

to improve robustness and effectiveness, developers must decide

between default in in-memory session state provider and cache

session. This scenario also requires model re-selection from

existing models of variant features.

Another typical scenario is adding new features. For example,
tenants may want to perform complex analysis on survey results.

Currently, the application stores survey answers in blob storage.

To provide the new feature, an SQL database (from different

models under Storage Type) is the best solution for applying

complex queries and join query. When adding a new feature,
developers must identify whether the new feature is common or

specific to certain clients. If the feature is common, the core UML

model will be updated. If the feature is variable, the core UML

model will remain the same and a model of variant feature for this

variable feature will be generated. At this point, the MATA
language detects relations and dependencies of the new feature to

other features. The SQL Database also needs partitioning to

support multi-tenancy. Thus, the developers must select one of the

different partitioning models for SQL databases. Moreover, a new

interface must be implemented to view and analyze survey data.

5. CONCLUSION
In this paper, we have proposed an integrated SPL and MDE

modeling approach to address design decision variability and
evolution concerns in multi-tenant SaaS cloud applications. We

have applied feature modeling concepts to identify variability in

implementation. The MATA language has been suggested to

manage variability, and to support customization and evolution.

Thus, the proposed approach allows features to be modeled
independently. Furthermore, conflicts in the application structure

and dependencies between models are detected. However, it

requires improvements to enable cloud application development

and multi-tenancy.

In our future work, we plan to enhance our approach by making

the MATA language applicable for multi-tenant SaaS cloud

applications and by developing a model to code transformation

prototype to transform composed models to source code. A case

study will be carried out to illustrate and evaluate the
implemented tool. Moreover, we will compare our approach with

other tools to identify benefits and drawbacks.

6. REFERENCES
[1] P. Mell, et al., “The NIST Definition of Cloud Computing”,

National Institute of Standards and Technology, Special

Publication 800-145, Bethesda, Maryland, 2011

[2] D. Betts, et al., “Developing Multi-Tenant Applications for

the Cloud on Windows Azure”, Microsoft Patterns and

Practices, 2013

[3] J. Guo, et al., “A framework for native multi-tenancy

application development and management”, Proceedings of

the 9th IEEE Conference on E-Commerce Technology and
the 4th IEEE Conference on Enterprise Computing, E-

Commerce and E-Services, pp. 551–558, 2007.

[4] M. Abu-Matar, et al., “Towards Software Product Lines

Based Cloud Architectures”, Proceedings of the IEEE

Conference on Cloud Engineering, 2014

[5] H. Gomaa, “Designing Software Product Lines with UML:

From Use Cases to Pattern-Based Software Architectures”,

Addison-Wesley Professional, 2004

[6] I. Sommerville, “Software Engineering”, Pearson, 2010

[7] K. Lee, et al., “Concepts and guidelines of feature modeling

for product line software engineering”, Proceedings of the

7th Conference on Software Reuse: Methods, Techniques,

and Tools, pp. 62–77, 2002.

[8] R. Mietzner, et al., “Variability modeling to support
customization and deployment of multi-tenant-aware

Software as a Service applications", Proceedings of the 2009

ICSE Workshop on Principles of Engineering Service

Oriented Systems, pp. 18-25, 2009
[9] S. Walraven, et al., “Efficient Customization of Multi-tenant

Software-as-a-Service Applications with Service Lines”,

Journal of Systems and Software, Vol. 91, pp. 48-62, 2014.

[10] A. Shahin, A “Variability Modeling for Customizable SaaS
Applications”, International Journal of Computer Science

and Information Technology, 6(5), pp. 39-49, 2014.

[11] I. Kumara, et al., “Sharing with a difference: Realizing

service-based SaaS applications with run-time sharing and

variation in dynamic software product lines”, IEEE

Conference on Services Computing, pp. 567–574, 2013
[12] A. Bergmayr, et al., “The Evolution of CloudML and its

Manifestations”, Proceeding of the 3rd Workshop on

CloudMDE, 2015

[13] A. Bergmayr, et al., “UML-Based Cloud Application
Modeling with Libraries, Profiles and Templates”,

Proceedings of the 2nd Workshop on CloudMDE, 2014.
[14] G. S. Silva, et al., “Cloud DSL: A Language for Supporting

CloudPortability by Describing Cloud Entities”, Proceedings

of the 2nd Workshop on CloudMDE, 2014.
[15] E. Cavalcante, et al., “Exploiting Software Product Lines to

Develop Cloud Computing Applications,” the 16th Software

Product Line Conference, 2012.

[16] P. Jayaraman, et al., “Model Composition in Product Lines

and Feature Interaction Detection Using Critical Pair
Analysis”, Conference on Model Driven Engineering

Languages and Systems, 2007

[17] F. Mohamed, et al., “SaaS Dynamic Evolution Based on

Model-Driven Software Product Lines”, Proceedings of the

IEEE 6th Conference on Cloud Computing Technology and

Science, 2014

64

