this topic.
Half of the subjects reported familiarity with machine learn-
ing algorithms, and slightly more (5 subjects) reported fa-
miliarity with classifiers and recommender systems. The
knowledge in these areas came from either taking an un-
dergraduate course in computational intelligence or from
other course projects. Subjects reported the least familiarity
with the bug report lifecycle and data mining.

Quantitative Results
Table 1 shows the quantitative results from the eight sub-
jects. The first column identifies the subjects. The next two
columns present both the number of trials a subject con-
ducted before creating their most accurate assignment rec-
ommender, and the total number of trials that the subject
conducted in creating an assignment recommender using
CASEA. The next three columns show the Top-1, Top-3 and
Top-5 precision and recall values for the best Eclipse Plat-
form assignment recommender created by the subject. The
last three rows of Table 1 show a summary of the results,
presenting the maximum, minimum, and median values for

the columns.

Table 2 shows the threshold and heuristic configurations for
the best assignment recommender created by each of the
eight subjects. The first two columns list the top ten path
groups for the data set and how much of the data set is
covered by the path group. As shown by the table, 77%
of the data set is covered by the first five path groups, and
most of the subjects specified heuristics for six or fewer
path groups. Also, with

one exception, the “Assigned” data source was used for the
remaining 11%-27% not covered by the specified heuris-
tics. Half of the subjects chose values less than 10 for the
threshold and the others used values greater than 20. The
results show that the subjects were usually able to create
a reasonably accurate assignment recommender in 10 tri-
als or less. The two most accurate recommenders (created
by Subjects #7 and #8) had the same configuration (i.e.
threshold and heuristic values), as shown in Table 2.

Qualitative Results and Observations
Based on observations during the study and responses
from the debriefing interview, subjects were found to em-
ploy two strategies for assignment recommender creation
using CASEA. Some subjects were found to be very ex-
perimental in their approach, making many changes be-
fore creating a new recommender. Other users were more
methodical, making small changes and testing the results.
Figure 6 shows a categorization of the different types of
changes (heuristic change, threshold change or both) made
by each subject. As expected, subjects changed the heuris-
tic configurations the most, and most subjects only changed
the threshold three times or fewer.

One subject commented that the best strategy was to make
small incremental changes, and that CASEA made it easy

33



Figure 4: Responses by subjects regarding prior technical experience.

Figure 5: Responses by subjects regarding prior technical knowledge.

34



Identifier Trial to Best Max Trials Top (1%) Top (3%) Top (5%)
Precision Recall Precision Recall Precision Recall

Subject #1 5 5 68.63 1.25 54.98 3.01 66.27 6.04
Subject #2 10 10 39.95 1.14 41.26 3.52 45.1 6.42
Subject #3 5 16 68.63 2.08 46.49 4.22 35.25 5.33
Subject #4 3 5 37.99 2.32 27.53 5.04 22.99 7.02
Subject #5 2 3 81.62 1.49 62.66 3.43 51.62 4.7
Subject #6 16 18 68.87 4.07 34.97 6.2 34.66 10.24
Subject #7 11 20 89.22 3.48 56.45 6.6 52.7 10.27
Subject #8 10 19 89.22 3.48 56.45 6.6 52.7 10.27

Max 16 20 89.22 4.07 62.66 6.6 66.27 10.27
Min 2 3 37.99 1.14 27.53 3.01 22.99 4.7

Median 7.5 13 68.75 2.2 50.735 4.63 48.36 6.72

Table 1: Best Eclipse Platform assignment recommenders created by subjects.

Covers Sub. #1 Sub. #2 Sub. #3 Sub. #4 Sub. #5 Sub. #6 Sub. #7 Sub. #8

NF 30.6% FirstResp. Resolver Assigned FixedBy FirstResp. FixedBy FixedBy FixedBy
NFV 22.6% Resolver Resolver Assigned Assigned FixedBy Assigned Resolver Resolver

N 15.1% Reporter Assigned FixedBy Assigned FirstResp. Assigned Assigned Assigned
NM 5.1% FixedBy FirstResp. FirstResp. Assigned Assigned Assigned FirstResp. FirstResp.

NAFV 3.9% FixedBy Resolver FirstResp. Assigned Assigned Assigned Assigned
NAF 3.2% Resolver Reporter Assigned Assigned
NC 3.0% FirstResp. Reporter
NX 2.5% FirstResp. Assigned

NFRFV 1.8% FixedBy
NA 1.1% Assigned

Other Assigned Assigned Assigned Assigned Assigned FixedBy Assigned Assigned

Activity Threshold 47 31 3 5 5 5 22 22

Table 2: Best assignment recommender configurations of subjects.

35



Figure 6: Types of changes made by subjects.

to employ this strategy. Another subject observed that cre-
ating an assignment recommender using CASEA was sim-
ilar to trying to get a high score in a game, where the score
was the precision and recall values.

As part of the recommender evaluation, CASEA provides
information about how long it takes to create a recom-
mender. This led some subjects to work towards an incor-
rect goal of minimizing the recommender creation time.

Although subjects were provided with a brief tutorial of
CASEA and a high level explanation of the recommender
creation process at the beginning of the study session, sub-
jects encountered a number of problems related to under-
standing terminology or concepts. Specifically, the term
“Path Group" was used to describe the categorization of
bug reports, and subjects found this term unintuitive. This
led to some initial confusion about the options in the heuris-
tic configuration panel. Also, the meaning of the precision
and recall metrics was not initially well understood by sub-
jects. However, once their meaning was understood, sub-
jects felt that they made more intelligent choices about the

configuration.

As was mentioned, the subjects did not have specific knowl-
edge about the project, such as who formed the core group
of developers. This led to some subjects choosing a low ac-
tivity cutoff so as to not exclude developers, and resulted in
recommenders that were not accurate and took longer to
create. This behavior would not be expected from an actual
project member using CASEA, as they would have knowl-
edge about the core development team.

Threats to validity
This section highlights some of the threats to the internal
validity, external validity, and construct validity of this work.

Threats to the internal validity of this work relate to the po-
tential sources of error in the evaluation of CASEA. A po-
tential source of error is with the creation of the data set
used for the evaluation. Although a random sample of bug
reports was examined to establish that the data collection
procedure was correct, there may have been some bug re-
ports that contained incorrect data.

Threats to external validity relate to the generalizability of
the results to other projects or user groups. In this work,
subjects with no project-specific knowledge were used to
evaluate the usability of CASEA. Therefore, these results
would not generalize to those with project-specific knowl-
edge, but could be considered as a lower-bound for such a
group.

Threats to construct validity refers to the suitability of the
evaluation measures. The method used to determine the
set of developers that could have fixed a bug report, used
for calculating precision and recall, is known to overesti-
mate the group [4]. This results in precision values that
are overvalued, and recall values that are undervalued.

36



However, the evaluation results in CASEA show the rela-
tive differences between different configurations, so even if
the precision and recall values are over or under their true
value, CASEA still provides meaningful information to the
user.

Related work
This section presents related work in the areas of assist-
ing with triage, assisting with recommender creation, and
explaining machine learning.

Assisting with Bug Report Triage
Like CASEA, Porchlight [10] and it’s predecessor Team-
Bugs [9] seek to provide a tool to assist project triagers in
making their tasks more efficient. Porchlight allows a triager
to group similar bug reports together using tags, and then
apply a triage decision to the group. This tagging is similar
to the path groups in CASEA, which also groups bug re-
ports into categories for specifying and applying labelling
heuristics.

Assisting with Recommender Creation
SkyTree Infinity [16] and BigML [8] both provide means for
guiding a user through the creation of machine-learning
recommenders. However, using Skytree Infinity still re-
quires advanced knowledge of machine learning and statis-
tics [13]. BigML provides no support for data preparation or
visualization, and creates recommenders using decision-
trees, which was shown to be ineffective for the bug report
assignment problem [5].

Explaining Machine Learning
One avenue toward making the use of recommender sys-
tems practical is to assist in their creation and evaluation.
This is the approach taken by CASEA. An alternative ap-
proach to making their use practical is by explaining their
results.

Poulin et al. [28] developed ExplainD, a framework for ex-
plaining decisions made by classifiers that use additive evi-
dence, such as Naive Bayes. The framework was used in a
bioinformatics web-based system called Proteome Analyst.

Strumbelj and Konoenko [19] presented a method for ex-
plaining classifier predictions that used coalitional game
theory. The method used a sampling-based approach to
reduce the computational complexity of explaining the con-
tributions of individual feature values. Their approach was
applied to explaining the results of various machine learning
algorithms, including Naive Bayes and SVM.

Kulesza et al. [20] created an end user debugging approach
for intelligent assistants, such as bug report assignment
recommenders. The system allowed the user to ask ‘why’
questions about predictions and then change the answers
to debug current and future predictions.

Basilio Noris developed a visualization tool for machine
learning called MLDemos [24] MLDemos assists in under-
standing how different machine learning algorithms func-
tion. It also demonstrates how the parameters of the algo-
rithms affect and modify the results in classification prob-
lems.

Conclusion
This paper presented the results of a pilot study of CASEA,
a tool to assist in the creation of bug report assignment rec-
ommenders. CASEA assists a user in labelling and filtering
the bug reports used for creating a project-specific assign-
ment recommender, as well as providing feedback on the
effectiveness of the configured assignment recommender.
The study found that users with little to no project-specific
knowledge were able to quickly create effective assignment
recommenders for the Eclipse Platform project.

37



Based on feedback and the results of the user study, a
number of future improvements were idenitified for CASEA,
including having CASEA first attempt to tune a recom-
mender automatically and then have the user tweak the
configuration, extending CASEA to assist with the creation
of other triage recommenders, supporting other machine
learning algorithms, and providing other evaluation met-
rics, such as F1. An improved version of CASEA, called
the Creation Assistant Supporting Triage Recommenders
(CASTR) [2] was created to incorporate these changes in
preparation for a field study with project developers.

References
[1] John Anvik, Marshall Brooks, Henry Burton, and Justin

Canada. 2014. Assisting Software Projects with Bug
Report Assignment Recommender Creation. In Pro-
ceedings of the 26th International Conference on Soft-
ware Engineering and Knowledge Engineering. 470–
473.

[2] John Anvik, Marshall Brooks, Henry Burton, Justin
Canada, and Ted Henders. 2016. CASTR - Creation
Assistant Supporting Triage Recommenders. (2016).
(July 25, 2016) https://bitbucket.org/bugtriage/castr.

[3] John Anvik, Lyndon Hiew, and Gail C. Murphy. 2006.
Who Should Fix This Bug?. In Proceedings of the 28th
International Conference on Software Engineering
(ICSE ’06). ACM, New York, NY, USA, 361–370.

[4] John Anvik and Gail C. Murphy. 2007. Determining
Implementation Expertise from Bug Reports. In Fourth
International Workshop on Mining Software Reposito-
ries (MSR’07:ICSE Workshops 2007). 2–9.

[5] John Anvik and Gail C. Murphy. 2011. Reducing
the Effort of Bug Report Triage: Recommenders
for Development-oriented Decisions. ACM Trans.
Softw. Eng. Methodol. 20, 3, Article 10 (Aug. 2011),
35 pages.

[6] S. Banitaan and M. Alenezi. 2013. TRAM: An ap-
proach for assigning bug reports using their Metadata.
In 2013 Third International Conference on Communi-
cations and Information Technology. 215–219.

[7] Pamela Bhattacharya, Iulian Neamtiu, and Christian R
Shelton. 2012. Automated, highly-accurate, bug as-
signment using machine learning and tossing graphs.
Journal of Systems and Software 85, 10 (2012), 2275–
2292.

[8] BigML. 2016. BigML is Machine Learning for every-
one. (2016). (Mar 10, 2016) https://bigml.com.

[9] Gerald Bortis and André Van der Hoek. 2011. Team-
bugs: A Collaborative Bug Tracking Tool. In Proceed-
ings of the 4th International Workshop on Cooperative
and Human Aspects of Software Engineering (CHASE
’11). ACM, New York, NY, USA, 69–71.

[10] G. Bortis and A. van der Hoek. 2013. PorchLight: A
tag-based approach to bug triaging. In 2013 35th Inter-
national Conference on Software Engineering (ICSE).
342–351.

[11] Gerardo Canfora and Luigi Cerulo. 2006. Supporting
Change Request Assignment in Open Source Devel-
opment. In Proceedings of the 2006 ACM Symposium
on Applied Computing (SAC ’06). ACM, New York, NY,
USA, 1767–1772.

[12] Yguaratã Cerqueira Cavalcanti, Paulo Anselmo Mota
Silveira Neto, Ivan do Carmo Machado, Tassio Ferreira
Vale, Eduardo Santana Almeida, and Silvio Romero
de Lemos Meira. 2014. Challenges and opportunities
for software change request repositories: a systematic
mapping study. Journal of Software: Evolution and
Process 26, 7 (2014), 620–653.

[13] S. Charrington. 2012. Three New Tools Bring Ma-
chine Learning Insights to the Masses. (2012).
(Feb 27, 2012) http://readwrite.com/2012/02/27/
three-new-tools-bring-machine.

38

https://bitbucket.org/bugtriage/castr
https://bigml.com
http://readwrite.com/2012/02/27/ three-new-tools-bring-machine
http://readwrite.com/2012/02/27/ three-new-tools-bring-machine


[14] Mozilla Corporation. 2014. Bugzilla. (2014). (Nov 24,
2014) http://www.bugzilla.org/.

[15] Davor Čubranić. 2004. Automatic bug triage using
text categorization. In Proceedings of the Sixteenth
International Conference on Software Engineering and
Knowledge Engineering. 92–97.

[16] Skytree Inc. 2016. Skytree Server. (2016). (Mar 10,
2016) http://www.skytree.net.

[17] Thorsten Joachims. 1998. Text categorization with
support vector machines: Learning with many relevant
features. In Proceedings of the 10th European confer-
ence on machine learning. Springer, 137–142.

[18] Stefan Koch and Georg Schneider. 2002. Effort, Cop-
eration and Coordination in an Open Source Software
Project: GNOME. Information Systems Journal 12, 1
(2002), 27–42.

[19] Igor Kononenko and others. 2010. An efficient expla-
nation of individual classifications using game theory.
Journal of Machine Learning Research 11, Jan (2010),
1–18.

[20] Todd Kulesza, Simone Stumpf, Weng-Keen Wong,
Margaret M Burnett, Stephen Perona, Andrew Ko, and
Ian Oberst. 2011. Why-oriented End-user Debugging
of Naive Bayes Text Classification. ACM Transactions
on Interactive Intelligent Systems (TiiS) 1, 1 (2011), 2.

[21] Tom M Mitchell. 1997. Machine learning. McGraw-Hill.
[22] Audris Mockus, Roy T Fielding, and James D Herb-

sleb. 2002. Two case studies of open source software
development: Apache and Mozilla. ACM Transac-
tions on Software Engineering and Methodology 11, 3
(2002), 309–346.

[23] Hoda Naguib, Nitesh Narayan, Bernd Brügge, and
Dina Helal. 2013. Bug report assignee recommenda-
tion using activity profiles. In Proceedings of the 10th
IEEE Working Conference on Mining Software Reposi-
tories (MSR ’13). IEEE, 22–30.

[24] B. Noris. 2016. ML Demos. (2016). (Mar 10, 2016)
http://mldemos.epfl.ch/.

[25] Jason D Rennie, Lawrence Shih, Jaime Teevan,
David R Karger, and others. 2003. Tackling the poor
assumptions of naive bayes text classifiers. In ICML,
Vol. 3. 616–623.

[26] Gregorio Robles, Stefan Koch, Jesús M GonZÁlEZ-
BARAHonA, and Juan Carlos. 2004. Remote analysis
and measurement of libre software systems by means
of the CVSAnalY tool. In Proceedings of the 2nd ICSE
Workshop on Remote Analysis and Measurement of
Software Systems (RAMSS). 51–55.

[27] Simone Stumpf, Vidya Rajaram, Lida Li, Weng-Keen
Wong, Margaret Burnett, Thomas Dietterich, Erin Sulli-
van, and Jonathan Herlocker. 2009. Interacting mean-
ingfully with machine learning systems: Three exper-
iments. International Journal of Human-Computer
Studies 67, 8 (2009), 639–662.

[28] Duane Szafron, Brett Poulin, Roman Eisner, Paul Lu,
Russ Greiner, David Wishart, Alona Fyshe, Brandon
Pearcy, Cam Macdonell, and John Anvik. 2006. Vi-
sual explanation of evidence in additive classifiers. In
Proceedings of the 18th Conference on Innovative Ap-
plications of Artificial Intelligence, Vol. 2. 1822–1829.

[29] Xin Xia, David Lo, Xinyu Wang, and Bo Zhou. 2013.
Accurate developer recommendation for bug resolu-
tion. In In Proceedings of the 20th Working Conference
on Reverse Engineering. IEEE, 72–81.

[30] Min-Ling Zhang and Zhi-Hua Zhou. 2007. ML-KNN: A
lazy learning approach to multi-label learning. Pattern
recognition 40, 7 (2007), 2038–2048.

[31] Tao Zhang and Byungjeong Lee. 2013. A hybrid bug
triage algorithm for developer recommendation. In Pro-
ceedings of the 28th annual ACM symposium on ap-
plied computing. ACM, 1088–1094.

39

http://www.bugzilla.org/
http://www.skytree.net
http://mldemos.epfl.ch/

	Introduction
	Background
	Bug reports
	Bug report lifecycle
	Machine learning algorithms

	Creation assistant for easy assignment
	Data collection
	Data preparation
	Recommender Training
	Recommender Evaluation

	User study of CASEA
	User Study Setup
	Prior knowledge and experience
	Quantitative Results
	Qualitative Results and Observations

	Threats to validity
	Related work
	Assisting with Bug Report Triage
	Assisting with Recommender Creation
	Explaining Machine Learning

	Conclusion
	References

