








to improve robustness and effectiveness, developers must decide 

between default in in-memory session state provider and cache 

session. This scenario also requires model re-selection from 

existing models of variant features.  

Another typical scenario is adding new features. For example, 
tenants may want to perform complex analysis on survey results. 

Currently, the application stores survey answers in blob storage. 

To provide the new feature, an SQL database (from different 

models under Storage Type) is the best solution for applying 

complex queries and join query. When adding a new feature, 
developers must identify whether the new feature is common or 

specific to certain clients. If the feature is common, the core UML 

model will be updated. If the feature is variable, the core UML 

model will remain the same and a model of variant feature for this 

variable feature will be generated. At this point, the MATA 
language detects relations and dependencies of the new feature to 

other features. The SQL Database also needs partitioning to 

support multi-tenancy. Thus, the developers must select one of the 

different partitioning models for SQL databases. Moreover, a new 

interface must be implemented to view and analyze survey data.  

5. CONCLUSION 
In this paper, we have proposed an integrated SPL and MDE 

modeling approach to address design decision variability and 
evolution concerns in multi-tenant SaaS cloud applications. We 

have applied feature modeling concepts to identify variability in 

implementation. The MATA language has been suggested to 

manage variability, and to support customization and evolution. 

Thus, the proposed approach allows features to be modeled 
independently. Furthermore, conflicts in the application structure 

and dependencies between models are detected. However, it 

requires improvements to enable cloud application development 

and multi-tenancy.  

In our future work, we plan to enhance our approach by making 

the MATA language applicable for multi-tenant SaaS cloud 

applications and by developing a model to code transformation 

prototype to transform composed models to source code. A case 

study will be carried out to illustrate and evaluate the 
implemented tool. Moreover, we will compare our approach with 

other tools to identify benefits and drawbacks. 
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