
Branching Alignment based Synthesis of Regular
Expressions

Andreas Scherbakov andreas@softwareengineer.pro

The University of Melbourne

Abstract. We propose a novel Multiple Sequence Alignment algorithm
which is able to build an optimized branching graph given a set of positive
matching sample strings. The algorithm is principally based on Minimum
Edit Distance approach being applied incrementally. However, we essen-
tially extended the set of edit operations. The newly added operations
allow implementing an acyclic graph drawing feature. The feature yields
a better visual and appropriate representation of partial alignment gaps
between sample strings. For instance, it may produce an /abc|de[fg]/

regular expression from a set of "abc", "def", "deg" strings. For fur-
ther optimization, we adjust edit penalties based on character class hi-
erarchy. The algorithm may be used in Bioinformatics as well as for
extracting Regular Expressions (RE, patterns) from sets of observed or
prospective documents (that may be useful in Web data mining, Spam
filtering, RE design advisory tools and so on). This paper also considers
integration of the proposed algorithm into a full stack Regular Expression
extraction flow, particularly, in conjunction to Repetition detection.

Keywords: Regular expression, Sequence, Alignment, Multiple Sequence
Alignment, Alignment Gap, Regular expression synthesis, Regular ex-
pression extraction, Pattern extraction, Hammock graph, Branching Reg-
ular Expression, Edit Distance, Character class

1 Introduction

Regular expressions (RE) are used widely in various applications for the text
data processing. While in many cases the pattern a developer or analyst intends
to establish is clear and formally well defined, there are many areas where reg-
ular expressions used to recognize and mine a piece of text that is similar to
some sample [6]. Examples are Web data mining, Spam filtering, Bioinformat-
ics, State machine analysis and plenty of others. In these cases building and
testing a proper RE becomes technically challenging. Algorithms that generate
a RE that matches large number of samples are of high demand in these areas.
Also, such algorithms may provide priceless help to those application developers
who want to obtain necessary RE patterns just by supplying several matching
samples rather than by deepening into RE building details [7]. There exist a
lot of software tools aiding the regular expression building of blocks and testing
but few applications that generate a RE from samples. Examples of the latter

2

presented in [11],[2],[4],[3] employ genetic algorithms or Machine Learning ap-
proaches directly to the block composition. In order to take an advantage of such
an universal approach, (1) one needs a big bunch of samples, as every possible
usage of building block adds a feature while the number of test examples should
be sufficient to learn efficiently against that number of features [1]; (2) a set of
negative examples should be provided as well as a set of positive ones which of-
ten does mean extra human work in designing negative samples. Also, character
abstraction rules are mostly beyond user’s control.

There are approaches that attempt to build an optimal automaton to sat-
isfy a given input sequence [5]. They do produce regular expressions solely of
positive samples. However, they are focused on repeated subsequence extraction
while don’t mind possible alignments and splitting branches for more neat rep-
resentation. In this paper we propose an algorithm that performs alignment and
partial join of input samples. Please note that the repetition extraction itself is
generally beyond our discussion scope here, although being a part of the pro-
posed technique. In a short word, the new algorithm performs fuzzy alignment
of samples and produces branches while leaving the repetition extraction to an
external method.

Our major motivation was producing regular expressions for advising pro-
grammers and users and for assisting human’s work in areas where a content
schema isn’t much strict and clear. Following this, we pay attention to make a
RE concise while adjustable both in terms of look and feel and of degrees of
freedom (perplexity).

2 Representation of Regular Expressions

2.1 Hammock Graph

1 2

4

3

5

6
a

b
[ij]

\d

k 0

Non-exhaustive examples of possible/impossible
new branches which might be added next time

transition
+ bypass

 bypass

zero
transition

/a(b([ij]\d)?|k0)/

join fork

Fig. 1. An example of regular expression graph

3

For the purposes of our algorithm, a regular expression is represented as
a directed acyclic graph (Fig. 1). More precisely, as a ”hammock graph” [14],
allowing exactly one entrance and one exit to each area. A node of such a graph
is referred to as a RE position , while an edge as a RE transition (there
may be normal transitions that correspond to a character place as well as zero
transitions shunting constructs like /(abc)?/). For the simplicity, in the current
paper a graph is assumed to be sorted and having all positions enumerated with
a continuous [0..N] integer range.

We refer to a sub-graph between some entrance position and some exit posi-
tion as a hammock . Thus, for example, all edges in a plain chain are hammocks.
Hammocks of course may be nested. The way from a hammock’s entrance posi-
tion to it’s exit is referred as a bypass. An entrance or exit position shared by
multiple hammocks is referred as a fork or join position, respectively.

2.2 Character Selection

a
characters

character classes

Single
.

var = 1
cost = 0

Word
\w

var = ∞
cost = 2

Any
.

var = ∞
cost = 4

cost = 0

a b
characters

character classes

Single
.

var = 1
cost = 0

Word
\w

var = ∞
cost = 2

Any
.

var = ∞
cost = 4

cost = 2

a b 2
characters

character classes

Single
.

var = 1
cost = 0

Word
\w

var = ∞
cost = 2

Any
.

var = ∞
cost = 4

cost = 4

Fig. 2. A character selection cost evolution while new characters are merging.

We represent every character place in a RE by a character selection . A
character selection is both considered as a concrete character set and as a set
of character classes that fit it. A character set in our scope means all characters
really falling to this place in some sample string(s). A character class is en
entity that corresponds to some predefined group of characters while also (op-
tionally) restricts the maximum variety of participating characters. For example,
a character class with [a− z] character group and maximum allowed variety of 2
matches possible character selection of [ax] but doesn’t match the [axz] due to
the variety exceeding. The choice of character classes and their parameters es-
sentially affects the resulting regular expression look and actually represents the
user preferences that cannot be deducted from a limited number of samples (like
whether should we display [123] or \d for a concrete selection of digits at some
RE element). Thus, character classes are considered to be user-defined parame-
ters in our algorithm. The only mandatory requirement is that every character
should belong to at least one class. Every character class is attributed with a
class cost. The class cost may be treated as an inverse metric to the prettiness of

4

a class occurrence in a resulting expression record. The cost of a character selec-
tion is defined as the minimum cost of a character class containing all characters
selected.

Θsel(chars) = min
cls∈charClasses

∀char∈chars→char∈cls.chars
cls.maxV arety≥||chars||

Θclass(cls) (1)

When we consider an option to add (merge) a new character to a selection (for
example, /ab/ + /ac/ → /a[bc]/ – adding the second character ‘c’ into a
position previously occupied by just one character ‘b’), we must calculate the
selection cost both before and after the planned merge. That (non-negative)
difference will be the merge cost used in a dynamic programming procedure
described below.

Ψmerge(chars, c) = Θsel(chars ∪ {c})−Θsel(chars) (2)

As a variant, a character class match may be additionally rewarded by substi-
tuting a zero resulting value with some negative one:

If Ψmerge = 0 then Ψmerge := Ψmatch < 0 (3)

3 Branching Alignment algorithm

In order to produce a regular expression from a set of samples, we first merge
the samples into a hammock graph. The core part of our alignment algorithm
generally looks like an extension of well known Minimum Edit Distance method
[13]. The procedure incrementally transforms the current RE r, attempting to
align it to the next sample s with the minimum penalty score. We use a dynamic
programming algorithm that optimizes the total cost of regular expression mod-
ification choosing the best alignment between r and s positions. In order to get
a final RE, we start with some input sample as an initial RE and then merge all
other samples one by one into it.

Note. The resulting expression look may depend on the order of sample string
merging. Although the effect of ordering yet needs exploration, our experiments
showed that following a longer first, shorter next order ensures an optimal align-
ment or a good approximation to it in vast majority of cases.

Our algorithm adds a new operation to the original operation set consisting of
deletion, insertion and substitution. This new operation enables drawing a new
graph branch instead of mere aligning characters between two given positions
whenever it seems to yield better score. Table 1 displays the list of possible
atomic editing events available at a given (i, j) combination where i is the
target position in r while j is the number of processed characters of s.

We associate two cumulative costs, JL(i, j) and JS(i, j), to every possible
(i, j) pair. Initially, JL(0, 0) = 0 while all other JL(i, j) and JL(i, j) are set
to +∞. (Subscripts L ans S near J stand for the ‘light’ and ‘shadow’ words,
respectively). The difference between JL and JS lays in the fact that the former
immediately correspond to some position in r while the latter points to a bypass

5

Table 1. Editing events

Operation Description Sample
string
position
advance

RE posi-
tion ad-
vance

Penalty

Merge Merging a character from the sam-
ple string into a RE character selec-
tion

yes yes Ψmerge

Insert Adding a new single character ele-
ment to the RE. As the RE should
keep matching all previous samples,
the element will be optional

yes no Ψinsert

Delete Letting a RE element to be skipped.
It means the element becomes op-
tional

no yes 0, if the element
is already marked
optional; Ψinsert,
otherwise

Insert into
a branch

Adding a character to a newly cre-
ated branch

yes no Ψdisp

Bypass Drawing a newly created branch
over a RE hammock bypass.

no yes Ψbranch, once per
branch

connection position inside a potential new branch coming ”over” ith position in
current RE. For example, if r was /ab/, s is ”cd” and r will be /(ab)|(cd)/
then JS(1, 1) may refer to a connection point between a bypass ”over” ‘a’ and a
bypass ”over” ‘b’.

We fill matrices of JL and JS for all possible positions [0..M]×[0..N] iterating
positions in any convenient non-decreasing order. We use the following equations
in order to take all possible edit events at (i, j) point into account.

JL(i, j) = min

JL(t.src, j − 1) + Ψinsert, if j > 1
∀t ∈ trans(i) JL(t.src, j) + Ψdelete

∀t ∈ trans(i) JL(t.src, j − 1) + Ψmerge(t.sel, s[j]), if j > 1
∀b ∈ bypass(r, i) : ¬b.fork JS(b.src, j)
∀b ∈ bypass(r, i) JL(b.src, j) + Ψbranch

∀t ∈ zerotrans(i) JL(t.src, j)
(4)

JS(i, j) = min

∀b ∈ bypass(r, i) : ¬b.join ∧ ¬b.fork, JS(b.src, j)
∀b ∈ bypass(r, i) : ¬b.join JL(b.src, j) + Ψbranch

JS(i, j − 1) + Ψdisp, if j > 1
JL(i, j − 1) + Ψdisp + ψbranch if j > 1

(5)

As seen from the equation, JS(i, j) cannot be used or assigned ”through” a
bypass that shares a fork or join, respectively. This restriction prevents project-
ing a hammock breaking branch, as discussed in the previous section. Once we
consider a new branch creation, we apply a Ψbranch penalty. This penalty (acting

6

like a simplified Graph Edit Distance [8]) enforces the willingness to compose a
laconic and uniform regular expression rather than to proliferate branches.

Having the matrix fully constructed, we traverse the lowest total penalty
path from JL(N, length(s)) back to JL(0, 0) in order to extract the least costly
sequence of editing events. To do this, we reuse the same equations (4), (5)
but in place of calculating minimums (that are already known at this stage) we
notice the choice that yields minimum value to the left hand side. Then we apply
these editing events over elements of r producing a modified RE version r′ (See
Fig. 3 for an example). The new branch insertion is a special case. To add each
new projected branch, if any, into the RE, we do the following: (1) outline a
branch-related subsequence of editing events (consisting of ”Insert into branch”
and ”Bypass” events); (2) compose a new branch and (3) insert the new branch
into r at proper start and end positions.

The idea of algorithm described above may remind the Affine Gap Penalty
concept known in Bioinformatics [9] ; the major difference is the fact that we
consider the gap not merely as a modifier to an element-by-element edit distance
metric, but also as a reason to draw a new graph branch.

See Algorithm 1 illustrating the approach discussed.

7 7 7 7 7 6

7 7 7 7 7 7

6 6 6 6 6 6

6 6 6 6 6 6

5 5 5 4 4 5

5 5 5 5 5 5

4 4 2 5 5 5

4 4 4 7 7 5

3 2 4 6 6 5

3 3 4 7 7 5

0 3 4 7 7 5

∞ 3 4 9 9 5

f)
a x (b e

r

x

1

2

e

 | c

ax(be|cf)

ax(be|cf)

ax((2|b)e|cf)

ax((12|b)e|cf)

ax((12|b)e|cf)

[ar]x((12|b)e|cf)

Edit inline

JL(0,5)

JS(0,5)

JS(0,0)

JL(0,0)

JS(5,5)

JL(5,5)

JS(5,0)

JL(5,0)

New branch

Fig. 3. An example: merging ”rx12e” string to /ax(be|cf)/ expression

7

A note on the complexity. The algorithm shows the same complexity as
Minimum Edit Distance (per one sample), of O(M ∗N), which is meanly propor-
tional to N2, where M is the regular expression length, N is the sample string
length. Still there are many known methods aimed to bound the complexity of
Edit Distance minimization, and most of them are directly applicable to the pro-
posed algorithm. Particularly, it might be bounding of maximum edit distance
to some constant number [12]

4 Repetition Capture

A regular expression produced with the algorithm described above yet needs a
repetition capture in order to get its final form. We may employ any known
method capable of finding and removing repetitions of adjacent substring in a
plain symbol string . Let M(s) → s′ denote such a method, where s and s′

are input and output strings, respectively. Now, we may process the RE graph
recursively applying M to all edge sequences of the graph, recursively down
up, representing each nested hammock by a single canonical symbol. In more
detail, we use a T : (α,Rmin, Rmax) tuple in order to represent a hammock,
where α is a symbol of some alphabet, Rmin and Rmax are the minimum and
maximum number of α’s repetition, respectively. So, we are to slightly modify
the M procedure in order to fit the following form.

MT (q)→ q′, q, q′ : S, (6)

where S denotes the sequence of T tuples. We expect that MT compares two
tuples in a sequence solely relating to the α value (ignoring Rmin, Rmax). Once
has found a repetition, the procedure merges it into single tuple with proper
sums for the total Rmin and Rmax:

(α,Rmin1, Rmax1), (α,Rmin2, Rmax2)→ (α,Rmin1 +Rmin2, Rmax1 +Rmax2)
(7)

Then, we need a hammock canonical representation function C(si) → sj . The
aim of such a function is to represent a hammock using a minimal variety of α.
It’s expected to satisfy, for instance, the following properties.

– C({x, []}) = (C(x).α, 0, C(x).Rmax)
– C({[x]}) = C(x)

C function may expect that its arguments already represented in a canonical
form.

We initially annotate each character selection cj found in our graph with a
tuple

(cHash(cj),

{
0, if cj marked as optional
1, otherwise

}
, 1) : T, (8)

where cHash(cj) is a canonical symbol for the best character class that fits cj .
Now we may use a depth-first search procedure like the following one to capture
repetitions in our RE graph.

8

procedure captureRepeat(q : S)
for e ∈ q do

if e /∈ single char selections then
for b ∈ e.branches do

captureRepeat(b);

b← C(b);

q ←MT (q)

Now we have all elements annotated with their repetition bounds [Rmin →
Rmax] and thus we may deliver a RE. However, an user may want to see un-
bounded repetitions in it (like in /a+/ or /ab*/). We cannot rigorously extract
an unbounded repetition from a finite number of samples, so we have to use em-
piric generalization rules. The simplest of them (while working well in practice)
may be assigning Rmax to +∞ if Rmax − Rmin >= Rbound, where Rbound is
some constant threshold (usually equal to 3).

5 Experiments

We applied the proposed algorithm to the Spam classification task [10]. We used
195 series of Spam messages (i.e. 195 mimes). We extracted six sample strings
from each message (four headers, a plain text and an HTML). Every series was
split into the train and test sets (60% and 40% of messages, respectively). We
randomly chose the sets three times per mime. As we don’t know in advance
which combination of sample strings (like ”Subject+body” or ”From+Html”)
better classifies a Spam mime, we have tried all 26 − 1 = 32 combinations and
selected one per mime that yields the best F1 metric value once applied for
classifying the union of the test set for this mime (Spam) and a standalone
collection of non-Spam messages. We have repeated these experiments at various
values of the branch cost ratio (that tells one how many avoided highest-cost
character merges ”worth” a new branch creation).

Fig. 4 displays F1 metric values distribution over mimes. It seems that branch
cost should be at least about 3 for the best result. Further increase does not
affects the quality significantly.

Fig. 5 shows how the precision and the perplexity correlate to the recall. The
precision in most cases equals one and behaves quite irregularly in the remaining
cases that demonstrates a quite low probability of matching against some random
document. A surprisingly inverse overall correlation in the (perplexity, recall)
pair is due to the fact that an increase in perplexity of a generated RE is a
reaction to a high content variety of training samples. A congestion near (50,
0.7) coordinate seems to be caused by the generator’s attempts to satisfy the
sets of altering string constants frequently occurring in Spam messages with
the aim to challenge filters. The perplexity of generated regular expression still
seems rather low to cover the expected variety of training set samples. Of course
being a natural consequence of a synthetic approach to RE building, this fact

9

0 20 40 60 80 100

0.
2

0.
4

0.
6

0.
8

1.
0

F1 distribution over Spam mimes

Samples fraction, %

F
1

branch cost ratio = 1,
no \d and \w classes
branch cost ratio = 1

branch_cost ratio = 1.75

branch_cost ratio = 2.5

branch cost ratio = 8

Fig. 4. A distribution of F1 metrics observed in a Spam classification test based on
RE extraction

indicates that further adjustments toward the perplexity boosting at ”volatile”
sample text regions might improve the recall values.

Spam messages provide an extremely challenging test bench because they are
specially designed to foolish automated filters as possible. Thus, we didn’t expect
the recall to demonstrate as high values as it may be seen in ”normal” content
processing. A bunch of expression generated were analyzed and it was found
that it’s usually easy to do a manual correction (mostly meaning the removal
of some parts) which results in a recall of 95..100%. Thus, the algorithm at it’s
today’s stage may be considered as an effective advisory solution for draft RE
extraction.

6 Manual Assessment

We have found that each piece of a generated RE looks reasonable at a proper
selections of major cost and limit parameters. However, the best choice of these
parameters may significantly vary through the entire expression. At the same
time, the overall alignment of samples works fine at a wide range of parameters.
Thus we conclude that for the best advisory value the technique should allow re-
compilation of any selected part of generated RE at a different choice of options.
Meanly, an optimal cost of branch containing 3 characters is expected to be of

10

● ●

●

●

●● ● ●● ●●●● ● ●●

●

● ●●●● ●● ●●●● ● ●● ● ● ●● ●●●● ●● ● ● ●●● ● ●●● ●●●● ●● ● ●● ●●● ●● ●● ●● ● ●●● ● ●●● ●● ●● ●● ●● ●● ● ●● ●●●● ● ● ●● ●● ●● ● ●●● ● ●●● ●●● ● ●● ●●●● ●● ●●● ●● ●● ●● ●●● ●●●●● ●● ●●● ●●●

0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Precision against Recall in Spam tests

Recall

P
re

ci
si

on

●
branch cost ratio = 1,
no \d and \w classes
branch cost ratio = 1

branch_cost ratio = 1.75

branch_cost ratio = 2.5

branch cost ratio = 8

●
●

●

●

●

●

●
●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●
●● ●

● ●

●
●

●
●

●

●
●●●● ●

● ●
●● ●●

●

●

●

●

●

●

●

● ●●

●

● ●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●●
● ●

●

●●

●
●

●

●

●

●
● ●

●

●

●
●

●

●●

●

●●●

●

●

●

●

●●

●

●●
●

0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

60
70

RE Perplexity against Recall in Spam tests

Recall

P
er

pl
ex

ity

Fig. 5. Precision and Perplexity against Recall for Spam tests at various parameters.

about 1.5..2.5 times the highest cost of single character merge (also referred to as
the Wild card cost). Table 2 displays examples of regular expressions generated
with a set of E-Mail addresses taken from a Spam distribution ”From:” field.
The table also includes manual assessment of expression quality in terms of
readability, recall, and precision. Expressions were taken under various settings of
three major parameters such as (1) Wild card character class cost (maxΨmerge),
(2) Branch cost (Ψbranch) and (3) Branch Character cost (Ψdisp). Also, Match
bonus (−Ψmatch) was varied in some cases.

7 Discussion

The algorithm has demonstrated its potential as an advisory solution for an an-
alyst or an engineer willing to compose regular expressions in a semi-automated
manner. Tuning of parameters may be really needed to get the desired look of

11

Table 2. Examples of RE extracted at different parameter settings from a set of header
field values found in a Spam distribution

cost

Wild
Branch

Start Char
Match Regular Expression produced Assessment

4 1..6 1 0 (?:Ponto Frio|(?:Sepho|Ext)ra|

"?InfoJobs"?)<κ@mail2m\d{1,2}\.info>
Ok

4 7 1 0 (?:Ponto Frio|InfoJobs|"InfoJobs" |

(?:Sepho|Ext)ra) <κ@mail2m\d{1,2}\.info>
Ok but less
readable

4 2 2 0 .?\w{3}o?(?:ra|Jobs"?| Frio)

<κ@mail2m\d?\d\.info>
too general,
less readable

2 2 2 0 .?(?:[Io]n)?(?:.{2})?.{5}

<κ@mail2m\d?\d\.info>
too general,
less readable

4 1 3 -2..0 ["P]?\wn?\wo?(?:.\w{3})?.

<κ@mail2m\d?\d\.info>
irrelevant

7 1 4 -2..0 (?:P|")?\wn?(?:\w{2})?(?: |\w)\w{3}

(?:o|")? <κ@mail2m\d?\d\.info>
too general

2 10 1 0 (?:.{2})?(?:n[ft]o|f)?.{5}

<κ@mail2m\d?\d\.info>
low rele-
vancy

2 1 4 0 ["P]?.n?.o?(?:.{2})?.{3}

<κ@mail2m\d?\d\.info>
too general

3 1 2 -2..0 .?\w{3}o?(?:ra|Jobs"?| Frio)

<κ@mail2m\d?\d\.info>
acceptable
still unread-
able

4 1 1 -2 (?:Sep|E|(?:Po|"?I)n)\w\w(?:ra|Jobs"?|

Frio) <κ@mail2m\d{1,2}\.info>
acceptable
still unread-
able

Samples

"InfoJobs" <κ@mail2m37.info> Sephora <κ@mail2m38.info>

Ponto Frio <κ@mail2m10.info> Sephora <κ@mail2m16.info>

"InfoJobs" <κ@mail2m37.info> Sephora <κ@mail2m39.info>

Extra <κ@mail2m18.info> "InfoJobs" <κ@mail2m37.info>

"InfoJobs" <κ@mail2m32.info> Ponto Frio <κ@mail2m10.info>

Extra <κ@mail2m18.info> InfoJobs <κ@mail2m30.info>

Sephora <κ@mail2m35.info> Sephora <κ@mail2m1.info>

κ stands for a constant name.

an expression produced. (And some extra logic/arithmetic in order to have an
easy-to-use parameter control may be desirable in implementations).

Due to a quadratic complexity of the proposed algorithm, a preliminary align-
ment step should be done first (using less consuming algorithms, for example,

12

suffix tree based ones) in case of long samples. This fact limits the maximum
size of a branched RE region rather than the overall RE size and in such a
way it doesn’t principally prevent the usage of the proposed technique with text
samples of arbitrary length.

Indeed, the proposed algorithm is expected to fill the gap between concrete
substring alignment and the regularity (repetition) extraction. We mean a cas-
caded pipeline as follows.

1. A plain string based alignment of input samples splits a RE extraction task
into a set of tasks with shorter text samples (complexity = O(K×N×logN)
or lower, where K is the sample count, N is a representative sample length).

2. The proposed extraction algorithm aligns characters in a fuzzy (class based)
way and creates branches (complexity = O((N/N1) × K × N2

1) = O(K ×
N ×N1)), where N1 is a representative length of sample substring produced
by the previous phase.

3. A repetition extraction step over an aligned RE (complexity = O(N2
2) or

lower, where N2 is a representative length of hammock chain in a graph
resulting from phase 2, N2 <= N1).

Phase 2 complexity is critical in such a schema. The overall complexity de-
pends on N1 behavior w.r.t. N . Fortunately, in real documents N1 usually seems
to be bounded as thy contain some non-volatile structure that may be captured
at phase 1. At such an assumption, overall complexity of the pipeline may be
kept ’almost’ equal to the complexity of phase 1.

An internet service demo based on the proposed algorithm is available at
http://regexus.com. All interested people are welcome to test and use it.

8 Next steps

We expect the following major directions of further related research.

– to make parameters adjustable with Machine Learning techniques;
– to explore an automated ordering of sample string as well as non-sequential

merging methods;
– to apply a preliminary alignment and partitioning of samples in order to

reduce the overall complexity;
– to explore an option to extract more ’popular’ constructs of RE (say, refer-

ences to previously matched substrings).

13

Appendix

Algorithm 1 Merging a string into a RE
r ← empty regex
for s ∈ samples do

N ← max position number(r)
JL(∗, ∗)← +∞
JS(∗, ∗)← +∞
JL(0, 0)← 0
for j = 0 → length(s) do

for i = 0 → N do
JL(i, j)← use Equation (4)
JS(i, j)← use Equation (5)

current←pointer toJL(N, length(s))
newBranch← empty list
while current 6= 0 or j 6= 0 do

bestChoice← findBestChoice(current) . finds a case in Equation(4) or (5)
yielded the minimum value to the matrix element pointed by current

if not empty(newBranch) and current ∈ JL(∗, ∗) then
addBranch(r, current, branchEnd)
newBranch← empty branch

if isBypass(bestEvent) or E ∈ LS(∗, ∗) then . dealing with a new RE
branch

if empty(newBranch) then then
newBranchStart← currentElement

if bestChoice.ancestor.j < current.j then
newBranch←concat(single char selection(s[j]), newBranch

else . dealing with an existing RE branch
if bestChoice.ancestor.i < current.i then

if bestChoice.ancestor.j < current.j then
character merge (s[current.j], charSelection(bestChoice.transition)))

else
newSingle← single char selection (s[current.j])
markAsOptional(newSingle)
insert(r, current.i, newSingle)

else
if bestChoice.ancestor.j < current.j then

markAsOptional(charSelection(bestChoice.transition)))

current← bestChoice.ancestor
if not empty(newBranch) then

addBranch(r, current, newBranch)

14

References

1. Hussein Almuallim and Thomas G Dietterich. Learning boolean concepts in the
presence of many irrelevant features. Artificial Intelligence, 69(1-2):279–305, 1994.

2. Alberto Bartoli, Giorgio Davanzo, Andrea De Lorenzo, Marco Mauri, Eric Medvet,
and Enrico Sorio. Automatic generation of regular expressions from examples with
genetic programming. In Proceedings of the 14th annual conference companion on
Genetic and evolutionary computation, pages 1477–1478. ACM, 2012.

3. Alberto Bartoli, Giorgio Davanzo, Andrea De Lorenzo, Eric Medvet, and Enrico
Sorio. Automatic synthesis of regular expressions from examples. 2013.

4. Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano Tarlao. Playing
regex golf with genetic programming. In Proceedings of the 2014 conference on
Genetic and evolutionary computation, pages 1063–1070. ACM, 2014.

5. Geert Jan Bex, Wouter Gelade, Frank Neven, and Stijn Vansummeren. Learning
deterministic regular expressions for the inference of schemas from xml data. ACM
Transactions on the Web (TWEB), 4(4):14, 2010.

6. Falk Brauer, Robert Rieger, Adrian Mocan, and Wojciech M Barczynski. Enabling
information extraction by inference of regular expressions from sample entities. In
Proceedings of the 20th ACM international conference on Information and knowl-
edge management, pages 1285–1294. ACM, 2011.

7. Jeffrey Friedl. Mastering regular expressions. ” O’Reilly Media, Inc.”, 2006.
8. Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. A survey of graph edit

distance. Pattern Analysis and applications, 13(1):113–129, 2010.
9. Osamu Gotoh. An improved algorithm for matching biological sequences. Journal

of molecular biology, 162(3):705–708, 1982.
10. Jean-Michel Jolion. Some experiments on clustering a set of strings. In Graph

Based Representations in Pattern Recognition, pages 214–224. Springer, 2003.
11. Efim Kinber. Learning regular expressions from representative examples and mem-

bership queries. In Grammatical Inference: Theoretical Results and Applications,
pages 94–108. Springer, 2010.

12. Esko Ukkonen. Finding approximate patterns in strings. Journal of algorithms,
6(1):132–137, 1985.

13. Robert A Wagner and Michael J Fischer. The string-to-string correction problem.
Journal of the ACM (JACM), 21(1):168–173, 1974.

14. Fubo Zhang and Erik H. DHollander. Using hammock graphs to structure pro-
grams. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 30(4):231–
245, 2004.

