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Abstract. At paper we investigate problem of the investment portfolio
selection from one risky asset and one risk-free asset. We use the prob-
ability criterion for the investment portfolio selection. The possibility of
rebalancing of the investment portfolio is used for diversi�cation of the
portfolio. We �nd an approximate analytical solution of the problem us-
ing the law of total probability. The investment portfolio is selected for
various distributions of returns. We give an example.
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1 Introduction

The problem of optimal investment is the problem of assets selection for invest-
ment, so that the investor's capital will be maximal at the some instant of time
in future. Therefore the cost function is investor's capital. Due to the fact that
at the some instant of time prices of some assets are unknown, returns from
these assets are random variables. Consequently, investor's capital will become
a random variable with the purchase of these assets. In such a way optimization
is possible after applying some criterions to the cost function: for an example,
probabilistic [1], VaR [2], the Markowitz problem [3]. At paper we will use the
probability criterion because the value of the probability criterion will give the
probability of exceeding of threshold amount desired by the investor.

The two-step problem is considered for allowing rebalancing of the investment
portfolio at the some instant of time. As shown in [4], optimal control at the �rst
step is similar to logarithmic strategy. Note that logarithmic strategy provide
maximal average growth of the investor's capital. At the same time there are not
so many articles about two-step problem with the probability criterion or VaR
criterion [4]-[6] because of complexity of such problems. More frequently one-step
problems with various criterions and bounds [7]-[8] and multi-step problems with
expectation or variance as criterion [9]-[10] are investigated. Another way to form
the investment portfolio is usage of machine learning techniques [11]-[12].

Searching for optimal control, as done in [4]-[5] by means of dynamic program-
ming method, is hard enough. That's why we need to �nd more simple approach



for obtaining of some approximate solution, which will be close enough to opti-
mal solution. One of such approaches is using of piecewise constant control at
the second step rather than positional control. Such approach we will consider.

We will choose one risk-free asset and some risky asset (having non-zero
variance) for the investment portfolio selection. Obviously, the structure of the
investment portfolio depends on distributions parameters and distribution law.
We will analyze the structure of the investment portfolio for various distributions
of risky asset return.

2 Statement of the Problem

Assume that the investor have two assets for investment at the each trading
period: risk-free asset with constant return b0 and risky asset (stock, bond)
with return −1 + X̃1 at the �rst step and risky asset with return −1 + X̃2 at
the second step. Variables X̃1 and X̃2 are independent identically distributed
random variables with existing �rst and second moments and density function
f(x). Variables X̃1, X̃2 characterize the ratio of sale price of risky asset to the
purchase price. State some realizations of sample mean xn and sample variance
s2n of −1+X̃1. Assume u0,i is the fraction of the investor's capital invested in risk-
free asset at the trading period i and u1,i is the fraction of the investor's capital
invested in risky asset at the trading period i, C1 is initial investor's capital
and ϕ is amount desired by the investor. Assume �short-sales� are banned and
investor's capital is invested fully at the each trading period. The dynamics of
investor's capital is then described by

Cj+1 = Cj

(
1 + u0,jb0 + u1,j(−1 + X̃j)

)
, j = 1, 2,

and control uj
def
= col(u0,j , u1,j) is selected at the each step from set

U
def
= {y0, y1 : y0 + y1 = 1, y0 ≥ 0, y1 ≥ 0}.

We consider next sequence of segments which are all set of possible values of
investor's capital C2

s0
def
= (−∞, C1(N)), s1

def
= [C1(N), C2(N)), s2

def
= [C2(N), C3(N)), . . . ,

sN
def
= [CN (N), CN+1(N)), sN+1

def
= [CN+1(N),+∞),

where

Ci(N) = 2C1(i− 1)
m

N
, i = 1, N + 1,

and

m =

+∞∫
−∞

xf(x)dx,



where N is a priori speci�ed natural number, which characterizes the number of
segments of the decomposition, m is expectation of random variable X̃1. Such
selection of values Ci(N) is connected with the fact that �neness of si tends to
zero subject to N →∞. Segments s0 and sN+1 is saved constant, as segment s0
characterizes infeasible on practice values of investor's capital, as without debts
we cannot obtain capital is less than zero. Segment sN+1 characterizes values
with small probability because obtaining return higher than 100 per cents is
almost impossible in practice.

We will �nd control at the second step u2 as piecewise-constant strategy
depending on segment si. Thus the problem of searching for optimal control is
described by

P̃ϕ(u1(C1), u2(s0, s1, . . . , sN , sN+1))
def
=

def
= P{C3(u1(C1), u2(s0, s1, . . . , sN , sN+1)) ≥ ϕ}. (1)

Formulate the problem

(ũϕ1 (·), ũ
ϕ
2 (·)) =

= arg max
u1(C1)∈U,u2(s0,s1,...,sN ,sN+1)∈U

P̃ϕ(u1(C1), u2(s0, s1, . . . , sN , sN+1)). (2)

3 The Search of Approximate Value of the Probability

Functional

According to the law of total probability [13] we get

P{C3 ≥ ϕ} =
N+1∑
i=0

P{C2 ∈ si}P{C3 ≥ ϕ|C2 ∈ si}. (3)

Using the de�nition of conditional probability we have

P{C2 ∈ si}P{C3 ≥ ϕ|C2 ∈ si} = P{{C2 ∈ si} · {C3 ≥ ϕ}} =

= P{{C2 ∈ si} · {C2(1 + u0,2(si)b0 + u1,2(si)(−1 + X̃2))} ≥ ϕ}.

There are following nestings for i = 1, N

{C2 ∈ si} · {Ci(N)(1 + u0,2(si)b0 + u1,2(si)(−1 + X̃2)) ≥ ϕ} ⊂

⊂ {C2 ∈ si} · {C2(1 + u0,2(si)b0 + u1,2(si)(−1 + X̃2)) ≥ ϕ} ⊂

⊂ {C2 ∈ si} · {Ci+1(N)(1 + u0,2(si)b0 + u1,2(si)(−1 + X̃2)) ≥ ϕ}.

Consequently,

P{C2 ∈ si}P{Ci(N)(1 + u0,2(si)b0 + u1,2(si)(−1 + X̃2)) ≥ ϕ} ≤



≤ P{{C2 ∈ si} · {C2(1 + u0,2(si)b0 + u1,2(si)(−1 + X̃2)) ≥ ϕ} ≤

≤ P{C2 ∈ si}P{Ci+1(N)(1 + u0,2(si)b0 + u1,2(si)(−1 + X̃2)) ≥ ϕ}.

Note Ci+1(N) − Ci(N) → 0 subject to N → ∞, therefore we use the new
functional for obtaining approximate value of functional (1), written also as (3)

P̂ϕ(u1(C1), u2(s0, s1, . . . , sN , sN+1))
def
=

def
=

N+1∑
i=1

P{C2 ∈ si}P{Ci(N)(1 + u0,2(si)b0 + u1,2(si)(−1 + X̃2)) ≥ ϕ}. (4)

And formulate the new problem

(ûϕ1 (·), û
ϕ
2 (·)) =

= arg max
u1(C1)∈U,u2(s0,s1,s2,...,sN ,sN+1)∈U

P̂ϕ(u1(C1), u2(s0, s1, . . . , sN , sN+1)).

(5)

The solution of problem (5) is approximate solution of problem (2).

4 The Solution of the Problem at the First Step and at

the Second Step

For solving (5) we solve

P i
ϕ(u0,2, u1,2)

def
=

def
= P{Ci(N)(1 + u0,2b0 + u1,2(−1 + X̃2)) ≥ ϕ} → max

u0,2+u1,2=1,u0,2≥0,u1,2≥0
.

because controls at the �rst step and at the second step are independent and
probabilities P{C2 ∈ si} are non-negative. Solution of last problem we can �nd
in [1]:

Pi = max
u0,2+u1,2=1,u0,2≥0,u1,2≥0

P i
ϕ(u0,2, u1,2) =

=

{
1, ϕ ≤ Ci(N)(1 + b0),

1− F (ϕ/Ci(N)), ϕ > Ci(N)(1 + b0),

where

F (x) =

x∫
−∞

f(t)dt.

To �nd strategies at the �rst step we solve problem

Pϕ(u0,1, u1,1)
def
=

N+1∑
i=1

P{C2 ∈ si}Pi → max
u0,1+u1,1=1,u0,1≥0,u1,1≥0

. (6)



Reduce the dimension of the problem by substitution u0,1 = 1−u1,1 and simplify
problem (6)

N+1∑
i=1

P{C1(1 + b0 − u1,1(1 + b0) + u1,1X̃1) ∈ si}Pi → max
0≤u1,1≤1

.

Note at the point u11 = 0 value of function Pϕ(u0,1, u1,1) is equal to

Pϕ(1, 0) =

N+1∑
i=1

P{C1(1 + b0) ∈ si}Pi.

Find value of Pϕ(u0,1, u1,1) subject to u1,1 > 0. Note

P{C1(1 + b0 − u1,1(1 + b0) + u1,1X̃1) ≤ a} =

= F

(
a− C1(1 + b0 − u1,1(1 + b0))

C1u1,1

)
,

If i = 1, N we have

P{C1(1 + b0 − u1,1(1 + b0) + u1,1X̃1) ∈ si} =

= P{Ci(N) ≤ C1(1 + b0 − u1,1(1 + b0) + u1,1X̃1) < Ci+1(N)} =

= F

(
Ci+1(N)− C1(1 + b0 − u1,1(1 + b0))

C1u1,1

)
−

−F
(
Ci(N)− C1(1 + b0 − u1,1(1 + b0))

C1u1,1

)
.

If i = N + 1 we have

P{C1(1 + b0 − u1,1(1 + b0) + u1,1X̂1) ∈ sN+1} =

= P{CN+1(N) ≤ C1(1 + b0 − u1,1(1 + b0) + u1,1X̃1) < +∞} =

= 1−
(
CN+1(N)− C1(1 + b0 − u1,1(1 + b0))

C1u1,1

)
.

Based on the above, we get

Pϕ(u0,1, u1,1) =

=

N∑
i=1

F

(
Ci+1(N)− C1(1 + b0 − u1,1(1 + b0))

C1u1,1

)
(−Pi+1 + Pi) + PN+1−

−F
(
C1(N)− C1(1 + b0 − u1,1(1 + b0))

C1u1,1

)
P1.



To �nd the solution of problem (6) we do close-meshed computational grid from
interval 0 ≤ u1,1 ≤ 1 and �nd the maximal value at grid nodes: node which has
the maximal value is approximate solution of the �rst step [14].

Find distribution parameters of random variables X̃1 and X̃2 using relations
of the method of moments [13] for often used in �nancial mathematics normal,
log-normal, uniform distributions.

If X̃1 is normal, then density function f(x) is equal to

f(x) =
1√
2πσ2

exp

{
− (x− µ)2

2σ2

}
.

Consequently, M[X̃1] = µ, D[X̃1] = σ2, where M[X̃1] is mean, and D[X̃1] is
variance. Thus using realizations of return we obtain next relations for µ and σ2{

M[−1 + X̃1] = −1 + µ = xn,

D[−1 + X̃1] = σ2 = s2n.

If X̃1 is log-normal, then density function f(x) is equal to

f(x) =
1

xσ
√
2π

exp

{
− (ln(x)− µ)2

2σ2

}
subject to x > 0 and 0, otherwise. Thus M[X̃1] = exp{µ + σ2/2}, D[X̃1] =
(exp{σ2} − 1) exp{2µ+ σ2}{

M[−1 + X̃1] = −1 + exp{µ+ σ2/2} = xn,

D[−1 + X̃1] = (exp{σ2} − 1) exp{2µ+ σ2} = s2n.

solving this system we get

σ2 = ln

{
s2n

(xn + 1)2
+ 1

}
,

µ = ln(xn + 1)− σ2

2
.

If X̃1 is distributed by uniform law, then density function f(x) is equal to

f(x) =
1

B −A

subject to x ∈ [A,B] and 0, otherwise. Therefore M[X̃1] = (A+B/2), D[X̃1] =
(B −A)2/12 {

M[−1 + X̃1] = −1 + A+B
2 = xn,

D[−1 + X̃1] =
(B−A)2

12 = s2n.

Solving last system we get

A = 1 + xn −
√
3sn,

B = 1 + xn +
√
3sn.



5 Example

Compare for accuracy obtained relations with exact solution provided in [5].
Assume initial investor's capital C1 = 1, desired capital level ϕ = 1, 08, return
from risk-free asset b0 = 0, 03, X1 is uniformly distributed random variable with
parameters A = 0, B = 2, 2 at the example No 1 and A = 0, B = 2, 3 at the
example No 2. We �nd approximate strategies of the �rst step and the value of
probability functional (6) at this strategy for various value N . Mesh width is
0, 01. We will mark exact solution by bold font.

Table 1. Comparison approximate strategy with exact solution

No. example N u0,1 u1,1 P(C3 ≥ ϕ) Time of computations, sec.

1

0.8326 0.1674 0.732

100 0.81 0.19 0.7199 1,14
500 0.82 0.18 0.7276 4,19
1000 0.83 0.17 0.7306 7,51
1500 0.83 0.17 0.7316 11,85
3000 0.83 0.17 0.7318 25,21

2

0.8326 0.1674 0.7548

100 0.8 0.2 0.7416 1,87
500 0.83 0.17 0.7539 5,03
1000 0.83 0.17 0.7542 8,11
1500 0.83 0.17 0.7543 11,51
3000 0.83 0.17 0.7544 26,9

Note that exact solution was found in positional strategy class. But nonethe-
less as follows from table No 1 approximate strategy and approximate value of
the probability functional is almost identical with exact solution when N ≥ 1000.

Now analyze the structure of the optimal investment portfolio obtained with
using derived above relations. Assume xn = 0, 1, and sn = 0, 15 and ϕ = 1, 08,
b0 = 0, 03, C1 = 1 again. We �nd the investment portfolio for normal distribution
at the example No 3, for log-normal distribution at the example No 4, for uniform
distribution at the example No 5. We �nd approximate strategies of the �rst step
and the value of probability functional (6) at this strategy for various value N
again. Mesh width is 0,01.

As follows from table No 2 growth of value N does not allow to signi�cantly
increase the value of criterion P(C3 ≥ ϕ) after N ≥ 1000. At the same time
the value of P(C3 ≥ ϕ) criterion and the structure of the investment portfolio is
almost identical although in each example various distributions were used.



Table 2. The structure of the optimal investment portfolio

No. example N u0,1 u1,1 P(C3 ≥ ϕ) Time of computations, sec.

3

100 0.47 0.53 0.7804 11,54
500 0.54 0.46 0.7993 48,77
1000 0.56 0.44 0.8048 92,08
1500 0.57 0.43 0.8067 142,54
3000 0.57 0.43 0.8071 257,17

4

100 0.42 0.58 0.7265 2,54
500 0.49 0.51 0.782 7,44
1000 0.52 0.48 0.7875 15,67
1500 0.53 0.47 0.7895 28,46
3000 0.53 0.47 0.7899 93,67

5

100 0.45 0.55 0.7684 2,9
500 0.54 0.46 0.7839 10,52
1000 0.57 0.43 0.7885 14,74
1500 0.57 0.43 0.79 17,56
3000 0.57 0.43 0.7904 35,04

6 Conclusion

In this work we have studied the two-step problem of optimal investment with
one risky asset using the probability as optimality criterion. We have found func-
tion which approximates criterial function and have proposed the algorithm to
optimize this function. Various cases of distribution of returns were investigated
and we have found the structure of the optimal investment portfolio is almost
identical despite of one or another distribution.
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