










niques, for example from [4], for prioritizing recom-
mendations.

• The recommendations are based on single user changes.
Future work should take multiple user changes into
consideration.

• Our evaluation only included meta models. We plan to
also evaluate our technique for types of instance model
for which SiLift can generate differences.

• Our technique needs to be integrated into an intuitive
user interface and evaluated by users, because batch
evaluations alone are not sufficient [16].

• An extension of our technique that exploits model con-
straints could filter out recommendations that violate
model constraints. It could also be possible to empha-
size recommendations that fix constraint violations,
which would be similar to Eclipse’s Quick Fix rec-
ommendations. Muşlu et al. [14] have already done
similar work for Eclipse Quick Fixes.

• We want to extend our technique to multiple meta and
instance models that are evolving simultaneously. For
this, we suspect that it is possible to find relations
between changes that are made simultaneously to dif-
ferent models. For example, if two elements are added
simultaneously to two different models, we could de-
duce a relation between them and then try to apply
our technique.

6. ACKNOWLEDGEMENTS
This work was funded by the German Research Founda-

tion (DFG) as part of the DFG Priority Programme 1593
(SPP1593).

7. REFERENCES
[1] T. Arendt, E. Biermann, S. Jurack, C. Krause, and

G. Taentzer. Henshin: advanced concepts and tools for
in-place emf model transformations. In International
Conference on Model Driven Engineering Languages
and Systems, pages 121–135. Springer, 2010.

[2] A. Breckel. Error mining: bug detection through
comparison with large code databases. In Proceedings
of the 9th IEEE Working Conference on Mining
Software Repositories, pages 175–178. IEEE Press,
2012.

[3] P. Brosch, M. Seidl, and G. Kappel. A recommender
for conflict resolution support in optimistic model
versioning. In Companion to the 25th Annual ACM
SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
SPLASH/OOPSLA, pages 43–50, 2010.

[4] M. Bruch, M. Monperrus, and M. Mezini. Learning
from examples to improve code completion systems. In
Proceedings of the the 7th joint meeting of the
European software engineering conference and the
ACM SIGSOFT symposium on The foundations of
software engineering, pages 213–222. ACM, 2009.

[5] A. Cicchetti, D. Di Ruscio, R. Eramo, and
A. Pierantonio. Automating co-evolution in
model-driven engineering. In Enterprise Distributed
Object Computing Conference, 2008. EDOC’08. 12th
International IEEE, pages 222–231. IEEE, 2008.

[6] M. Eysholdt and H. Behrens. Xtext: implement your
language faster than the quick and dirty way. In
Proceedings of the ACM international conference
companion on Object oriented programming systems
languages and applications companion, pages 307–309.
ACM, 2010.

[7] S. Getir, M. Rindt, and T. Kehrer. A generic
framework for analyzing model co-evolution. In Model
Evolution, International Conference on Model Driven
Engineering Languages and Systems, 2014.

[8] M. Herrmannsdoerfer, D. Ratiu, and G. Wachsmuth.
Language evolution in practice: The history of gmf. In
International Conference on Software Language
Engineering, pages 3–22. Springer, 2009.

[9] W. Janjic and C. Atkinson. Utilizing software reuse
experience for automated test recommendation. In 8th
Int. Workshop on Automation of Software Test, pages
100–106, 2013.

[10] T. Kehrer, U. Kelter, M. Ohrndorf, and T. Sollbach.
Understanding model evolution through semantically
lifting model differences with SiLift. In Software
Maintenance (ICSM), 2012 28th IEEE International
Conference on, pages 638–641. IEEE, 2012.

[11] T. Kehrer, U. Kelter, and G. Taentzer.
Consistency-preserving edit scripts in model
versioning. In Automated Software Engineering (ASE),
2013 IEEE/ACM 28th International Conference on,
pages 191–201. IEEE, 2013.

[12] P. Langer, M. Wimmer, P. Brosch,
M. Herrmannsdörfer, M. Seidl, K. Wieland, and
G. Kappel. A posteriori operation detection in
evolving software models. Journal of Systems and
Software, 86(2):551–566, 2013.

[13] N. Meng, M. Kim, and K. S. McKinley. Lase: locating
and applying systematic edits by learning from
examples. In Proceedings of the 2013 International
Conference on Software Engineering, pages 502–511.
IEEE Press, 2013.

[14] K. Muşlu, Y. Brun, R. Holmes, M. D. Ernst, and
D. Notkin. Speculative analysis of integrated
development environment recommendations. ACM
SIGPLAN Notices, 47(10):669–682, 2012.

[15] M. P. Robillard, W. Maalej, R. J. Walker, and
T. Zimmermann, editors. Recommendation Systems in
Software Engineering. Springer, 2014.

[16] A. H. Turpin and W. Hersh. Why batch and user
evaluations do not give the same results. In
Proceedings of the 24th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 225–231. ACM, 2001.

19


	Introduction
	Technique
	Running Example
	Basic Technique
	Extensions to our Technique
	Intersection of recommendations
	Free Variables
	Indirect Relations


	Evaluation
	Related Work
	Conclusions and Future Work
	Acknowledgements
	References



