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ABSTRACT

In MDE resolving pragmatic issues related to the management of

models is key to success. Model comparison is one of the most

challenging operations playing a central role in a wide range of

modelling activities including model versioning, evolution and even

collaborative and distributed specification of models. Over the last

decade, several syntactic methods have been proposed to compare

models even though they struggle in achieving higher levels of ac-

curacy especially when the semantics of the application domain has

to be considered. Existing methods improve comparison precision

at the price of high performance costs.

This paper discusses a lightweight semantic comparison method,

which relies on a new matching algorithm that considers ontolog-

ical information encoded in the WordNet lexical database further

than ordinary syntactical and structural correlations. The approach

has been implemented as extension of EMFCompare and evaluated

to measure its precision and performances when compared to ex-

isting approaches.
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1. INTRODUCTION
Model-Driven Engineering (MDE) promotes the migration from

a code-centric to a model-based approach to cope with the increas-

ing development complexity of modern software systems. Models

abstract real-world phenomena focusing on a specific aspect, e.g.

its dynamic behaviour, its static structure, and assume the role of

first-class artefacts throughout the software life cycle [1].

Addressing pragmatic issues related to the management and evo-

lution of models has become a major concern in Model Driven En-

gineering [2] (MDE). Critical facilities such as model mergers and

model difference tools related to model-level observability are key

in distributed development of modeling artifacts. As noticed al-

ready in 2003 by Bran Selic model difference tools "must work at

a semantically meaningful level." [3].

Over the years, relevant advances have been provided in the area

of model differencing in terms of methods, such as similarity-based

approaches [4, 5], and tools with the introduction of the EMFCom-

pare [6] in the EMF ecosystem. However, the problem of deter-

mining model differences represents an intrinsically complex task,

especially when dealing with two-way state-based comparisons [7],

i.e. when the differencing is based on the sole information stored

in the two models being compared.

Model differencing, indeed, relies on Model Matching, i.e. the

calculation of correspondences among model elements, which can

be reduced to the NP-Hard Graph Isomorphism Problem, that is the

problem of finding correspondences between graphs [8, 5]. The

available approaches to model matching are all different ways to

deal with this intrinsic hardness, which is typically alleviated through

either domain-specific or generic but approximate solution [9].

In this paper, we make a first step towards the introduction of

semantic reasoning within the matching process in EMFCompare.

In particular, we present a custom matching engine extending the

default one of EMFCompare. In addition to the syntactical and

structural correlations, the proposed extension compares model el-

ements with respect to their semantic meaning using the WordNet

lexical database [10]. Furthermore, the effectiveness and efficiency

of the proposed approach is evaluated on a matching scenario based

on an existing benchmark.

Structure of the paper: The paper is organized as follows. Sec-

tion 2 presents an example motivating the work. Section 3 provides

an overview of the model differencing problem. Section 4 outlines

the main phases of the comparison process of EMFCompare and

highlights its limitations. Section 5 outlines the WordNet lexical

database, and the various semantic similarity measures based on its

structural organization of concepts. Section 6 presents our main

contribution, that is, a semantic extension of the matching process

in EMFCompare. Section 7 evaluates the extension on a match-

ing scenario based on an existing benchmark. Section 8 concludes

the paper providing a brief summary and a discussion of possible

future directions.

2. MOTIVATING SCENARIO
As mentioned before, the problem of calculating differences be-

tween two model versions is intrinsically difficult. Figure 1 depicts

a practical example involving two different versions of the Thesis-

ManagementSystem metamodel, that is a small-scale reproduction

of university theses management portal. According to the initial

version of the metamodel shown in Fig.1.a, a ThesisSystem

contains information about Departments, Students, teaching

staff (TeachingStaffMember), and Thesis. In order to sat-

isfy unforeseen requirements or to refine existing constructs, meta-

models can be modified as in the case of the new version of the

ThesisManagementSystem metamodel shown in Fig.1.b, which has
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been obtained by applying the two metamodel changes described

below.

Extract user super class: in the first version of the metamodel,

Student and TeachingStaffMember classes are completely

separated despite sharing most of their attributes. Moreover, the

metaclass Student has forename and surname attributes while

TeachingStaffMember has only a name attribute grouping

both name and surname. In light of this, the evolved metamodel

version extracts the common information among Student and

TeachingStaffMember into an additional superclass User,

while TeachingStaffMember’s name is partitioned in User’s

forename and surname attributes.

Thesis Attribute Renaming: in the first version of the metamodel,

the main theme of a thesis is expressed through the topic attribute

in the Thesis class. In the newer version, this attribute is renamed

to subject. Intuitively, these attributes express the same concept,

i.e. the principal issue discussed in a given thesis.

Table 1 reports the desired correspondences between the two meta-

models, as determined by manually comparing the two versions. In

particular, the entries named S, T, D, Th, U and TS correspond to

Student, TeachingStaffMember, Department, Thesis,

User, and ThesisSystem entities in the metamodels. For in-

stance, there is a match between Student class in the initial and

evolved metamodels; between the attributes id, forename, etc.

in the initial metamodel, and the corresponding ones inherited by

a) Initial metamodel version

b) Evolved metamodel version

Figure 1: A (meta-)model evolution scenario

Table 1: Manually identified matches

Element version 1 Element version 2

S S

S.id U.id

S.forename U.forename

S.surname U.surname

S.emailAddress U.emailAddress

S.username U.username

S.password U.password

S.thesis S.thesis

T T

T.id U.id

T.name U.forename

T.name U.surname

T.emailAddress U.emailAddress

T.username U.username

T.password U.password

T.examinedTheses T.examinedTheses

T.supervisedTheses T.supervisedTheses

T.department T.department

D[4 matches]
∗

D[4 matches]
∗

Th[9 mathches]
•

Th[9 matches]
•

Th.topic Th.subject

TS[5 matches]
∗

TS[5 matches]
∗

∗ contained structural features are fully matched
• remaining structural features are fully matched

the class User, i.e. U.id, U.forename, etc. in the evolved

version; between the relationships outgoing from Student and

targeting the Thesis classes. The total number of manually iden-

tified correspondences is 37.

3. MODEL DIFFERENCING OVERVIEW
Existing model differencing approaches can be considered as

logically composed of three main phases: i) compared models are

imported in a differencing friendly format (typically graph-based

structures); ii) a matching algorithm navigates the models to detect

and establish correspondences between entities in the two mod-

els being compared; iii) a dedicated algorithm computes the dif-

ferences of the matched elements in terms of (at least) additions,

deletions, and changes of model entities as based on the matches es-

tablished in the previous phase. In this respect, the matching phase

is critical in any differencing approach, since any erroneous match,

both false-positive and false-negative, results in a wrong output.

More in general, requirements for model matching approaches in-

clude accuracy, a high level of abstraction at which the comparison

is performed, independence from particular tools, domains, and

languages, efficiency, and minimal effort. In [9] authors classify

model matching approaches as follows:

– Static Identity-Based Matching: in this category, it is as-

sumed that each model element has a persistent unique iden-

tifier that is assigned to it upon creation. Therefore, a basic

approach for matching models is to identify matching model

elements based on their corresponding identities (as in [11,

12, 13]);

– Signature-Based Matching: in this category, the identity of

each model element is not static. Instead its identity, typi-

cally referred to as signature, is dynamically calculated by

combining the values of its features. The signature computa-
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tion is performed by means of a user-defined function speci-

fied using a model querying language (as in [14]);

– Similarity-Based Matching: the approaches in this category

treat models as typed attribute graphs and attempts to iden-

tify matching elements based on the aggregated similarity of

their features. It is worth noting that not all features of model

elements are equally relevant for establishing a match (e.g.

classes with matching names are more likely to be matched

with classes specialising the same parent superclass). There-

fore, similarity-based algorithms typically need to be pro-

vided with a configuration that specifies the relative weight

of each feature and thus of detected correspondences (as in

[5, 15, 13]);

– Custom Language-Specific Matching Algorithms: this cat-

egory involves matching algorithms tailored to a particular

modelling language. Notably, UMLDiff [4] and the work in

[16] specifically target UML models and statecharts, respec-

tively. In these cases, the narrow set of available entities,

their semantics, and their valid evolution alternatives, allows

to specialise the matching algorithm computations.

None of the approaches previously listed can be considered as

the best solution as shown in [9]. Instead, the choice of a model

matching solution should be evaluated as trying to optimise the

trade-off between the constraints imposed by the context and the

particular task at stake. This work is based on EMFCompare due

to the flexibility and customisability of its matching engine, as de-

tailed in the remainder of this section.

4. THE EMFCOMPARE TOOL: OVERVIEW

AND LIMITATIONS
EMFCompare [13] is an Eclipse project which was initiated in

2006 at Eclipse Summit Europe, where the need for a model com-

parison engine emerged. It provides generic and customisable sup-

port for model comparison and merge of EMF models, such as

Ecore and UML. The most relevant characteristic with respect to

other approaches, at the time, consists in its high degree of exten-

sibility: in fact, the whole comparison process is indeed designed

to be completely customisable. In particular, the different activi-

ties composing the comparison process are explicitly disjoint and

managed using different software entities, i.e. engines. Further-

more, according to its extensible nature, EMFCompare provides

full support for the extension of its default metamodel-independent

behaviour to tailor custom or metamodel-specific solutions.

The main advantage resulting from the explicit partition of the

comparison process in its various sub-activities is that developers

can focus on the specific part of the process they are going to ex-

tend/customise, while leaving the management of the remaining

steps to the framework. For instance, the default matching ap-

proach adopted in EMFCompare falls in the similarity-based tech-

niques. However, it also provides the possibility to adopt a static

identity-based or a signature-based matching approach, possibly

defining custom generator functions, if needed. In this regard, it is

worth mentioning that this paper focuses on metamodel-independent

differencing, which is incompatible with static identity-based and

signature-based approaches [17].

In the following, we first provide a brief description of the overall

comparison process in EMFCompare. Then, we focus our attention

on the issues and limitations affecting the matching phase; such a

phase will constitute the foothold on which our main contribution

is built.

4.1 The Comparison Process
The EMFCompare comparison process can be roughly divided

into six phases, whose main characteristics are singularly described

below. The matching phase is illustrated in deeper details due to its

relevance for this contribution, while the interested reader can refer

to [13] for further details about the other phases.

Phase 1: Model resolving - This phase builds a logical represen-

tation of the overall comparison context, i.e. a model representing

the artefacts to be compared enriched with the information required

for the subsequent activities.

Phase 2: Model matching - Once resolved the logical models, the

matching phase creates a set of two-by-two mappings while iterat-

ing over the model elements, e.g. Student in the model in Fig.1.a

corresponds to Student in the model in Fig.1.b. By going into more

details, for each element in the first model it is necessary to browse

the elements in the second in order to find the most similar one.

The default match engine firstly selects a specific element pair, and

subsequently a similarity evaluation is computed by the combina-

tion of four different metrics in an overall score ranging from 0,

i.e. completely different, to 1, i.e. identical elements. These met-

rics analyse the name of an element, its content, its type, and its

relations with other elements.

Despite considering different characteristics of a given element,

all the metrics adopt the same comparison approach. Indeed, for

each metric, the final result is given by the execution of a string dis-

tance algorithm, e.g. the Levenshtein Distance Algorithm [18], on

the string representation of the elements. In order to better explain

this fundamental phase, listing 1 reports a simplified matching-

algorithm pseudo-code. After the result initialisation (line 1), the

algorithm iterates over all possible element pairs to compute their

similarity (lines 2–4). It is worth noting that for optimisation pur-

poses the models are not compared as a whole, whereas the possible

elements are selected within a proper search window (line 3).

Once all the possible candidate matches are identified, the cre-

ateMatch method takes as input the similarity values, and by using

threshold policies produces the Comparison object containing all

detected matches. The elements included in the current search win-

dow which are not matched yet are forwarded to future searches to

possibly produce new matches.

Listing 1: EMFCompare default match engine implementation
1result = Double[Model1.getElements().size()][Model1.

getElements().size()]

2foreach (elM1 : Model1.getElements())

3 foreach (elM2 : elM1.getWindowElements())

4 result[elM1][elM2] = calculateSimilarity(elM1, elM2)

5return createMatches(result)

Phase 3: Model differencing - In this phase, the output of the

matching is analysed to classify the various changes happened from

a version to another. For instance, an element only present in the

old version is classified as a deletion, an element only present in

the new version as an addition, while a match can either be an un-

touched element, or an element subject to updates.

Phase 4: Detection of difference equivalences - During the equiv-

alences step, the produced differences are analysed for filtering out

redundant correspondences.

Phase 5: Detection of difference requirements - In this phase the

produced differences are analysed once more to detect possible de-

pendencies among them. Notably, the addition of the specialisation

relationship between Student and User in the model in Fig.1.b

could not exist without the creation of User, which does not exist

in the old version of the model (see Fig.1.a).
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Table 2: Matches identified by EMFCompare

Element version 1 Element version 2

S S

S.surname U.surname

S.thesis S.thesis

T T

T.examinedTheses T.examinedTheses

T.supervisedTheses T.supervisedTheses

T.department T.department

D[4 matches]
∗

D
[
4 matches]∗

Th [9 matches]
•

Th [9 mathes]
•

TS[5 matches]
∗

TS[5 matches]
∗

∗ contained structural features are fully matched
• topic and subject attributes are not paired but other contained struc-
tural features are fully matched.

Phase 6: Detection of difference conflicts - This phase allows to

link the comparison process with a conflict detection mechanism,

for instance when dealing with models managed through a Version

Control System (VCS).

4.2 Limitations and Issues
According to performed experiments EMFCompare might have

difficulties when dealing with comparison scenarios presenting com-

plex correspondences. In particular, we define complex those dif-

ferences which cannot be detected considering syntactical features

only, or those differences characterised by n-to-m matches. Ex-

amples of representative complex correspondences are renaming

an element using a synonym term, extracting features in common

among multiple entities into a more generic one, or vice-versa, de-

composing or distributing an entity feature among more specific

entities.

By considering the default implementation of the EMFCompare

matching process, we have classified the emerging issues into two

categories, namely contextual issues and linguistic issues. The

former result from the limited consideration of the features char-

acterising the elements surrounding the compared ones, e.g. the

classes containing a given pair of attributes. The latter, i.e. lin-

guistic issues, result from the lack of a semantical evaluation of the

features characterising the compared elements. Renaming a given

class using a syntactically different name, for example, could lead

to a false-negative, i.e. undetected correspondence. Analogously,

a false positive, i.e. unexpected correspondence, could result when

renaming a given class using a semantically different term, which

however presents a strong syntactical similarity with another exist-

ing one.

Keeping in mind contextual and linguistic issues, Table 2 show

the calculated matches with respect to the motivating example in-

troduced in Sec.2. The EMFCompare default implementation iden-

tifies 25 matches, in particular 12 false negatives and 0 false pos-

itives. In particular, EMFCompare is not able to detect the corre-

spondence between the attributes in the old Student metaclass

and the new ones inherited from the extracted superclass User.

Moreover, the comparison does not match the old topic attribute

with the new subject attribute contained in Thesis metaclass.

5. WORDNET-BASED SIMILARITY
In this section, we provide an overview of the WordNet lexical

database (see Sect. 5.1) and of related semantic similarity measures

(see Sect. 5.2). Such techniques and tools underpin the improve-

ment of EMFCompare proposed in Sect. 6 in order to mitigate the

issues discussed in the previous section.

5.1 WordNet in a nutshell
WordNet [10] is a lexical database for the English language. It

was created and is being maintained at the Cognitive Science Lab-

oratory of Princeton University under the direction of psychology

professor George A. Miller. In this database, English words are

grouped into sets of synonyms called synsets, which also include a

generic definition joining the contained words together and infor-

mation about the semantic relationships connecting them to other

synsets. The specific meaning of one word under a specific Part-

Of-Speech (POS) is called a sense. Each synset has a gloss that

defines the concept it represents. For example, the words night,

nighttime, and dark constitute a single synset that has the follow-

ing gloss: “the time after sunset and before sunrise while it is dark

outside”. The purpose is twofold: to produce a combination of

dictionary and thesaurus that is more intuitively usable, and to sup-

port automatic text analysis and artificial intelligence applications

[19]. Synsets are connected to one another through explicit se-

mantic relations. Some of these relations (hypernym, hyponym for

nouns, and hypernym and troponym for verbs) constitute is-a-kind-

of (holonymy) and is-a-part-of (meronymy for nouns) hierarchies.

For example, tree is a kind of plant, tree is a hyponym of plant,

and plant is a hypernym of tree. Analogously, trunk is a part of

a tree, and we have trunk as a meronym of tree. While seman-

tic relations apply to all members of a synset, because they share

a meaning but are all mutually synonyms, words can also be con-

nected to other words through lexical relations, including antonyms

(i.e., opposites of each other) which are derivationally related, as

well. WordNet provides also the polysemy count of a word, i.e. the

number of synsets that contain the word. If a word participates in

several synsets (i.e., has several senses) then typically some senses

are much more common than others.

5.2 Semantic Similarity Measures
Semantic similarity measures might be used for performing tasks

such as term disambiguation [20], as well as text segmentation, and

for checking ontologies for consistency or coherence. All the cur-

rently available measures can be grouped into four classes [19]: i)

path-length based, ii) information-content based, iii) feature based,

and iv) hybrid measures. In the following, a brief explanation for

each of these measure classes is provided with further emphasis on

information-content based measures, which have been adopted to

develop the proposed EMFCompare extension.

Path-length based measures. The main idea of path length based

measures is that the similarity between two concepts is a function

of the length of the path linking the concepts and the position of

the concepts in the WordNet taxonomy. Although most path length

based measures are simple to use, local density of pairs (i.e., fre-

quency of the involved terms) fails to be reflected [21].

Feature based measures. Unlike the other measures, feature based

measures are independent from the taxonomy and the subsump-

tions of the concepts. In particular, they attempt to exploit the prop-

erties of the ontology in order to obtain similarity values. Indeed,

this kind of measures is based on the assumption that each concept

is described by a set of words indicating its properties or features,

such as glosses in WordNet. The more common characteristic two

concepts have and the less non-common characteristics they have,

the more similar the concepts are. However, it is worth noting that

this kind of measures introduces a noteworthy computational delay

into the overall process. Furthermore, feature based measures re-

quire a complete and correct feature set to work properly, which is

not always an easy task to perform [21].
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Information-content based measures. In information-content (IC)

based measures, it is assumed that each concept includes a certain

amount of information in WordNet. Similarity measures are based

on such information content of each concept within the taxonomy.

The more common information two concepts share, the more sim-

ilar the concepts are. Lin’s Measure [22] uses both the amount of

information needed to state the commonality between the two con-

cepts and the information needed to fully describe these terms. The

similarity measure formula is defined as follows:

SimLin(c1, c2) =
2 ∗ IC(lso(c1, c2))

IC(c1) + IC(c2)
(1)

where IC(lso(c1, c2)) is the information needed to state the com-

monality between c1 and c2, whereas IC(ci) is the information

needed to represent the concept ci.

In general, IC based measures attempt to exploit the information

related to a given pair of concepts in order to evaluate their similar-

ity. Therefore, how to obtain IC represents a crucial issue, which

will directly affect the measure application performance. In [23],

the IC value of a concept is a function of its number of hyponyms.

The more hyponyms a concept has, the more abstract it is. That

is to say, concepts with many hyponyms convey less information

than concepts that are leaves in the taxonomy. A common issue

encountered in adopting IC based measures consists in less precise

evaluations as regards the structure information of concepts, which

is fairly captured in path length based measures on the contrary.

However, IC based measures provide a relevant improvement in

terms of computational complexity, thus making it the convenient

in our case.

Hybrid measures. The hybrid measures combine the above men-

tioned ones. In practice, many measures not only are able to com-

bine the ideas presented above, but also the relations, such as is-a,

part-of, and so on. For instance, the Rodriguez’s measure [24] in-

cludes three parts: (i) synonyms set, (ii) neighbourhoods, and (iii)

features. The similarity value of each part is assigned to a weight,

and then summed together. Generally, both IC and path length

based measures are integrated as parameters into hybrid functions,

as it is has been proposed in [25].

6. EXTENSION OF EMFCOMPARE WITH

SEMANTIC MODEL MATCHING
In this section, we propose an extension of EMFCompare aiming

at addressing both the linguistic and contextual issues presented in

Section 4.2. Furthermore, our solution introduces support for the

definition of custom matching approaches using ontological de-

scriptions in EMFCompare, instead of custom-tailored match en-

gine implementations.

Thanks to the intrinsic extensibility of EMFCompare, our method

has been developed focusing on the matching phase only, hence

leaving untouched the previous and subsequent steps1. In particu-

lar, the matching process has been modified redefining the selec-

tion process of model elements, i.e. which elements to compare

among each other, and the evaluation approach itself, i.e. the com-

putation of the similarity value corresponding to a specific model

elements pair. The proposed solution limits its semantic reason-

ing to the comparison among model element names, and relies on

the WordNet lexical dictionary as ontological source. However,

the knowledge is not directly retrieved from the WordNet database,

but rather from an automatically generated graph. In this way, our

1The prototypical implementation of the EMFCompare seman-
tic model matching extension is available at: https://github.com/
MDEGroup/EMFCompare-Semantic-Extension .

method does not directly depend on theWordNet database structure

itself, hence enabling the adoption of other ontologies.

In order to define our method, we have extended the concept of

Match in the underlying EMFCompare comparison model by intro-

ducing the Semantic Match concept (see the Semantic Match

Engine element in Fig. 2). The differences with respect to the

ordinary Match consist in: (i) semantic distance value, i.e. each

match carries information about the semantic distance among the

encapsulated model elements, (ii) container matches list, i.e. each

match carries references to the containers of the encapsulated model

elements, and (iii) content matches list, i.e. each match carries ref-

erences to the content of the encapsulated model elements.

The overall matching process, as illustrated in Listing 2, can be

decomposed in three separated phases: (i) exploration, (ii) evalu-

ation and (iii) filtering. In compliance with the default implemen-

tation in EMFCompare, the process starts receiving a logical rep-

resentation of the compared models and terminates producing a set

containing the expected matches.

1function createMatches(Comparison comparison, List

leftEObjects, List rightEObjects){

2 SemanticMatch root = createSemanticMatch(null, null);

3 exploreMatches(root, leftEObjects, rightEObjects);

4 evaluateMatches(root);

5 filterMatches(root, comparison);

6}

Listing 2: Pseudo-code of the proposed semantic model match

approach

The three steps underpinning the proposed semantic match are

singularly described in the following.

Exploration: during the exploration phase, our method builds a

labelled graph representation of the compared models. In such a

representation, each node represents a semantic match, while each

incoming or outgoing labelled edge represents a connection with

its parents or children elements, respectively. The exploration pro-

cess is listed in Listing 3. Given a starting pair of model elements,

i.e. the root parameter, the exploration phase first iterates over

their contained elements, (lines 2-3). For each pair of elements of

the same type, our method creates a new Semantic Match node

and connects it to the initial pair (lines 5-7). Finally, the same ex-

ploration process is recursively repeated on the created node (line

8).

1function exploreMatches(SemanticMatch root, List

leftEObjects, List rightEObject){

2 foreach(leftEObject : leftEObjects)

3 foreach(rightEObject : rightEObjects){

4 if(leftEObject.getClass().equals(rightEObject.getClass

())){

5 SemanticMatch current = createSemanticMatch(

leftEObject, rightEObject);

6 current.addParent(root);

7 root.addChild(current);

8 exploreMatches(current, leftEObject.getContent(),

rightEObject.getContent());

9 }

10 }

11}

Listing 3: Pseudo-code of the Exploration phase

Evaluation: once the graph representation of the compared mod-

els is created, each Semantic Match node is integrated with

the semantic distance value between its encapsulated elements, as

illustrated in Listing 4. Once completed the evaluation of a given

node (line 2), the same process is recursively repeated on its chil-

dren elements (lines 4-6).

44



Figure 2: The proposed Semantic Match Engine in EMFCompare

1function evaluateMatches(SemanticMatch root){

2 Double semanticDistance = evaluateSemanticDistance(root.

getLeft(), root.getRight());

3 root.setSemanticDistance(semanticDistance);

4 foreach(child : root.getChildren()){

5 evaluateMatches(child);

6 }

7}

Listing 4: Pseudo-code of the Evaluation phase

The semantic distance evaluation process is described in List-

ing 5. Given two model elements, the process begins with three

subsequent preprocessing operations aimed to prepare the input for

the subsequent evaluation (lines 2-3). Each string is tokenized by

using as delimeters any non-alphabetical character, blank spaces

and uppercasing - lowcasing changes in the word (line 12). Once,

the obtained sequences are analyzed using the Stanford Log-Linear

Part-Of-Speech Tagger [26], which assigns parts of speech, such as

noun, verb or adjective, to each elements (line 13). Finally, in the

token stemming step, for each tagged token, our method retrieves

the corresponding root word usingWordNet (line 14). At the end of

the preprocessing phase, the initial strings are transformed to POS-

tagged sequences, which represent the input for the actual compar-

ison phase.

In order to evaluate the semantic similarity between two token

sequences, our method first compares each element from the first

with the elements from the latter (lines 5-6). For each element pair,

the comparison consists in retrieving all the possible synsets which

are related to the given words, evaluate their semantic distance us-

ing the inverted Lin’s Algorithm (see Sect. 5.2), and returns back

the minimum obtained value, i.e. how much the given words are

similar in the best case (lines 7). In particular, we chose to adopt the

corpora-independent method proposed in [23], which uses Word-

Net itself as a statistical resource to calculate IC values. Once that

each pair has been evaluated, the final result is given by the Min

Match Average of the obtained values, i.e. the sum of the minimum

distance for each pair of tokens, divided by the maximum token

list length among the involved ones (line 8). The final value ranges

from 0, i.e. identical elements, to 1, i.e. not matching.

1function Double evaluateSemanticDistance(EObject left,

EObject right){

2 leftTokens = inputProcessing(left);

3 rightTokens = inputProcessing(right);

4 Double[][] result = new Double[leftTokens.size()][

rightTokens.size()];

5 foreach(leftToken : leftTokens)

6 foreach(rightToken : rightTokens)

7 result[leftToken][rightToken] = invertedLin(leftToken,

rightToken);

8 return minMatchAverage(result);

9}

10

11function List inputProcessing(EObject element){

12 List result = tokenizeString(element.getName());

13 result = tagTokenList(result);

14 return stemTokenList(result);

15}

Listing 5: Pseudo-code of the semantic distance evaluation

Filtering: starting from the semantic distance values obtained dur-

ing the previous steps, in this phase each Semantic Match node

is analysed in order to decide whether or not to put it into the re-

sult set, as illustrated in Listing 6. Given an initial node, its anal-

ysis value results from the weighted arithmetic mean of the se-

mantic distance value between the encapsulated model elements,

the average semantic distance values between their children, and

the minimum semantic distance value between their parents (lines

2-5). In order to be accepted, a Semantic Match node must

have a lower analysis value with respect to a pre-defined threshold

Tα. According to the requirements imposed by EMFCompare, the

final matches are inserted into the comparison set (line 7). Further-

more, for each rejected node, we create two substituting matches

having the left and the right element only, respectively (lines 9-10).

The same process is then recursively repeated for each Semantic

Match child (lines 12-14).

1function filterMatches(SemanticMatch root, Comparison

comparison){

2 Double rootDistance = root.getSemanticDistance() * root.

getSemanticDistanceWeight();

3 Double childrenDistance = averageSemanticDistance(root.

getChildren());

4 Double parentDistance = minSemanticDistance(root.

getParents());

5 Double overallDistance = weightedArithmeticMean(

semanticDistance, childrenDistance, parentDistance)

;

6 if(overallDistance < Tα){

7 comparison.add(root);

8 } else {

9 comparison.add(new SemanticMatch(root.getLeft(), null))

;

10 comparison.add(new SemanticMatch(null, root.getRight())

);

11 }

12 foreach(child : root.getChildren()){

13 filterMatches(child, comparison);

14 }

15}
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17function Double weightedArithmeticMean(Double root,

Double children, Double parent){

18 return WR*root + WC*children + WP *parent;

19}

Listing 6: Pseudo-code of the Filtering phase pseudo-code

By considering the motivating example presented in Section 2,

the proposed semantic approach identifies correctly the 37 manual

correspondences and no false positives are found. Therefore, the

calculated matches are identical to the manual correspondences and

the first matches are exactly the same shown in Table 1.

7. VALIDATION
In order to validate our approach, we performed an experiment

using a matching case benchmark inspired by [27] beyond success-

ful tests on the motivating example presented in Section 2. This

choice was due to the impossibility to reproduce our example on

[27], and also to the opportunity of exploiting a larger experimental

set. Once completed the experiment, we have compared our results

to the principal state-of-the-art model matching tools. In detail, we

have considered EMFCompare and Atlas Model Weaver (AMW),

which represent the state-of-the-art matching tools in EMF. Fur-

thermore, in order to extend our evaluation to matching tools in

general, we have also included four existing approaches from the

field of ontology and schema matching [28, 29, 30, 31], and the

search-based approach proposed in [27]. Furthermore, we have

compared our approach against GAMMA and [27] with respect to

the difference computation performances.

In this section, we first describe the corpus of data used in our

experiment, as well as the measures used for the evaluation. Then,

we discuss the obtained results and compare them to the results

produced using the other approaches. We refer the interested reader

to [27] for further details about the results obtained by the other

tools.

7.1 The Model Exchange Benchmark
The benchmark considered for our experiment consists of five

structural modelling languages, namely UML 2.0, UML 1.4.2, Ecore,

WebML and EER, as shown in Table 3. These metamodels present

different characteristics with respect to both the size and used ter-

minology. Indeed, as far as the metamodel size is concerned, the

considered metamodels range from small-sized, e.g. EER, to large-

sized, e.g. UML 2.0. Furthermore, while Ecore and UML meta-

models use an object-oriented (OO) terminology, WebML and EER

use database (DB) terminology.

All the possible pairs of the considered metamodels are con-

sidered as input to calculate the matches by means of GAMMA,

EMFCompare, and the proposed approach named Semantic EMF-

Compare hereafter. In order to evaluate the quality of the produced

match results, manual correspondences are reused from the previ-

ous studies using the INRIA alignment format provided in [27].

7.2 Measures
In order to evaluate the results produced by our approach, we

consider them with respect to three different metrics from the in-

formation retrieval field: Precision, Recall and F-Measure. In this

context, the Precision measure denotes the percentage of correctly

matched elements with respect to all the proposed matchings as

shown in equation 2.

Precision =
|{RetrievedMatches} ∩ {RelevantMatches}|

|{RetrievedMatches}|
(2)

Metamodel Size Terminology

UML 2.0 CD 158 OO

UML 1.4.2 CD 143 OO

Ecore 83 OO

WebML 53 DB

EER 23 DB

Table 3: Metamodels of the Model Exchange benchmark

The Recall measure, instead, indicates the percentage of correctly

matched elements with respect to all the expected matchings. In

other words, it measures how many correct matchings have been

produced, as shown in equation 3.

Recall =
|{RetrievedMatches} ∩ {RelevantMatches}|

|{ReleventMatches}|
(3)

Finally, the F-measure combines both accuracy and recall in order

to get an equally weighted average value of the measures. The

corresponding formula is shown in equation 4.

F −Measure = 2 ∗
Precision ∗Recall

Precision+Recall
(4)

It is worth noting that all the considered evaluation measures pro-

duce a numerical result, ranging from 0 to 1, where 0 corresponds

to the worst and the 1 to the best possible value.

7.3 Results
In this section, we discuss the obtained results with respect to

Precision, Accuracy and F-Measure, first, and time performance,

then.

7.3.1 Quality Performance Results

Figure 3 illustrates the results obtained with our proposed method,

GAMMA and EMFCompare for the model exchange benchmark.

Each axis of the glyph represents a matching task involving two

metamodels from the initial set. The three metrics are represented

using three quantitative variables, i.e. Precision, F-measure, and

Recall.

Overall, our method provides the second best results with respect

to Precision, Recall and F-Measure. The benchmark evaluation al-

lows us to understand various characteristics about our solution,

hence possible future improvements. First of all, the obtained re-

sults allow us to observe that our solution usually produces bigger

number of matches than expected. In light of that using semantic

approach, our extension matches more terms (i.e. objects and item

by semantic extension and it does not by default implementation).

Therefore Precision has in some cases a low value whereas con-

sidering Recall there is a significant improvement. However the

F-measure has a better value than other tools analysed in [27].

Currently, the GAMMA [27] approach provides the best results in

the state-of-the-art with respect to Precision, Recall and F-Measure.

However, it is worth noting that GAMMA uses SBSE approaches

to solve the matching problem, therefore the algorithm has to be

initialised with a set of initial solutions which constitute the knowl-

edge base for the computation.

7.3.2 Time Performance Results

Considering the main ideas driving the creation of EMFCom-

pare, time performance is perhaps among the most important ones.

Unlike for other approaches like [27], indeed, the tool has been de-
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Recall Precision F-measureRecall Precision F-measure Recall Precision F-measure

a) Semantic EMFCompare b) GAMMA c) EMFCompare

Figure 3: Comparison of the results related to the metamodels in the Model Exchange benchmark

Figure 4: Execution time of Semantic EMFCompare

signed to provide a fast comparison algorithm, even at the price of

showing some degradation with respect to the Precision, Recall and

F-Measure of the produced results [6].

One of our main concerns was to introduce the semantic rea-

soning in the comparison process while keeping good time per-

formances at the same time. As shown in figure 5, our extension

successfully manages to perform a semantic reasoning while keep-

ing acceptable time performances. In detail, our method works in

terms of seconds as shown in 4, whereas for instance the solution

proposed in [27] works in terms of minutes2.

7.4 Discussion
The experience accumulated during the development of the pro-

posed semantic extension of EMFCompare and its validation phase

permits to draw some lessons learnt, which are detailed in this sec-

tion.

Providing the comparison engine with a semantic reasoning can

be done in a lightweight manner, as illustrated throughout this pa-

per. However, we have noticed that an increasing matching power

(thanks to the semantic reasoning) often comes to the price of an

increasing imprecision, and in particular to a growing amount of

false-positives or false-negatives that have to be traded-off. In fact,

on the one hand the semantic reasoning is able to detect much

more relationships between terms than a simple string compari-

2Please note that [27] comparison performances are rendered in a
logarithmic scale for the sake of space.

Figure 5: Comparison of execution time of GAMMA and Se-

mantic EMFCompare

son. On the other hand, the decomposition of entities’ names not

always produce terms known in the ontology exploited for the se-

mantic reasoning (in our case WordNet), thus decreasing the simi-

larity value. We tried to deal with this problem by tuning similar-

ity thresholds and extending the information about the context in

which the pair of elements is compared (i.e., including elements’

owners and relationships). Nonetheless we feel that a more exten-

sive experimentation is needed in order to achieve more reliable

performances.

The issues mentioned above become very evident when com-

paring metamodels, since they are not expected to represent se-

mantically related information, nor to contain concepts used in the

usual English language. In this scenario, setting “looser thresholds”

causes a lot of false-positives, while setting “tighter thresholds” re-

markably reduces the number of matches. Therefore, quite surpris-

ingly a pure syntactical comparison like the one computed by EM-

FCompare is able to provide on average more precise results than a

differencing algorithm including some semantic reasoning. In this

respect, even if comparing metamodels is a threat to validity, it is a

factor that negatively affects the performances of the proposed ex-

tension. Therefore, we believe that our extension should be tested

in the context of model comparison, given the higher probability

of having semantically close names for the compared entities. Fur-

thermore, we feel that the selection of the dictionary being used

with respect to the kind of models to be matched plays a key role.

As a side remark, during our tests we have experimented the
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lack of suitable mechanisms to generate differencing test cases. In

fact, in order to validate the performances of our (and also other

existing) differencing algorithm we would need an engine able to

automatically produce different versions of a model and the cor-

responding expected comparison results.The current practice is to

manually compare models and specify their differences, however

this approach becomes quickly unfeasible with the increasing size

of the input models. Alternatively, there exist tools and languages

to generate sets of large models like Ecore Mutator3 and Wodel

[32] able to produce and track model manipulations (or mutations),

however they typically work only on syntactical modifications. In

this respect, there is the need to extend the mutation engine with

the appropriate awareness of semantics variability, taking into ac-

count that there is always the risk of introducing some bias in the

expected differencing results.

8. RELATED WORKS
Despite model versioning has been recognised as a critical fea-

ture for the successful adoption of MDE, performing model com-

parison with acceptable performances, both time- and precision-

wise, is still an open research problem. In this respect, there exists

a large body of literature discussing solutions to model comparison.

A complete discussion of the existing literature goes far beyond the

scope of this work, the interested reader can refer to [17, 27] as ini-

tial papers from which explore the field further. For the purpose of

this paper, it is relevant to mention that in general approaches can

deal with syntax or semantic matching. In both cases the compari-

son can be enriched by structural reasoning that helps in enhancing

the precision of the matches [5]. Therefore, the extension proposed

in this work can be considered as semantic matching with structural

reasoning.

Other researchers have proposed semantic matching algorithms,

like [33, 34, 35], just to mention a few. These techniques share the

general approach of translating the syntax in a corresponding se-

mantic domain, in which the matching is performed. Notably, both

[34] and [35] rely on the behavioural semantics related to the com-

pared models, while [33] proposes to translate the compared (meta-

)models into corresponding ontologies and use ontology compari-

son algorithms. Our approach is closer to the last mentioned, since

it exploits WordNet database and the linguistic relationships be-

tween terms to identify the possible semantic matches between the

compared models. However, we do not consider the different meth-

ods as mutually exclusive, but rather potentially contributing to a

more precise matching result. The open research problem is to pro-

vide empirical/formal foundations on how to appropriately com-

bine the different techniques. As mentioned in this work, already

combining syntactical and ontological matching is not straightfor-

ward in terms of the choice of the similarity thresholds, the order

of the matching algorithms executions, and so forth.

The contribution by Kessentini et al. [27] is different from the

previous ones since it is based on a search-based solution. Even

if the precision of the matching can reach very good results, the

unavoidable learning phase and the computation time can represent

usability barriers of this and other similar solutions.

From a broader perspective, there exists a corpus of literature

devoted to the problem of semantic clustering code to automati-

cally extract trace links with requirements, documentation, design

models, and more in general for information retrieval [36]. These

techniques explore a set of artefacts, independently, with the goal of

identifying clusters (also called topics), their characteristics (well-

3https://code.google.com/archive/a/eclipselabs.org/p/
ecore-mutator

contained, cross-cutting, etc.), and the relationships among them.

Then, the clusters in different documents are compared to identify

matches [37]. Again, these approaches should not be conceived as

mutually exclusive with respect to the exploitation of the seman-

tic differencing illustrated in our proposal. On the contrary, they

can constitute a useful characterisation of models for enhancing

the precision of the matching algorithm.

9. CONCLUSIONS AND FUTURE WORKS
In this paper, we presented an extension of the EMFCompare

matching algorithm, which integrates the use of ontological infor-

mation in order to calculate the similarity among two given model

elements. The proposed solution represents an initial step towards

the integration of semantic reasoning in the EMFCompare plat-

form. Once presented our method, as well as the background no-

tions it relies on, we also presented the results obtained from its

application on the model exchange benchmark, which has been

borrowed from [27]. Our solution does not provide the best re-

sults with respect to precision, recall and F-measure. However, the

benchmark evaluation gives us useful information for possible fu-

ture improvements. Moreover, we have successfully achieved to

maintain fast time performance in our extension, therefore respect-

ing one of the most important principles behind EMFCompare.

In the near future, we plan to further extend the semantic rea-

soning until completely cover the whole match engine. The current

heuristics used in EMFCompare, indeed, are only reasonable when

considering different versions of the same models, whereas tend to

create inefficiencies whenever applied to models conforming to dif-

ferent metamodels. A possible solution to this inefficiency would

be to allow the user to integrate an ontological specification of the

differencing context, hence exploiting the consequent evaluations

on its content.

Furthermore, although WordNet has been used in this paper, we

have already defined our solution in order to be easily adaptable to

different kind of ontological specifications. However, we plan to

make our solution even more general in order to completely sepa-

rate the ontological reasoning from its source description. Finally,

it would be interesting to investigate the application of machine

learning techniques in this context.
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