










niques, for example from [4], for prioritizing recom-
mendations.

• The recommendations are based on single user changes.
Future work should take multiple user changes into
consideration.

• Our evaluation only included meta models. We plan to
also evaluate our technique for types of instance model
for which SiLift can generate differences.

• Our technique needs to be integrated into an intuitive
user interface and evaluated by users, because batch
evaluations alone are not sufficient [16].

• An extension of our technique that exploits model con-
straints could filter out recommendations that violate
model constraints. It could also be possible to empha-
size recommendations that fix constraint violations,
which would be similar to Eclipse’s Quick Fix rec-
ommendations. Muşlu et al. [14] have already done
similar work for Eclipse Quick Fixes.

• We want to extend our technique to multiple meta and
instance models that are evolving simultaneously. For
this, we suspect that it is possible to find relations
between changes that are made simultaneously to dif-
ferent models. For example, if two elements are added
simultaneously to two different models, we could de-
duce a relation between them and then try to apply
our technique.
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