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Abstract. In this paper, we address machine learning classification prob-
lem and classify each test instance with a set of interpretable and accu-
rate rules. We resort to the idea of lazy classification and mathematical
apparatus of formal concept analysis to develop an abstract framework
for this task. In a set of benchmarking experiments, we compare the pro-
posed strategy with decision tree learning. We discuss the generalization
of the proposed framework for the case of complex structure data such
as molecular graphs in tasks such as prediction of biological activity of
chemical compounds.
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1 Introduction

The classification task in machine learning aims to use some historical data
(training set) to predict unknown discrete variables in unknown data (test set).
While there are dozens of popular methods for solving the classification problem,
usually there is an accuracy-interpretability trade-off when choosing a method
for a particular task. Neural networks, random forests and ensemble techniques
(boosting, bagging, stacking etc.) are known to outperform simple methods in
difficult tasks. Kaggle competitions also bear testimony for that – usually, the
winners resort to ensemble techniques, mainly to gradient boosting [1]. The
mentioned algorithms are widely spread in those application scenarios where
classification performance is the main objective. In Optical Character Recogni-
tion, voice recognition, information retrieval and many other tasks typically we
are satisfied with a trained model if it has low generalization error.

However, in lots of applications we need a model to be interpretable as well as
accurate. Some classification rules, built from data and examined by experts, may
be justified or proved. In medical diagnostics, when making highly responsible
decisions (e.g., predicting whether a patient has cancer), experts prefer to extract
readable rules from a machine learning model in order to “understand” it and
justify the decision. In credit scoring, for instance, applying ensemble techniques
can be very effective, but the model is often obliged to have “sound business
logic”, that is, to be interpretable [2].



Another point of interest in this paper is dealing with complex structure data
in classification tasks. While there are various popular techniques for handling
time series, sequences, graph data, we discuss how pattern structures as formal
data representation and lazy associative classification as a learning paradigm
may help to learn succinct classification rules for tasks with complex structure
data.

2 Definitions

Here we introduce some notions from Formal Concept Analysis [3] which help
us to organize the search space for classification hypotheses.

Definition 1. A formal context in FCA is a triple K = (G,M, I) where G is a
set of objects, M is a set of attributes, and the binary relation I ⊆ G×M shows
which object possesses which attribute. gIm denotes that object g has attribute
m. For subsets of objects and attributes A ⊆ G and B ⊆M Galois operators are
defined as follows:

A′ = {m ∈M | gIm ∀g ∈ A},
B′ = {g ∈ G | gIm ∀m ∈ B}.

A pair (A,B) such that A ⊂ G,B ⊂ M,A′ = B and B′ = A, is called
a formal concept of a context K. The sets A and B are closed and called the
extent and the intent of a formal concept (A,B) respectively.

Example 1. Let us consider a “classical” toy example of a classification task from
[4]. The training set is represented in Table 1. All categorical attributes are bina-
rized into “dummy” attributes. The table shows a formal context K = (G,M, I)
with G = {1, . . . , 10}, M = {or, oo, os, tc, tm, th, hn,w} (let us omit a class at-
tribute “play”) and I – a binary relation defined on G×M where an element of
a relation is represented with a cross (×) in a corresponding cell of a table.

A concept lattice for this formal context is depicted in Fig. 1. It should be
read as follows: for a given element (formal concept) of the lattice its intent
(closed set of attributes) is given by all attributes which labels can be reached
in ascending lattice traversal. Similarly, the extent (a closed set of objects) of
a certain lattice element (formal concept) can be traced in a downward lattice
traversal from a given point. For instance, a big blue-and-black circle depicts a
formal concept ({1, 2, 5}, {or, tc, hn}).

Such concept lattice is a concise way of representing all closed itemsets (for-
mal concepts’ intents) of a formal context. Closed itemsets, further, can serve as
a condensed representation of classification rules [5]. In what follows, we develop
the idea of a hypotheses search space represented with a concept lattice.

2.1 Pattern Structures

Pattern structures are natural extension of Formal Concept Analysis to ob-
jects with arbitrary partially-ordered descriptions [6]. The order on a set of de-
scriptions D allows one to define a semilattice (D, u), i.e. for any di, dj , dk ∈ D:



Table 1. A toy classification problem. Attributes: or – outlook = rainy, oo – outlook
= overcast, os – outlook = sunny, tc – temperature = cold, tm – temperature = mild,
th – temperature = high, hn – humidity = normal, w – windy, play – whether to play
tennis or not (class attribute).

no. or oo os tc tm th hn w play
1 × × × ×
2 × × × ×
3 × × ×
4 × ×
5 × × × ×
6 × × × ×
7 × × × ×
8 × × × ×
9 × × ×
10 × × ?

di u di = di, di u dj = dj u di, di u (dj u dk) = (di u dj) u dk. Please refer to [7]
for details.

Definition 2. Let G be a set (of objects), let (D, u) be a meet-semi-lattice (of
all possible object descriptions) and let δ : G→ D be a mapping between objects
and descriptions. Set δ(G) := {δ(g)|g ∈ G} generates a complete subsemilattice
(Dδ, u) of (D, u), if every subset X of δ(G) has infimum uX in (D, u).
Pattern structure is a triple (G, D, δ), where D = (D, u), provided that the
set δ(G) := {δ(g) | g ∈ G} generates a complete subsemilattice (Dδ, u) [6,8].

Definition 3. Patterns are elements of D. Patterns are naturally ordered by
subsumption relation v: given c, d ∈ D one has c v d⇔ cu d = c. Operation u
is also called a similarity operation. A pattern structure (G, D, δ) gives rise
to the following derivation operators (·)�:

A� =
l

g∈A
δ(g) for A ∈ G,

d� = {g ∈ G | d v δ(g)} for d ∈ (D, u).

Pairs (A, d) satisfying A ⊆ G, d ∈ D, A� = d, and A = d� are called
pattern concepts of (G, D, δ).

Example 2. Closed sets of graphs can be presented with a pattern structure. Let
{1, 2, 3} be a set of objects, {G1, G2, G3} – be a set of their molecular graphs:

G1 : C

CH3C NH2

NH2H2N

G2 : C

CH2N OH

H3C Cl

G3 : C

CH2N OH

ClH2N



Fig. 1. A concept lattice for the formal context represented with Table 1.

A set of objects {1, 2, 3}, their molecular graphs D = {G1, G2, G3} (δ(i) =
Gi, i = 1, . . . , 3), and a similarity operator u defined in [9] comprise a pattern
structure ({1, 2, 3}, (D,u), δ).

Here is the set of all pattern concepts for this pattern structure:

{
(
{1, 2, 3} , C

CH2N )
,

(
{1, 2} , C

CH3C

NH2

)
,

(
{1, 3} , C

CH2N

NH2

)
,(

{2, 3} , C

CH2N OH

Cl

)
, (1, {G1}) , (2, {G2}) , (3, {G3}) , (∅, {G1, G2, G3})}.

Please refer to [9] for clarification of this example.

Further, we show how pattern concept lattices help to organize the search
space for classification hypotheses.

3 Related work

Eager (non-lazy) algorithms construct classifiers that contain an explicit hy-
pothesis mapping unlabelled test instances to their predicted labels. A decision
tree classifier, for example, uses a stored model to classify instances by tracing
the instance through the tests at the interior nodes until a leaf containing the
label is reached. In eager algorithms, the main work is done at the phase of
building a classifier.



In lazy classification paradigm [10], however, no explicit model is constructed,
and the inductive process is done by a classifier which maps each test instance
to a label using a training set.

The authors of [11] point the following problem with decision tree learning:
while entropy measures used in C4.5 and ID3 are guaranteed to decrease on
average, the entropy of a specific child may not change or may increase. In other
words, a single decision tree may find a locally optimal hypothesis in terms of
entropy measure such as Gini impurity or pairwise mutual information. But us-
ing a single tree may lead to many irrelevant splits for a given test instance.
A decision tree built for each test instance individually can avoid splits on at-
tributes that are irrelevant for the specific instance. Thus, such “customized”
decision trees (actually classification paths) built for a specific test instance may
be much shorter and hence may provide a short explanation for the classification.

Associative classifiers build a classifier using association rules mined from
training data. Such rules have the class attribute as a conclusion. This approach
was shown to yield improved accuracy over decision trees as they perform a
global search for rules satisfying some quality constraints [12]. Decision trees,
on the contrary, perform greedy search for rules by selecting the most promising
attributes.

Unfortunately, associative classifiers tend to output too many rules while
many of them even might not be used for classification of a test instance. Lazy
associative classification algorithm overcomes these problems of associative clas-
sifiers by generating only the rules with premises being subsets of test instance
attributes [12]. Thus, in lazy associative classification paradigm only those rules
are generated that might be used in classification of a test instance. This leads
to a reduced set of classification rules for each test instance.

In [7] and [8] the authors generalize the lazy associative classification frame-
work to operate with complex data descriptions such as intervals, sequences,
processes and graphs.

In [13] the authors use concept lattices to represent each concept intent (a
closed set of attributes) as a decision tree node and a concept lattice itself – as
a set of overlapping decision trees. The construction of a decision tree is thus
reduced to selecting one of the downward paths in a concept lattice via some
information criterion.

4 The search for classification hypotheses in a concept
lattice

4.1 Binary-attribute case

For training and test data represented as binary tables, we propose Algorithm
1.

For each test instance we leave only its attributes in the training set (steps
1-2 in Algorithm 1). We clarify what it means in case of real-valued attributes
in subsection 4.2.



Then we utilize a modification of the In-Close algorithm [14,15] to find all
formal concepts of a formal context with attributes of a test instance (step 3 in
Algorithm 1). We build formal concepts in a top-down manner (increasing the
number of attributes) and backtrack when the cardinality of a formal concept
intent exceeds k. The parameter k refines the length of any possible hypothesis
mined to classify the test instance and is therefore analogous to the depth of
a decision tree. We speed up computing closed attribute sets (formal concept
intents) by storing them in a separate data structure (set S in the pseudocode).

While generating formal concepts, we retain the values of the class attributes
for all training instances having all corresponding attributes (i.e. for all objects
in formal concept extent). We calculate the value of some information criterion
(such as Gini impurity, Gini ratio or pairwise mutual information) for each for-
mal concept intent (step 4 in Algorithm 1). Retaining the top n concepts with
maximal values of the chosen information criterion, we have a set of rules to
classify the current test instance. For each concept we define a classification rule
with concept intent as a premise and the most common value of class attribute
among the instances of concept extent as a conclusion.

Finally, we predict the value of the class attribute for the current test instance
simply via majority rule among n “best” classification rules (step 5 in Algorithm
1). Then the calculated formal concept intents are stored (step 6), and the cycle
is repeated for the next test instance.

4.2 Numeric-attribute case

In our approach, we deal with numeric attributes similarly to what is done
in C4.5 algorithm [16]. We compute α percentiles x1, . . . , xα for each numeric
attribute x and introduce 2∗α new binary attributes in a form “x ≥ x1”, “x < x1”,
. . ., “x ≥ xα”, “x < xα”. Let us demonstrate steps 1 and 2 of Algorithm 1 in case
of binary and numeric attributes with a sample from Kaggle “Titanic: Machine
Learning from Disaster” competition dataset.1

Example 3. Fig. 2 shows a sample from the Titanic dataset. Let us from a formal
context to classify a passenger with attributes “Pclass = 3, SibSp = 0, Age =
34.5”. We use 25 and 50% percentiles of the Age attribute to binarize it. The
corresponding binary table is shown in Table 2.

5 Example

Let us illustrate the proposed algorithm with a toy example from Table 1. To
classify the object no. 10, we perform the following steps according to Algorithm
1:

1. Let us fix Gini impurity as an information criterion of interest and the pa-
rameters k = 2 and n = 5. Thus, we are going to classify a test instance

1 https://www.kaggle.com/c/titanic



Algorithm 1 The proposed algorithm - binary attribute case
Input: Ktrain = (Gtrain,M ∪ ctrain, Itrain) is a formal context (a training set),
Ktest = (Gtest,M, Itest) is a formal context (a test set);
CbO(K, k) is the algorithm used to find all formal concepts of a formal context K
with intent cardinality not exceeding k;
inf : M ∪ ctrain → R is an information criterion used to rate classification rules (such
as Gini impurity, Gini gain or pairwise mutual information);
k is the maximal cardinality of each classification rule’s premise (a parameter);
n is the number of rules to be used for prediction of each test instance’s class attribute
(a parameter);
Output: ctest, predicted values of the class attribute for test instances in Ktest.

S = ∅, ctest = []. Initialize a set of formal concept intents (a.k.a. closed itemsets). This
set will be used to form classification rules for each test instance from Gtest. Initialize
a list of predicted labels for test instances.

for each test instance gt ∈ Gtest do
1. LetMt be a set of attributes of a test instance gt together with the negations
of the attributes not in g′t;
2. Build a formal context Kt = {Gtrain,Mt, It} where It = I ∩ (G×Mt). Infor-
mally, leave only a part of a context Ktrain with attributes from Mt;
3. With the CbO algorithm and a set S of already computed formal concept
intents, find all formal concepts of a formal context Kt with intent cardinality not
exceeding the value of the parameter k;
4. Meanwhile, calculate the value of the criterion inf for each concept intent and
keep n intents with highest values of the criterion. For each “top-ranked” concept
intent Bi determine ci, the most common class among objects from B′

i. Thus,
form {Bi → ci}, i = 1 . . . n, a set of classification rules for gt;
5. Predict the value of the class attribute for gt via a majority rule among
{Bi → ci}, i = 1 . . . n. Add it to ctest;
6. Add calculated intents to S.

end for

Table 2. A formal context built to classify a test passenger “Pclass = 3, SibSp =
0, Age = 34.5.”

Pclass! = 1 Pclass == 3 SibSp == 0 SibSp! = 1 Age ≥ 26 Age < 35

× ×
×

× × × × × ×
×

× × × × ×



Fig. 2. A sample from the Titanic dataset. Attributes: Pclass - passenger’s class, SibSp
- the number of passenger’s siblings and spouses on board, Age - passenger’s age,
Survived - whether a passenger survived in the Titanic disaster.

with 5 rules with at most 2 attributes in premise having highest gain in Gini
impurity.

2. The case “Outlook=sunny, Temperature=cool, Humidity=high, Windy=false”
corresponds to a set of attributes {os, tc} describing the test instance. Or,
if we consider the negations of the attributes, such case is described with a
set of attributes: {ōr, ōo, os, tc, ¯tm, t̄h, h̄n, w̄}.

3. We build a formal context with objects being the training set instances and
attributes of a test instance – {ōr, ōo, os, tc, ¯tm, t̄h, h̄n, w̄}. The correspond-
ing binary table is shown in Table 3.

Table 3. The training set instances with attributes of a test instance “Outlook=sunny,
Temperature=cool, Humidity=high, Windy=false”. Attributes: ōr – outlook is not rainy,
ōo – outlook is not overcast, os – outlook = sunny, tc – temperature = cool, ¯tm –
temperature is not mild, t̄h – temperature is not high, h̄n – humidity is not normal, w̄
– not windy, play – whether to play tennis or not (class attribute).

no. ōr ōo os tc ¯tm t̄h h̄n w̄ play
1 × × × × × ×
2 × × × ×
3 × × × × ×
4 × × × × × ×
5 × × × × × ×
6 × × × × × × × ×
7 × × × × × ×
8 × × × ×
9 × × × × ×

4. The diagram of the for the formal context given by Table 3 is shown in Fig.
3. The horizontal line separates the concepts with intents having at most 2
attributes.

5. 13 formal concepts with intents having at most 2 attributes give rise to 13
classification rules. Top 5 rules having the highest gain in Gini impurity are
given in Table 4.



Fig. 3. The concept lattice for the formal context represented with Table 3. The hori-
zontal line separates the concepts with intents having at most 2 attributes.

Table 4. Top 5 rules to classify the test instance “Outlook=sunny, Temperature=cool,
Humidity=high, Windy=false”

.

Rule Gini gain
{w̄, ¯tm} → play 0.278
{ōo, t̄h} → play 0.111
{ōo, os} → play 0.044
{ōo, ¯tm} → play 0.044
{ōr, h̄n} → play 0.044

6. The “best” rules mined in the previous step unanimously classify the test
instance “Outlook=sunny, Temperature=cool, Humidity=high, Windy=false”
as appropriate for playing tennis.

6 Experiments

We compare the proposed classification algorithm (“PCL” for Pattern Con-
cept Lattice based classification) with the results from [12] on several datasets
from the UCI machine learning repository.2

We used pairwise mutual information as a criterion for rule selection. Pa-
rameters k ∈ {3, . . . 7} and n ∈ {1, . . . 5} were chosen via 5-fold cross validation.

2 https://archive.ics.uci.edu/ml/datasets/{Breast+Cancer, Heart+Disease, Hepati-
tis, Horse+Colic, Ionosphere, Iris, Lymphography, Pima+Indians+Diabetes, Wine,
Zoo}



Table 5. Error rates in classification experiments with the UCI machine learning repos-
itory datasets.

Dataset C4.5 LazyDT EAC LAC PCL
breast 3.9 5.1 3.6 3.2 3.3
heart 18.9 17.7 18.1 16.9 16.5
hepatitis 22.6 20.3 17.9 17.1 16.8
horse 16.3 17.2 15.4 14.5 14.2
ionosphere 8.0 8.0 7.6 7.8 7.7
iris 5.3 5.3 4.9 3.2 3.3
lymph 21.0 20.1 20.2 19.1 17.9
pima 27.5 25.9 27.5 22.0 21.6
wine 7.9 7.9 7.2 3.4 4.1
zoo 7.8 7.8 6.6 6.5 7.1
Average 13.92 13.53 12.9 11.37 11.25

The described algorithms were implemented in Python 2.7.3 on a dual-core CPU
(Core i3-370M, 2.4 GHz) with 3.87 GB RAM.

The algorithm was also tested on a 2001 Predictive Toxicology Challenge
(PTC) dataset.3 Please refer to [9] and [17] for the description of the problem and
some notions on pattern structures with descriptions given by labeled graphs.
Here we compare the results of the proposed algorithm (Pattern Concept Lattice-
based classification) and the previously developed graphlet-based lazy associative
classification on the PTC dataset. The results are shown in Table 6.

Table 6. Experimental results for the male rats group of the PTC dataset “GLAC”
stands for “Graphlet-based lazy associative classification” [9], “PCL” stands for Pattern
concept lattice-based classification (proposed here). For “PCL” we used 5 best rules to
classify each test instance.

K nodes Accuracy Precision Recall F-score Time (sec.)

GLAC

2 0.36 0.32 0.33 0.32 5.8
3 0.68 0.83 0.68 0.75 17.4
4 0.59 0.57 0.62 0.59 65.7
5 0.55 0.7 0.62 0.66 196

PCL

2 0.4 0.38 0.33 0.35 15.5
3 0.69 0.85 0.66 0.74 39
4 0.62 0.6 0.61 0.6 161.3
5 0.58 0.74 0.61 0.69 412.4

To clarify, in both algorithms k-graphlet (parameter “K nodes” in Table 6)
graph intersections were build. In “GLAC”, each test instance is classified via vot-
ing among all classification hypotheses. In “PCL”, only n best (according to some

3 http://www.predictive-toxicology.org/ptc/



Fig. 4. An example of a pattern concept lattice.

information criterion) closed hypotheses are chosen (here we used n=5). As we
can see, “PCL” works slightly better with this dataset suggesting that choosing
“best” hypotheses for classification may lead to more accurate classification.

7 Conclusion and further work

In this paper, we have shown how searching for classification hypotheses in
a formal concept lattice for each test instance individually may yield accurate
results while providing succinct classification rules. The proposed strategy is
computationally demanding but may be used for “small data” problems where
prediction delay is not as important as classification accuracy and interpretabil-
ity.

Further we plan to interpret random forests as a search for an optimal hy-
pothesis in a concept lattice and try to compete with this popular classification
technique.
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