
Neural Networks for Recognition of Semiographic
Chants

Andrey Philippovich1 and Boynov Maxim2

1 University of mechanical engineering, Moscow,Russia,
aphilippovich@it-claim.ru,

2 Bauman Moscow State Technical University, Moscow, Russia,
mboynov@it-claim.ru

Abstract. The paper presents research on the problem of recognition of
signs applied to the analysis of basic units of ancient Russian chants. For
testing, we take two types of deep neural networks: Back Propagation
Neural Network (BPNN) and Convolution Neural Network (CNN). We
investigate main features of the chant units and the properties of the
networks to choose the best structure and algorithm. The results provide
an analysis of accuracy for both approaches used in solving this particular
task.

Keywords:Image Recognition, Neural Networks, Deep Learning, Semiog-
raphy, BPNN, CNN, Ancient Russian Musical Manuscripts, Znamenny
Notation.

1 Introduction

One of the most important and prominent tasks in the study of ancient Russian
culture is the exploration of melodic content in vocal music manuscripts from the
XII-XVII centuries. The melodies in these books are written using special musical
structures that evolved in Russia over the centuries. The concept «semiography»
is understood to mean the conventionally accepted methods of musical writing
and expression of certain musical sounds and how they are related. Fig. 1 shows
a fragment of a semiographic chant.

Fig. 1. The special type of marks “Pometa”

Music chants written by Znamenny Notation contain rows of semiographic
signs (znamyas, flags) and rows of words divided by syllables. Every semiographic
sign has special type of marks “Pometa”. These marks indicate the duration
and amplitude of the music [1]. The paper presents research on the problem of
recognition of these marks with artificial deep neural networks. The novelty of
the article is to present processing algorithms and train networks on obtained
images after processing algorithms.

2 Materials and methods

2.1 Dataset

There are seven most common types of pometas (see Table 1). Dataset is gen-
erated by our program and includes 488 images. It was randomly divided into 2
separate sets: training and test. The training set had 70 percents of the exam-
ples and the remaining 30 persents formed test set. Program automatically cuts
pometas from full image. Fig. 2 shows how program handles fragment of image.
At first the program cuts the characters using an algorithm developed by us.
The essence of the algorithm is to extract the image area and calculate standard
deviation3in this area. If the value is greater than the value specified by us on
the next layer of all the pixel values fall, if not then the next layer gets nothing.
After this treatment, there is a noise that is removed by another algorithm is
based on identifying the character contour. If the character contour size more
than a certain value, pixels inside the contour fall to the next layer.

Fig. 2. A semiographic chant

The table below presents the number of examples of each type in the training
and test sets.

For our neural networks, we create program to convert images from JPG for-
mat to “MNIST”4 one. MNIST is a simple computer vision dataset on which are
3 http://www.odelama.com/data-analysis/How-to-Compute-RGB-Image-
Standard-Deviation-from-Channels-Statistics/

4 http://yann.lecun.com/exdb/mnist/

Table 1. The list of pometas

Pometa С Р Н М П Г В
Training set 49 104 59 84 49 11 22
Test set 14 31 17 25 14 3 6

based the recognition problem. The current best error rate on the MNIST digit-
numberrecognition task (<0.3) approaches human performance [6]. The data is
stored in a very simple file format designed for storing vectors and multidimen-
sional matrices. All the integers in the files are stored in the “MSB first (high
endian) format”5 used by most non-Intel processors. Users of Intel processors and
other low-endian machines must flip the bytes of the header. There are four files:
trainingsetimages, trainingsetlabels, testsetimages, testsetlabels. Table 2 and
Table 3 shows structure of these files.

Table 2. Training set label file / test set label file

Offset Type Value Description
0000 32 bit integer 0x00000801(2049) magic number(MSB first)
0004 32 bit integer 488/110 number of items
0008 unsigned byte 0...6 label
0009 unsigned byte 0...6 label
...

Table 3. Training set image file / test set image file

Offset Type Value Description
0000 32 bit integer 0x00000803(2051) magic number(MSB first)
0004 32 bit integer 488/110 number of images
0008 32 bit integer 28 number of rows
0012 32 bit integer 28 number of columns
0016 unsigned byte 0. . . 255 pixel
0017 unsigned byte 0. . . 255 pixel
...

Pixels are organized row-wise. For our experiments we have used pixels with
values from 0 to 255. 0 means background (white), 255 means foreground (black).

5 https://en.wikipedia.org/wiki/Most_significant_bit

2.2 Hardware and Software Configurations

In this article used the computer with 8GB Ram DDR3 on which the OS Mi-
crosoft Windows 8.1 and OS Ubuntu 15.04 is installed. It has a processor Intel
Core i7-970 and videocard Radeon R280x. Also, for a machine learning used
library known as TensorFlow6. Using TensorFlow makes it easy to implement
backpropagation for convolutional neural networks, since it automatically com-
putes all the mappings involved. It is also quite a bit faster than other libraries,
and this makes it practical to train more complex networks. In particular, one
great feature of TensorFlow is that it can run code on either a CPU or, if avail-
able, a GPU. Running on a GPU provides a substantial speedup and, again,
helps make it practical to train more complex networks. alculations are per-
formed without using the GPU and computing time is less than 10 minutes.

3 Back Propagation Neural Network (BPNN)

The structure of our BPNN7 is described in fig. 3. Our net consists of three
layers: an input layer, a hidden layer and an output layer. The input layer has
784 units, or neurons. Hidden layer has 625 and the output 7 units.

Fig. 3. BPNN structure

The standard way to model a neuron’s output f as a function of its input x is
with f(x) = tanh(x). In terms of training time with gradient descent, these sat-
urating nonlinearities are much slower than the non-saturating nonlinearity f(x)
= max(0, x). Following Nair and Hinton [3], we refer to neurons with this non-
linearity as Rectified Linear Units (ReLUs). Deep convolutional neural networks
6 https://www.tensorflow.org
7 https://en.wikipedia.org/wiki/Backpropagation

with ReLUs train several times faster than their equivalents with tanh units.
Two additional major benefits of ReLUs are sparsity and a reduced likelihood of
vanishing gradient. One major benefit is the reduced likelihood of the gradient
to vanish. This arises when a>0. In this mode, the gradient has a constant value.
In contrast, the gradient of sigmoids becomes increasingly small as the absolute
value of x increases. The constant gradient of ReLUs results in faster learning.
The other benefit of ReLUs is sparsity. Sparsity arises when a<=0. The more
such units that exist in a layer the more sparse the resulting representation.
Sigmoids on the other hand are always likely to generate some non-zero value
resulting in dense representations. Sparse representations seem to be more ben-
eficial than dense representations. We are not the first to consider alternatives
to traditional neuron models in CNNs. For example, Jarrett et al. [7] used the
nonlinearity f(x) = |tanh(x)|. As the cost function, was chosen cross-entropy
function. Learning rate of algorithm was 0.001. Convolutional Neural Networks
are very similar to ordinary Neural Networks. They are made up of neurons
that have learnable weights and biases. Each neuron receives some inputs, per-
forms a dot product and optionally follows it with a non-linearity. The whole
network still express a single differentiable score function: From the raw image
pixels on one end to class scores at the other. And they still have a loss function
(e.g. SVM/Softmax) on the last (fully-connected) layer and all the tips/tricks
we developed for learning regular Neural Networks still apply.8 Structure for our
network we can see in fig. 4. Input layer has size 28x28 pixels and value of each
pixel can take value 0 or 1 after processing the initial image.

Fig. 4. Convolutional Neural Network structure

3.1 Parameters of convolution network

First parameter is the number of convolutional layers. The more convolutional
layers the better (within reason, as each convolutional layer reduces the number

8 http://cs231n.github.io/convolutional-networks/

of input features to the fully connected layers. After about two or three layers the
accuracy gain becomes rather small so we need to decide what is more important:
generalization accuracy or training time. All image recognition tasks are different
so the best method is to simply try incrementing the number of convolutional
layers one at a time until we are satisfied by the result.

Second parameter is the number of hidden layers. The number of required
hidden layers depends on the intrinsic complexity of dataset, this can be under-
stood by looking at what each layer achieves:

– Zero hidden layers allow the network to model only a linear function. This
is unsuitable for most image recognition tasks.

– One hidden layer allows the network to model an arbitrarily complex func-
tion. This is suitable for nearly all image recognition tasks.

– Theoretically, two hidden layers offer little benefit over a single layer, how-
ever, in practice especially complex tasks may find an additional layer ben-
eficial. This should be treated with caution, as a second layer can cause
over-fitting. Using more than two hidden layers is almost never beneficial9.

Third parameter is the number of nodes per hidden layer. There is no formula
for deciding upon the number of nodes, it is different for each task. A rough guide
to go by is to use a number of nodes 2/3 the size of the previous layer, with the
first layer 2/3 the size of the final feature maps. This however is just a rough
guide and depends again on the dataset. Another commonly used option is to
start with an excessive number of nodes, then to remove the unnecessary nodes
through pruning. For better recognize images input layer has padding.

Fourth parameter is the numbers of pooling layers. Pooling layers in CNNs
summarize the outputs of neighboring groups of neurons in the same kernel map.
Traditionally, the neighborhoods summarized by adjacent pooling units do not
overlap (e.g.,[8, 7, 9]). To be more precise, a pooling layer can be thought of as
consisting of a grid of pooling units spaced s pixels apart, each summarizing a
neighborhood of size zz centered at the location of the pooling unit. If we set
s = z, we obtain traditional local pooling as commonly employed in CNNs. If
we set s < z, we obtain overlapping pooling.

3.2 Dropout

Combining the predictions of many different models is a very successful way to
reduce test errors [10, 11], but it appears to be too expensive for big neural
networks that already take several days to train. There is, however, a very effi-
cient version of model combination that only costs about a factor of two during
training. The recently-introduced technique, called “dropout” [13], consists of
setting to zero the output of each hidden neuron with probability 0.5. The neu-
rons which are “dropped out” in this way do not contribute to the forward pass

9 http://stackoverflow.com/questions/24509921/how-do-you-decide-the-
parameters-of-a-convolutional-neural-network-for-image-cla

and do not participate in backpropagation. So every time an input is presented,
the neural network samples a different architecture, but all these architectures
share weights. This technique reduces complex co-adaptations of neurons, since
a neuron cannot rely on the presence of particular other neurons. It is, therefore,
forced to learn more robust features that are useful in conjunction with many
different random subsets of the other neurons [12]. We don’t use dropout because
our training time is acceptable.

4 Results

Table 4 includes percentage of correct answers of test images of all types of
networks. Both the network recognizes all images from the test sample correct.
BPNN has 494375 weights to train and CNN has 6848, so in this case better
to use CNN network. The best way to find a suitable network layout is literally
to perform many trial and error tests. There is no one-size-fits-all network, and
only you know the intrinsic complexity of your dataset. The most effective way
of performing the number of necessary tests is through some form of cross vali-
dation [4]. Compare our result with the results of the article «Neural Models for
Recognition of Basic Units of Semiographic Chants "[5].

Recall what result was obtained in this article. Initially, they manually cropped
the pometas from chant manuscripts. In the next step removed noise and extra
white space from the images. Then automatically extracted 10 geometrical fea-
tures - number of intersections in the horizontal and vertical planes. Then they
applied multidimensional scaling technique to project 10 dimensions on the 2D
plot and added extra features to improve the clusterization rate. Finally, each
pometa is described as a vector with 13 dimensions (5+5+3). For example, a vec-
tor representation of the pometa "M" might be xi = (1; 2; 2; 2; 1; 1; 1; 1; 1; 1; 1; 4; 0; 0).

Table 4. Results table

MLP PNN CNN BPNN
Multilayer
Perceptron

Probabilistic
Neural Net-
work

Convolution
Neural Net-
work

Back Propa-
gation Neural
Network

0.92 0.93 1 1

As we can see, CNN and BPNN have more answers that are correct but to
obtain this result the network needs more time to train, because they have more
parameters to train. Table 5 shows accuracy per each pometa.

So as we can see accuracy of pometas "H" and "П" only are different from
one. This can be explained by the fact that they are very similar.

Table 5. Accuracy per each pometa

MLP PNN CNN BPNN
С 1 1 1 1
Р 1 1 1 1
Н 0.88 0.87 1 1
М 1 1 1 1
П 0.96 0.97 1 1
Г 1 1 1 1
В 1 1 1 1

5 Conclusion

During our research, we have developed two algorithms to processing image and
compared four types of neural networks. We have achieved excellent accuracy
image recognition. So our program itself can define pometas and translate them
into a digital format. Further it is possible to improve and to determine not
only the pometas but also others symbols. This program is easy to understand
because there are not so many parameters to change.

Bibliography

[1] Philippovich, A.Yu., Danshina, M.V., Golubeva, I.V. Editing and represen-
tation of ancient Russian semiographic chants on the web. In: Analysis of
Images, Social Networks and Texts / Ed. by Dmitry I. Ignatov, Mikhail Yu.
Khachay, Alexander Panchenko et al. — Springer International Publishing,
2014. — Vol. 436 of Communications in Computer and Information Science.
— pp. 66-77.

[2] Philippovich A.Yu, Golubeva I.V., Danshina M.V. Semiotic system of musical
texts In: Supplementary Proceedings of the 3rd International Conference on
Analysis of Images, Social Networks and Texts (AIST’2014). — Vol. 1197.
— Yekaterinburg, Russia : CEUR-WS.org, 2014. — pp. 28–34.

[3] Vinod Nair and Geoffrey Hinton Rectified linear units improve restricted
Boltzmann machines. ICML.2010.

[4] Devijver, Pierre A.; Kittler, Josef Pattern Recognition: A Statistical Ap-
proach. London, GB: Prentice-Hall.1982

[5] Vylomova, E.A., Philippovich, A.Yu., Danshina, M.V., Golubeva, I.V.,
Philippovich, Yu.N. Neural models for recognition of basic units of semio-
graphic chants.In: Analysis of Images, Social Networks and Texts / Ed. by
Dmitry I. Ignatov, Mikhail Yu. Khachay, Alexander Panchenko et al. —
Springer International Publishing, 2014. — Vol. 436 of Communications in
Computer and Information Science. — pp. 249-254.

[6] D. Cire¸san, U. Meier, and J. Schmidhuber. Multi-column deep neural net-
works for image classification. Arxiv preprint arXiv:1202.2745, 2012.

[7] K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, and Y. LeCun. What is the best
multi-stage architecture for object recognition? In International Conference
on Computer Vision, pages 2146–2153. IEEE, 2009.

[8] Y. LeCun, K. Kavukcuoglu, and C. Farabet. Convolutional networks and
applications in vision. In Circuits and Systems (ISCAS), Proceedings of 2010
IEEE International Symposium on, pages 253–256. IEEE, 2010.

[9] D. Cire¸san, U. Meier, and J. Schmidhuber. Multi-column deep neural net-
works for image classification. Arxiv preprint arXiv:1202.2745, 2012.

[10] R.M. Bell and Y. Koren. Lessons from the netflix prize challenge. ACM
SIGKDD Explorations Newsletter, 9(2):75–79, 2007.

[11] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[12] A.Krizhevsky, I.Sutskever, Geoffrey E. Hinton ImageNet Classification with

Deep Convolutional Neural Networks
[13] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R.R. Salakhut-

dinov Improving neural networks by preventing co-adaptation of feature de-
tectors. arXiv preprint arXiv:1207.0580, 2012.

