
Measuring Green Software Enginnering

Monitoring Software Energy Consumption
In the MEASURE ITEA 3 Project

Alessandra Bagnato, Marcos Aurélio Almeida da

Silva, Antonin Abherve

Softeam Research & Development Division

Paris, France

alessandra.bagnato@softeam.fr

Jérôme Rocheteau, Claire-Lise Pihery, Pierre Mabit

Institut Catholique d’Arts et Métiers

35 avenue du champ de Manœuvres, Carquefou, France

jerome.rocheteau@icam.fr

Abstract— This paper highlights the benefits within the

Green Computing metrics measurement context from the

MEASURE ITEA 3 project (Measuring Software Engineering)

Project French cluster. It presents the Structured Metrics

Meta-model (SMM) used as a standardized language and its

implementation within the Softeam’s Modelio modelling and

ICAM’s EMIT, a set of tools able to provide software power

and energy measurements, its result mapping into SMM and

the proof of its interoperability with Modelio and with all
MEASURE partner tools in the future.

Keywords—Green Computing, Metrics, Software
Sustainability, Green Measures.

I. INTRODUCTION

The goal of the MEASURE ITEA 3 (see [1] and [2]) is to
increase the quality and efficiency, and lower the costs and
time-to-market of software products in Europe. MEASURE
(Measuring Software Engineering) project (see [1] and [2])
will provide a toolset for future projects to properly measure
their quality and their impact and in particular to develop
methods and tools for analysing the big data produced by the
continuous measurement and the advanced analytics of the
measurement data enabled by the project.

The project will specifically focus on Green Computing
metrics as ICT carbon emissions increase continually these
past years. Therefore, an emerging trend in software
engineering consists in building energy efficient software.
Alongside investigating what is a performant or a
maintainable software for instance, the MEASURE project
aims at defining what is an energy-efficient software and
how to assert such a statement.

In this paper we analyse the green metrics contribution
carried out by the project. This paper focus in particular on
the MEASURE’s EMIT tools. The objective of these tools is
to monitor software energy consumption.

The Structured Metrics Meta-model (SMM) is used in
order to formally define measures and to represent
measurements related to these measures. Such a standardized
meta-model enables tool interoperability as their common
exchange language. It is presented in Structured Metrics

Meta-Model (SMM). Section 3 presents some Green
Computing metrics proposed throughout the MEASURE
project and explains the formalization of one example within
SMM while Sections IV provides an extract of the library of
green measures defined using the SMM standard. Sections V
to XI are dedicated to the MEASURE EMIT power
measurement toolset, its components, its data model, its
functionalities and its measurement mapping into SMM.
Some experiments are providing in order to asset its
reliability. Section XII concludes the paper.

II. STRUCTURED METRICS META-MODEL (SMM)

Most software system properties can be quantified with
the application measurement processes. OMG’s Structured
Metrics Meta-Model (SMM) supports the meta-model
agnostic definition of those measurement processes.

The SMM specification defines a meta-model for
representing measurement information related to any model
structured information with an initial focus on software, its
operation, and its design. SMM is an extensible meta-model
for exchanging both measures and measurement information
concerning artefacts contained or expressed by structured
models, such as MOF.

SMM includes elements representing the concepts
needed to express a wide range of diversified measures. The
specification does include a minimal library of software
measures, but it is not asserting that the listed measures
constitute standards themselves; these are supplied simply as
non-normative examples.

SMM is a specification for the definition of measures and
the representation of their measurement results. The measure
definitions make up the library of measures and that serves
to establish the specification upon which all of the
measurements will be based.

SMM is part of the Architecture Driven Modernization
(ADM) roadmap and fulfils the metric needs of the ADM
roadmap scenarios as well as other information technology
scenarios.

SMM specifies the representation of measures without
detailing the representation of the entities measured. SMM

mailto:alessandra.bagnato@softeam.fr
mailto:jerome.rocheteau@icam.fr
http://www.omg.org/spec/SMM/
http://www.omg.org/spec/SMM/
http://www.omg.org/spec/SMM/

anticipates that those entities are represented in other OMG
meta-models. Measures of software artefacts or their features
that are defined within the SMM, the Knowledge Discovery
Metamodel (KDM), the Abstract Syntax Tree Metamodel
(ASTM), another ADM roadmap meta-model, or another
OMG meta-model may arise as:

• Counts. (Lines of code measures exemplify the
mechanism.)

• Direct applications of named measurements. (One
such named measure is Cyclomatic Complexity.)

• Simple algebraic change of calibration of already
defined numeric measures (e.g., the translation to
‘choice points’ from Cyclomatic complexity).

• Simple algebraic aggregations of numeric artifact
features, including other measures, over sets of
software artifacts.

• Simple range-based grading or classification of
already defined numeric measures. (Cyclomatic
reliable/unreliable quadrants are one such grading.)

• Qualitative evaluations where the range of
evaluations can be mapped to a linear order.

Useful metrics must go beyond static (or dynamic) code
analysis and technical performance to include factors related
to information utility and acceptance of the system by the
organization(s) participating in an enterprise. To be objective
and repeatable, such metrics need to be based on technical
characteristics of the system. Given a meta-model
representation of such characteristics, the SMM will
facilitate the exchange of such measures [3]. Consistent with
other models defined by OMG, the SMM is defined using
the MOF meta-modeling language. As such it will
have a standard XML based representation presented by
XMI.

Consequently, the exchange of metrics defined by SMM
will be in the XMI. These models will, similarly, be
compatible with MOF repositories for storage and retrieval
by various tools. [3].

III. MEASURE GREEN COMPUTING METRICS

Green Computing metrics have been proposed in this
past decade. However, they mainly focus on hardware, based
on the power supply of such components and the carbon
footprint of the life cycle of these products. The few that
tackle software, strongly restrict application domains, for
instance to data centres, virtual machines or mobile
technology only. Furthermore, these approaches have been
based on power consumption at runtime, e.g., during
software execution according to some usage scenarios or use
cases. Indeed, all Green Computing metrics target users of
the devices or applications. As such, metrics are relevant for
choosing products with the smallest energy consumption and
answering the question: "which software products are
green". These metrics do not target software engineers and
do not answer the question "how to produce greener
software" [5]. The MEASURE project will strengthen the

concept of Green IT, as well as the research regarding energy
and smart systems. Within this section an overview of the
main green metrics that will be tackled. The modeling
formalisms supported by MEASURE will also investigate
the existing correlation between software development
measurements and the quality of end-user experience
providing cross-metrics feedback very much needed in
industry.

The following table shows the measure green metrics
currently under development, they purpose is to provide
input for finding relevant elements during the Testing phase,
to challenge the energy consumption of a given code against
computing-equivalent codes. The library takes into account
POWER, RAM, CPU, VOLTAGE, INTENSITY and
FACTOR.

Figure 1 : MEASURE Energy Monitoring Library

TABLE I. OVERVIEW OF MEASURE GREEN METRICS.

Green

Measure

name

Purpose

Purpose

EMIT
measuring

tool

SMM

Design

Energy

Efficiency

Statistical distribution of

measurands on energy

efficiency classes from A

to F based on their energy

consumption.

.

no

Average

CPU

Average CPU load of a

given measurand

EMIT Sigar

or Oshi
yes

Standard

Deviation

CPU

Standard deviation of the

CPU load of a given

measurand

EMIT Sigar

or Oshi yes

Minimum

CPU

Minimum CPU load of a

given measurand

EMIT Sigar

or Oshi
yes

Maximum

CPU

Maximum CPU load of a

given measurand

EMIT Sigar

or Oshi
yes

Average

RAM

Average RAM usage of a

given measurand

EMIT Sigar

or Oshi yes

Standard

Deviation

RAM

Standard deviation of tha

RAM usage of a given

measurand

EMIT Sigar

or Oshi yes

Minimum

RAM

Minimum RAM usage of a

given measurand

EMIT Sigar

or Oshi
yes

Maximum

RAM

Maximum RAM usage of a

given measurand

EMIT Sigar

or Oshi
yes

https://en.wikipedia.org/wiki/EU_energy_label

Green

Measure

name

Purpose

Purpose

EMIT
measuring

tool

SMM

Design

Average

Power

Average power of a given

measurand

Power_GUI,

Arduino_PO,

Peaktech_PA

yes

Standard

Deviation

Power

Standard deviation of the

power of a given

measurand

Power_GUI,

Arduino_PO,

Peaktech_PA

yes

Minimum

Power

Minimum power of a given

measurand

Power_GUI,

Arduino_PO,

Peaktech_PA

yes

Maximun

Power

Maximum power of a

given measurand

Power_GUI,

Arduino_PO,

Peaktech_PA

yes

Average

Voltage

Average voltage of a given

measurand

Power_GUI,

Arduino_PO,

Peaktech_PA

yes

Standard

Deviation

Voltage

Standard deviation of the

voltage of a given

measurand

Power_GUI,

Arduino_PO,

Peaktech_PA

yes

Minimum

Voltage

Minimum voltage of a

given measurand

Power_GUI,

Arduino_PO,

Peaktech_PA

yes

Maximum

Voltage

Maximum voltage of a

given measurand

Power_GUI,

Arduino_PO,

Peaktech_PA

yes

Average

Intensity

Average instensity of a

given measurand

Power_GUI,

Arduino_PO,

Peaktech_PA

yes

Standard

Deviation

Intensity

Standard deviation of the

instensity of a given

measurand

Power_GUI,

Arduino_PO,

Peaktech_PA

yes

Minimum

Intensity

Minimum instensity of a

given measurand

Power_GUI,

Arduino_PO,

Peaktech_PA

yes

Maximum

Intensity

Maximum instensity of a

given measurand

Power_GUI,

Arduino_PO,

Peaktech_PA

yes

Average

Factor

Average power factor of a

given measurand

Power_GUI,

Arduino_PO,

Peaktech_PA

yes

Standard

Deviation

Factor

Standard deviation of the

power factor of a given

measurand

Power_GUI,

Arduino_PO,

Peaktech_PA

yes

Minimum

Factor

Minimum power factor of

a given measurand

Power_GUI,

Arduino_PO,

Peaktech_PA

yes

Maximum

Factor

Maximum power factor of

a given measurand

Power_GUI,

Arduino_PO,

Peaktech_PA

yes

Section IV describe the currently available library of
Green measures specified and modelled with the structured
metrics metamodel

The examples in that section are the first building block
of the MEASURE project tool chain, the Modelio modeling
tool enabled with the SMM Module developed based on the
Structured Metrics Metamodel OMG Standard in Modelio’s
open source distribution to allow the specification of metrics
and in particular of green metrics and the exchange of
metrics within tools using XMI.

IV. LIBRARY OF GREEN MEASURES DEFINED USING THE

SMM STANDARD

This excerpt of our green measure example library shows
the CPU related metrics including average CPU, standard
deviation CPU minimum CPU or maximum CPU, defining
the % of CPU used in a Modelio SMM model.

SMM Measures are gathered according to the type of
measure that they are related to. For instance, the figure 2
and the figure 3 illustrate the group of measures around the
CPU load of measurands. In fact, a SMM direct measure
exists in that group and is linked with a unit of measure.
However, no one SMM direct measurement will be inserted
into the SMM Library of Green Measures as such
measurements correspond to raw measurements and provide
no information.

Figure 2: CPU metrics model modelled in Modelio SMM

Information is provided by analysis of these raw

measurements, The SMM CPU direct measure is then used

for defining some SMM collective measures that stands for

statistical measures with a SMM accumulator that ranges
over average, standard deviation, minim, maximum, etc.

 Figure 3: CPU Category Diagram, CPU associated

metrics modelled in Modelio SMM

These SMM collective measures are then linked to a
SMM measure binary relationship as its source and where
the target measure is defined by the SMM CPU direct
measure. The figure 4 shows this relationship.

Figure 4: Average CPU Measure Diagram

These SMM collective measures are inserted into the SMM

Library of Green Measures and could be referenced by

some SMM collective measurements. The latter correspond

to the results of statistical analysis mentioned above. They

provide information on measurands, for instance the average

CPU load, its standard deviation, its minimum and

maximum. A measure that stands for the CPU load area

would enrich these collective measures in order to provide

the CPU load over the time as the same way as the power

measure leads to a measure of energy i.e. the area of the

power over the time.

Figure 5: CPU Measure Diagram

Measurements of the CPU percentage can derive from tools

like Windows Perfmon.exe as in Figure 6 or from the de
MEASURE Energy MonIToring (EMIT for short) as

detailed in section V. Measurements for the RAM usage can

derive from that tools as well. These tools monitor the

computer activities i.e. its processes, their CPU load, their

RAM usage, their HDD access, their network bandwidth,

etc. However, measurements of the power, the intensity, the

voltage or the power factor derive from other kinds of tools

as detailed in section V. Such tools monitor the power of

computers i.e. their energy consumption.

Figure 6: W10 Perfmon.exe showing average, minimum

and maximum CPU %

V. Emit Api

Energy MonIToring (EMIT for short) is a set of tools that

aims at monitoring software energy consumption. It is

designed as network made of sensors and actuators and can

be seen as composed of 5 kinds of tools:

1. The 1st type of tool gathers web-services called

“observees”. They make possible to launch a

process on a computer from a given command line.

These tools then allow to launch a software on a

computer from a remote computer in order to

monitor its implementation. These tools are

mandatory for software energy monitoring as they
manage software executions.

2. The 2nd type of tool is HTTP services named

“power measurement observers”. They consists in

connected power or energy measurement

instruments. A measurement acquisition can be

remotely started, remotely stopped and the

measurement data can be retrieved once the

monitoring is achieved. These tools are mandatory

for software energy monitoring as they provide

energy measurements. However, their energy

footprint does not affect the energy consumption of

the monitored software as they do not need to be
installed on the computer that hosts the

“observees”.

3. As for the 3rd type of tool, HTTP services named

“computer activity observers”, they should be

installed on observed computers and then their own

energy footprint is monitored by power

measurement observers during a measurement

acquisition in which the computer activity observers

are involved. The latter consist in programs that

scan the operating system logs, directly or not

thanks to libraries. As the previous kind of

observers, they can be remotely started, remotely

stopped and the measurement data can be retrieved
once the monitoring is achieved. These tools are not

required for software energy monitoring on the first

step. However; computer energy consumption is

involves by activities such as RAM usage, CPU

load, HDD inputs and outputs, network bandwidth,

etc (see [12]).

4. The 4th type of tool corresponds to the web-services

base SCADA (Supervisory Control And Data

Acquisition) application itself. This sort of

application embeds HTTP clients that synchronize

the different registered “observees” and “observers”

for measurement acquisitions. These applications
also exposed the collected measurement data

throughout HTTP services in order to build third-

party tools for reporting or data analysis. These

exposed HTTP services correspond to a RESTful

API.

5. The 5th and last kind of tool is merely composed of

clients of EMIT SCADA applications e.g. graphical

user interface applications that enable to control any

SCADA systems that complies the previous

RESTful API.

EMIT is an extensible set of tools: it comes alongside an API
and some design patterns that allow developers to plug their

own equipment, devices, instruments, measures, etc.

VI. Emit Experimental Design

EMIT experimental design aims at monitoring software and

acquire measurements helpful to compute software energy

consumption. The Figure 7 : EMIT Experimental Design

describes it. This figure points out 2 kinds of networks: The

red network stands for the communication network i.e. here

the Ethernet network. The green network stands for the

electric network. Whereas the communication network is

fully distributed, the electric one is somehow controlled by

power measurement instruments. In fact, they are placed
between the electricity supplier (the grid) and the monitored

computers in order to monitor them. Moreover, they do not

have to monitor computers hosting the management system

whereas these computers require to be connected to the

communication network in order to launch measurements

and collect their results.

1. “Observees” are located on the four different

computers called CM1,…,CM4. Those computers

have been chosen because of the combinations

between two parameters: the operating system

(Linux or Windows) and the architecture (32 bits or
64 bits for example). These computers are

connected with EMIT throughout Ethernet.

2. “Power measurement observers” are provided by

three devices called Arduino_PO, Power_GUI,

Peakteck_PA in the Figure 7 : EMIT

Experimental Design. The latter is an industrial

power analyser able to monitor one power supply. It

outputs data every 300ms throughout a serial port.

As for Arduino_PO, it also broadcasts data on a

serial port but every 200ms. However, it consists of

a 3-way power measurement instrument that is

composed of voltage and intensity sensors and

controlled by an Arduino microcontroller. These
two devices are connected using serial ports to the

computer that owns the third observer Power_GUI

which is also composed of voltage and intensity

sensors but controlled by a National Instruments

data acquisition device. All of these power

observers can be controlled remotely using web

services located on the Power_GUI computer. And

they provide time series for the active power.

3. “Computer activity observers” are located on the

four computers called CM1,…,CM4. They provide

time series for CPU load and RAM memory used

currently; however, this can easily be extended in
future works. There exists two implementations that

are based on different Java libraries: Sigar [13] and

Figure 7 : EMIT Experimental Design

Figure 8 : EMIT Measurement Process

Oshi [14]. The latter are wrapped into web services

that start, stop monitoring and provide its data.

4. The EMIT SCADA application is a set of web

services that controls all these “observers” and

“observees” throughout HTTP requests send to the

corresponding observer or observee web services
that are hosted on computers CM1,…,CM4 and the

Power_GUI one. It requires that exactly one

“observee” is enabled at once; it allows none or

several observers and manage measurements as the

Figure 8 : EMIT Measurement Process shows:

Firstly, it starts the “observers”. It then waits for 5

seconds in order to monitor the target computer at

idle state. It launches the “observee” i.e. the

specified program on the remote computer. After

software executions stop, EMIT pauses 5 more

seconds before stopping the observers and

retrieving their measurement data. It finally stores

these data into a database.

5. These data are exposed to different EMIT clients

throughout web services. The latter also allow

clients to manage measurands i.e. monitored

software and to perform some measurements.
Currently, several EMIT command line clients have

been developed as well as a standalone Java

applications that renders measurement data thanks

to the XChart Java library [15].

For example, the Figure 9 : Measurement Data Example
shows a chart built on measurement data for a given
acquisition. No one analysis are performed by the EMIT
SCADA application. It merely consists in collecting data, not
analysing them. Analysis can be applied to measurement

data by retrieving them from the EMIT server (SCADA
application) and by providing the analysis result thanks to
web services (see IX).

VII. Data Model

EMIT data model focuses on measurements. In fact, the
central entity in the Figure 9 : Measurement Data Example
class diagram called Measurement references four other
entities:

1. The MeasurementSet entity that corresponds to
the set of measurements collected during one
measurement acquisition which is specified
firstly by a measurement timestamp thanks to its
measured attribute and secondly by a
measurement duration thanks to its so-called
attribute,

2. the Measure entity i.e. the type of measurement
that is defined by its name and its unit of
measure,

3. the Instrument entity that corresponds to the
observer which provides this measurement that
is defined by its URI identifier,

4. the Environment entity that corresponds to the
observee characteristics such as the operating
system and the computer architecture. Hence its
attribute names sys, arch and version.

The Measurement entity is defined by an attribute called
feature that corresponds to the name of this measurement
among all the measurements provided by its observer during
a single acquisition. This entity is also defined by an attribute

Figure 9 : Measurement Data Example

Figure 10 : EMIT Data Model

Figure 12 : EMIT Mapping Target Metamodel in SMM

path which corresponds to the file that contains this
measurement data. The latter are formatted as a list of key-
value pairs respectively made of long and double values.

EMIT data model is composed of two more entities:
Measurand and Observation. The first one corresponds to
the monitored software process specified by its command
line. The last entity makes possible to register some analysis
results (value) provided by third-party tools (provider) over a
given measurement. For instance, this could be used for
storing some mere statistics such as the average, the An
observation is related to a given measure that can be
different from that of its corresponding measurement.

VIII. Mapping from Emit to SMM

 Structure Metrics Metamodel (SMM, see Structured
Metrics Meta-Model (SMM)) has been design for
formalizing metrics, measures and measurements for any
given domain. EMIT data model as showed in Figure 10 :
EMIT Data Model doesn’t comply SMM as it has been
design to suit the measurement process which is devoted to
one measurand and which produces a set of measurements.
However, this data model can be embedded into a SMM
model as follows:

Every measurements of a given measurement set are sliced
according to the different instruments that provide these
measurements: each Measurement slice are then mapped into
a SMM observation where the whenObserved attribute
corresponds to the measured one of the measurement set and
where the tool attribute corresponds to the identifier of the
corresponding instrument. Therefore, each measurement of
such measurement slices is mapped into a SMM observed
measure.

Every measures related to these measurements are inserted
into a unique SMM library as a SMM direct measure.
Moreover, every measures related to an observation are
inserted into this SMM library as SMM collective measures

whose accumulator corresponds to the observation analysis.
Accumulator can range over several statistical functions such
as average, minimum, maximum, standardDeviation, etc.
Every collective measures own a measure relationship
(defined by a BaseNRelationship) between itself and the
direct measure of the measurement mapped measure. These
collective measures have to be synchronized between the
EMIT data model and that of SMM: it is required in order to
ensure the mapping compatibility between them. Finally,
each EMIT observation is mapped into a SMM collective
measurement which share its value attribute with the so-
called attribute of the EMIT observation. The measurand
attribute merely corresponds to the command attribute of the
measurand related to this observation throughout the
minimum or the maximum of the measurements data values.
measurement and measurement set. The Figure 12 : EMIT
Mapping Target Metamodel in SMM illustrates this mapping
from EMIT data model into that of SMM. The Figure 11 :
SMM Model shows the result of such a mapping rendering
with the SMM module in Modelio.

IX. SERVICE ORIENTED ARCHITECTURE

EMIT SCADA application is service-oriented: it provides

web services allowing third-party users or tools to manage

measurands, instruments and observations i.e. to create,

update or delete as well as to retrieve measurements, their

measures and their values. Available web services provided

by EMIT SCADA application are listed below:

 measurand/launch

This web service accepts POST requests which

content corresponds to a measurand formatted as
a JSON object, launches a measurement process

for this measurand and inserts a measurement

set and its underlying measurements generated

by the measurement process into the database.

Figure 11 : SMM Model

 measurand/list

This web service accepts GET requests and

provides the list of measurands stored in the

database in JSON format.

 measurand/create

This web service accepts POST requests which

content corresponds to a measurand formatted as

a JSON object and inserts this measurand into

the database.

 measurand/update

This web service accepts POST requests which

content corresponds to a measurand formatted as

a JSON object and modifies this measurand in

the database.

 measurand/delete

This web service accepts POST requests which

content corresponds to a measurand formatted as

a JSON object and removes this measurand from

the database.

 instrument/list
This web service accepts GET requests and

provides the list of instruments (observers,

observees) stored in the database in JSON

format.

 instrument/create

This web service accepts POST requests which

content corresponds to an instrument formatted

as a JSON object and inserts this instrument into

the database

 instrument/update

This web service accepts POST requests which
content corresponds to an instrument formatted

as a JSON object and modifies this instrument in

the database

 instrument/delete

This web service accepts POST requests which

content corresponds to an instrument formatted

as a JSON object and removes this instrument

from the database.

 measurementset/list

This web service accepts POST requests which

content corresponds to a measurand formatted as

a JSON object and provides the list of

measurements sets related to the given

measurand in JSON format.

 measurement/list

This web service accepts POST requests which
content corresponds to a measurement set

formatted as a JSON object and provides the list

of measurements related to the given

measurement set in JSON format.

 measurement/measure

This web service accepts POST requests which

content corresponds to a measurement formatted

as a JSON object and provides its measure in

JSON format.

 measurement/instrument

This web service accepts POST requests which
content corresponds to a measurement formatted

as a JSON object and provides its instrument in

JSON format.

 measurement/environment

This web service accepts POST requests which

content corresponds to a measurement formatted

as a JSON object and provides its environment

in JSON format.

 measurement/data

This web service accepts POST requests which

content corresponds to a measurement formatted
as a JSON object and provides its data in JSON

format.

 observation/list

This web service accepts POST requests which

content corresponds to a measurement formatted

as a JSON object and provides the list of the

observations related to this measurement in

JSON format.

 observation/create

This web service accepts POST requests which

content corresponds to an observation formatted

as a JSON object and inserts this observation
into the database.

 observation/update

This web service accepts POST requests which

content corresponds to an observation formatted

as a JSON object and modifies this observation

in the database.

 observation/delete

This web service accepts POST requests which

content corresponds to an observation formatted

as a JSON object and removes this observation

from the database.
As EMIT service-oriented architecture suggests, the single

entry point is the first web service measurand/list that

retrieves the measurands from the database. And the main

entity is the Measurement one as it is involved as the input

of 6 web services.

The set of web services that manage the Instrument entity is

devoted for controlling the EMIT experimental design

configuration.

The set of web services that manage the Observation entity

is dedicated to the interoperability with analysis algorithms.

X. HANOÏ TOWER’S USE CASE

Hanoï Tower has been investigated in [8] in order to
compare the energy efficiency of several programming
languages. Different implementations of the Hanoï Tower
recursive algorithm has been compared (including C++,
Java, OCaml) and measured using the PowerAPI power
measurement instrument. Each implementation has been
monitored over some executions with the parameter for the
number of disks sets to 15. It led to the conclusion that
optimized C++ implementations with the Java one were the
ones that consumes the less energy overall.

The experiment has been reproduced by EMIT in order
to prove its reliability. Six different implementations of
Hanoï Tower has been rewritten as the original ones were
not provided alongside [8]. They consists in one Java
implementation, 3 C++ implementations (one with none
option, the other with the O2 option and the last with the O3
one), one OCaml implementation and one Python one. The
experiment was conducted on the same architecture, with the
same operating system. 50 measurement processes has been
performed by measurands or implementations. Power
measurements were achieved by the same instrument: the
Power_GUI observer which is the most reliable instrument
available on EMIT at that time. Every measurements have
been verified according to the algorithm detailed in [5] that
makes possible to detect disturbances happening before,
during and after measurement processes.

Results on that clean sets of measurements show that the
average energy consumption of C++ implementations is the
lowest of all implementations as well as [8] presented. In

fact, the C++ implementation either with the O2 or with the
O3 options has an average energy consumption of 125.4
nano-Joules. In the same way, the OCaml implementation
leads to an average energy consumption of 178.4 nano-
Joules whereas that of Python has an average energy
consumption of 203.6 nano-Joules. These results could
match those of [8] as well as they applied a scale on their
results with PowerAPI. The surprising result concerns the
Java implementation which average energy consumption is
measured at 421.5 nano-Joules. Such a result seems in
contradiction with [8]. However, the Java implementation
has been measured in launching the JVM each time which
leads to a constant added energy consumption (see [9]). This
convicts us to provide another Java implementation
embedded into a web service in order to avoid such an extra
consumption.

XI. RELIABILITY OF POWER MEASUREMENT

INSTRUMENTS

EMIT reliability is mainly supported by the reliability of
its observers and by its power measurement one. In fact,
there is neither scientific nor technical bottleneck over the
observee or the SCADA application as the first tool merely
launches a command-line process and, as the second one
synchronizes observers, observee and store measurement
data. EMIT reliability lies in its measurements data provided
by its measurement instrument. Moreover, as EMIT aims at
being a software energy consumption monitoring tool, its
reliability depends that of its power measurement
instruments.

Reliability of such instruments (composed of voltage
sensor and current sensors) is measured throughout their
results i.e. theirs measurements. The reliability of the power
measurements is defined by the measurement uncertainty.
Monitoring techniques for power measurements are
explained in [9]: a standard design consists in a transducer
that sends a constant input signal which is monitored by
measurement instruments. The uncertainty is then defined as
the relative standard deviation over this constant.

For instance, the Arduino_PO uncertainty is ±3.8%
which is close to its theoretical error margin. In fact, error
margin of its voltage sensor is ± 2% and that of its current
sensor ± is 1.5%; this then leads to a sensor error margin of
±3.5%.

Experiments however reveal the influence of temperature
on the Arduino_PO reliability. In fact, external parameters
that can produce some noise are identified in [10] such as the
variation of temperature, that of humidity as well as the
vibrations of the instrument itself. This should be taken into
account for further investigations on power measurement
reliability.

XII. ENERGY FOOTPRINT OF COMUPTER ACTIVITY

OBSERVERS

Another feature required for ensuring some reliable and
fine-grained power measurements consists in the energy
footprint of computer activity observer. In fact, as such

observers are installed on monitored computers, their own
activity is monitored by power measurement observers. It is
then important to know how much power they require in
order to obtain accurate power measurements of measurands.

The assessment protocol is the quite same as that of the
power measurement instruments. A constant-like signal is
monitored by the means of a computer at idle state i.e. no
process is running but those of the operating system. The
same power measurement observer monitors all
measurement processes in order to provide this computer
energy consumption and thus the computer activity observer
energy footprint. As 2 computer activity observer are yet
provided within EMIT, the first based-on the Sigar Java
library [13], the second with the Oshi one [14], 4 use-cases
have to be distinguished. The first use-case consists in
monitoring the both observers, the second and the third in
monitoring only one of thm and the last in monitoring the
computer without any of these two observers. 50
measurement processes are performed per use-case.

These experiment results show that measurements
without any computer activity observer running yield an
average power of 46.1W. This average power sensitively
raises to 72.7W with the Oshi-based computer activity
observer whereas it raises up to 75.5W both with the Sigar-
based observer and with these two observers running. These
results point out the huge difference between the computer
energy computer consumption with or without an observer.
Moreover, the difference between energy consumptions with
the first or the second observer is tiny. The surprising results
could mean that it will be difficult to draw out software
energy consumption from the computer overall energy
consumption while some computer activity are running. This
requires us to elaborate an analytic method to correlate
energy consumption and computer activity involved by a
software execution from two disjoints set of measurements
i.e. acquired during different measurement processes.

XIII. CONCLUSION AND FUTURE WORK

MEASURE will deliver tools to continuously compare
runtime production performance with energy consumption.
The results of MEASURE will contribute, during and
beyond the duration of the project, to both research and
education programs in Computer Science, and specifically
the Track in Software Engineering and Green IT. The IT
market in Europe will need computer scientists for at least
the coming ten years; that of software engineer is the top-1
profession worldwide since numerous years; competencies to
measure the quality of complex software will become
increasingly crucial for the software industry, and in all top
sectors where the role of software is crosscutting and
pervasive. Within the MEASURE platform the French
cluster will contribute green metrics for ensuring software
quality, such definitions will be done using the SMM
specification language implemented in MEASURE [6].

ACKNOWLEDGMENT

 The research leading to these results was partially
funded by the ITEA3 project 14009, MEASURE.

REFERENCES

[1] MEASURE project web site, http://measure.softeam-rd.eu

[2] MEASURE project description, https://itea3.org/project/measure.html

[3] Structured Metrics Meta-model™ (SMM™) Version 1.1.1. April

2016, http://www.omg.org/spec/SMM/1.1.1.

[4] MEASURE 14009 Measuring Software Engineering, Softeam. ITEA
Magazine June 2015, n° 21 pages 25-26, Juin 2015. Available at

https://itea3.org/itea-magazine.html

[5] Rocheteau, Jérôme and Gaillard, Virginie and Belhaj, Lamya, How
Green Are Java Best Coding Practices, SMARTGREENS 2014 -

Proceedings of the 3rd International Conference on Smart Grids and
Green IT Systems, Barcelona, Spain pages 235--246

[6] Modelio, https://forge.modelio.org/projects/smm

[7] Structured Metrics Meta-model, http://www.omg.org/spec/SMM/

[8] Noureddine, Adel and Bourdon, Aurélien and Rouvoy, Romain and
Seinturier, Lionel , A Preliminary Study of the Impact of Software

Engineering on GreenIT - Proceedings of the First International
Workshop on Green and Sustainable Software, June 2012, Zurich,

Switzerland. pp.21-27, 2012.

[9] An Energy Consumption Model for An Embedded Java Virtual
Machines. S. Lafon, 2006.

[10] Rubén, Saborido and Venera, Arnaoudova and Giovanni, Beltrame

and Foutse, Khomh and Giuliano, Antoniol, On the Impact of
Sampling Frequency on Software Energy Measurements, PeerJ

PrePrints, Tech. Rep., 2015.

[11] J. Rocheteau, “Energy Wasting Rate as a Metrics for Green
Computing and Static Analysis,” in MegSuS 2015 - Proceedings of

2nd International Workshop on Measurement and Metrics for Green
and Sustainable Software, Cracow, Poland, N. Condori-Fernandez, G.

Procaccianti, C. Calero, and A. Bagnato, Eds., oct 2015.

[12] A. Noureddine, R. Rouvoy, and L. Seinturier, “A review of energy
measurement approaches,” ACM SIGOPS Operating Systems

Review,vol. 47, no. 3, pp. 42–49, 2013.

[13] Sigar library, https://support.hyperic.com/display/SIGAR/Home.

[14] Oshi library, https://github.com/dblock/oshi.

[15] XChart library, http://knowm.org/open-source/xchart.

http://measure.softeam-rd.eu/
https://itea3.org/project/measure.html
http://www.omg.org/spec/SMM/1.1.1
https://t.co/UqNvZwe8gw
http://www.omg.org/spec/SMM/
https://support.hyperic.com/display/SIGAR/Home
https://github.com/dblock/oshi
http://knowm.org/open-source/xchart

