
Introducing MDML - A Domain-specific
Modelling Language for Automotive

Measurement Devices
Christian Burghard, Gerald Stieglbauer, Robert Korošec1

Abstract. The method of model-based mutation testing has
recently been introduced in the AVL List GmbH to automat-
ically test the various measurement devices within the com-
pany’s portfolio. However, the initial approach of using UML
as a modelling language turned out to be non-satisfying. In
this paper, we introduce a textual domain-specific language
for the sole purpose of modelling the behaviour of measure-
ment devices. Furthermore, we examine the technical differ-
ences to UML as well as the usability-related aspects, which
determine the acceptance of the language by its end users.

1 Introduction

Figure 1. Portfolio AVL Instrumentation and Test Systems

AVL Instrumentation and Test Systems provides a prod-
uct portfolio, which is applied in the automotive industry for
integration and testing activities within the field of power-
train engineering (see Figure 1). Instruments (measurement
devices, MDs) are an essential part of test systems, required
for measuring specific quantities of the unit under test (air and
fuel consumption, emissions, combustion, etc.). The measure-
ment devices are integrated into a test automation system
that orchestrates the different measurement devices partici-
pating in a test activity. An important part of the MD devel-
opment process is testing of the control interfaces and of the
devices’ functional operation states. To make the development
of testing procedures more effective and efficient, AVL initi-
ated the introduction of model-based mutation testing into
the process. The MoMuT test case generation tool [1, 2, 3]

1 AVL List GmbH, Hans-List-Platz 1, 8020 Graz,
email: {Christian.Burghard, Gerald.Stieglbauer,
Robert.Korosec}@avl.com

was used to generate test procedures, based on a model of the
MD’s functional behaviour. UML state diagrams were chosen
as the modelling language for the device behaviour. However,
this initial approach turned out to be non-satisfying in prac-
tice. An internal study revealed that UML was rejected for
various technical and usability-related reasons. In this paper,
we introduce a text-based domain-specific language (DSL) as
an alternative to UML state diagrams. We examine technical
aspects like semantics and expressiveness, as well as usabil-
ity aspects like simplicity of model creation and intuitive un-
derstandability. We finally compare this DSL to UML in the
context of our industrial case study and argue why the DSL
seems to fit better and increases the acceptance rate by the
end users.

The rest of this paper is structured as follows: Chapter
1.1 examines the MD testing process as it was before the
introduction of model-based testing. Chapter 1.2 describes
the former UML-based approach to model-based testing, as
well as the problems of this initial approach. In Chapter 2
we describe the design approach and implementation of our
DSL. Finally, the initial reactions of our test users, as well as
a comparison to UML are summarized in Chapter 3.

1.1 Previous testing approach

AVL vehicle and powertrain testbeds are typically comprised
of many different devices, such as measurement devices. The
individual MDs are controlled by a test automation software
called PUMA Open [4]. PUMA Open runs on a standard PC,
which is connected to the devices. The MDs are tested by a
group of test engineers. A server-sided abstraction layer al-
lows them to handle each MD in the form of a software ob-
ject which abstracts the device’s functionality [5]. To test the
integration of MDs into the automation system, simulation
models virtualize the functionality of the MDs. This virtual-
ization is required to avoid cost-intensive hardware and enable
device variant testing. For this purpose the test engineers use
a Testbed Simulator (TBSimu) which provides the same soft-
ware interface as the actual devices. For the automated testing
process, AVL uses an internal Test Automation Framework
(TAF), which allows the execution of various NUnit Tests
[6] on each MD’s software interface. Traditionally, the NUnit
tests are manually written by the test engineers. In most cases
they use the MD’s manual as a reference to define a set of test
cases. Currently, there is no way to objectively measure the



test coverage, which has to be estimated empirically by the
test engineer. In the event of a specification change, e.g. by
creating a new MD variant, the test suite for a MD has to be
manually revised. This process is error-prone and very time-
consuming.

1.2 Introduction of a model-based testing
approach

To make device testing more effective and efficient, a model-
based testing approach was investigated in the TRUFAL
project2 [3]. The functional operation states of the MDs can
generally be described in the form of state machines. As an
initial trial, a UML State Diagram of the AVL489 particle
emission measurement device was developed [5]. The defini-
tion of the necessary subset of UML model elements and their
semantics [1] was reused from the MOGENTES project3.

The UML-based device model of AVL489 was engineered
by a test user with the help of various domain experts and
served as an input for the MoMuT test case generator via
an intermediate language called OOAS [7]. MoMuT gener-
ated a series of abstract testing procedures in the so-called
Aldebaran file format [8]. These abstract test procedures were
ultimately converted to concrete NUnit tests which are exe-
cutable on the TAF. However, it turned out that the typical
test engineer has a very weak background in UML seman-
tics. In addition, currently available tools hardly provide any
support in guiding the users in using the right UML seman-
tics [1] for their intended purpose. On the other hand, even
a UML-experienced modeller had a hard time obtaining the
necessary information because UML’s abstraction approach
did not mirror the test engineers’ intuitive way of thinking,
which differs from standard UML state diagrams and turned
out not to be sufficiently represented by UML elements.

2 Introducing a domain-specific language

As we faced these challenges, we decided to create a domain-
specific language which is specifically tailored to MD be-
haviour modelling. This DSL is being designed in the ongoing
TRUCONF project4. TRUCONF is a follow-up to TRUFAL
and will extend the automated test case generation to incor-
porate the functional and non-functional aspects of MDs. An
overview of the TRUCONF toolchain is given in Figure 2.
The non-functional cost models (e.g. CPU load, memory con-
sumption, data rates, etc.) will be mostly obtained via model
learning. (This is currently subject of research and would thus
go beyond the scope of this paper.) Therefore, the DSL cur-
rently focusses on the modelling of functional behaviour. Such
a language has to satisfy the following requirements:

• The DSL has to be intuitively understandable to its end
users, even if they have no prior modelling experience. This
seems to be the most important requirement for the DSL’s
industrializability since the TRUFAL project has shown
that ignoring this leads to a strong rejection of the sug-
gested model-based testing approach by the test engineers.

2 https://trufal.wordpress.com/ (2016.07.29)
3 http://www.mogentes.eu/ (2016.07.29)
4 http://truconf.ist.tugraz.at/ (2016.07.29)

Figure 2. TRUCONF testing toolchain for measurement
devices. The impact of our DSL will be mostly confined to the

area indicated by the red dashed line.

• The DSL has to provide an efficient way to create MD
models in a compact and expressive form with semantically
well defined model elements.

• The DSL has to enable the generation of meaningful test
cases based on partial MD models. More specifically, the
test case generation needs to yield meaningful results, even
if the model only contains a subset of all inputs allowed
by the system under test (SUT). But for all allowed inputs
the SUT’s output has to conform to the output specified in
the model. Compare the Input-Output Conformance (ioco)
relation [9, 2]. (Currently, our test cases only test the pres-
ence of required outputs and not the absence of forbidden
ones, but the testing mechanism can be modified to test for
full ioco.) Furthermore, distributing an MD’s functionality
over several models should greatly facilitate variant testing.

2.1 Language design

In accordance with the test engineers an initial approach of
developing a textual DSL based on Gherkin [10] was evalu-
ated. This language is designed for behaviour-driven devel-
opment and allows simply structured scenario descriptions
in natural language. Colombo et al. have previously used
Gherkin to generate test cases based on state machine models
[11]. In their approach the authors describe each transition of
their state machine with a Gherkin scenario. For each sce-
nario they use the keyword Given to denote the current state,
the keyword When for external triggers and the keyword Then

for the next state. In our case the external triggers represent
the AK commands [12] that are used to control the device
remotely. For example:

Scenario : Go from Pause to Standby

Given the dev i ce i s in State Pause

When I send the s i g n a l STBY

Then the dev i ce should be in State Standby .

As a basis for the language design, a Gherkin model of
AVL489 was developed. After that the Gherkin-based lan-



guage design was iteratively refined and optimized in close
interaction with its end users to describe the MD in a concise
and easily understandable way. The explicit naming of sce-
narios was omitted because it was deemed redundant. The
natural-language formulation of current state, trigger and
next state was replaced by a compact formal notation. For in-
stance, since there could be many transitions originating from
one current state, the scenarios could be grouped in blocks
with a common Given statement. The semantics of the Then

statement was slightly strengthened to describe the MDs re-
action, rather than a postcondition. With these changes the
model length was reduced by more than half in the very first
design iteration. After some additional syntactic fine-tuning
we arrived at the following notation:

given DeviceState = Pause {
when Action = STBY then DeviceState −> Standby ;

when Action = SMES then DeviceState −> Measure ;

when . . . }

This example includes the same transition as the previous one,
as well as another transition to the state Measure and also
hints at other possible transitions leaving the state Pause. If
the state machine encompasses several orthogonal state vari-
ables, the given blocks can be cascaded to form a decision
tree. To reflect the high degree of purpose orientation, we
named our language ”Measurement Device Modelling Lan-
guage” (MDML). In this paper, we merely show a glimpse of
MDML, as a detailed language description would go beyond
the scope of this work.

2.2 Implementation

To complement our purpose-driven language design, we
wanted to supply the test engineers with an editor that sup-
ports them in their concrete work as extensively as possi-
ble. Thus we decided to implement a plugin for the widely
used Eclipse IDE [13] by means of the Xtext framework [14].
Xtext automatically creates an Eclipse-plugin from a gram-
mar definition. This plugin provides a parser, as well as syntax
highlighting and simple syntactic quick fixes out-of-the-box.
Moreover, it highly facilitates the implementation of other
features like auto-completion, code formatting, and tool tips.
Such features greatly assist the test engineer in building a
syntactically and semantically correct model and improve on
the perceived lack of user-friendliness during the TRUFAL
project.

As we did with our language design, we put the end users in
the very center of our tool integration process. We encourage
the test engineers to gain user experience and give feedback
that will allow us to iteratively improve the IDE.

3 Results

3.1 User feedback

After its implementation, a prototype MDML IDE was made
available to the test engineers, as well as a trial group who
had no previous involvement in MD development and testing.
All users agreed that MDML is very comprehensible and easy
to learn. All test users were able to generate an initial mea-
surement device model based on its manual within an hour.

This is an important improvement, since the mere introduc-
tion to the UML IDE Visual Paradigm [15] and the used UML
semantics took significantly longer. One test user was tasked
with the modelling of several MDs over an extended period
of time. Within a week, he created extensive models of all the
devices that were assigned to him. The models were based
on the behaviour specification in the MD manuals and cross-
referenced with the behaviour of the virtual TBSimu devices.
However, a final judgement of the model quality can only be
made when the generated test suites are applied to the real
devices.

On the other hand, the test users expressed the wish for
several concrete IDE features: It would be helpful to provide
the test engineers with some kind of graphical feedback to
assess the degree of completion of the current model at first
glance. Here several aspects of UML state diagrams could be
reused, but in a use case-tailored manner and rather as an
optional view with limited editing features, than a first class
input language. Furthermore, the semantical correctness of
an MDML model is not fully defined by its grammar. Thus
there is a strong need for a model validation feature. For ex-
ample it has to be checked if the decision tree allows outgo-
ing transitions for all possible states and that no dead ends
are produced. The validation result can be given back to the
user in the form of a graphical or tabular view. Moreover
the validator has to ensure that the model does not contain
multiple when ... then statements for the same input that
are allowed under the same conditions, which would produce
non-deterministic behaviour.

3.2 Selected key differences to UML

MDML aims to improve on the practical and technical short-
comings of the previously used UML approach. However,
MDML’s language design is still in progress and it does not
yet support timed behaviours. A selection of key differences
between UML and MDML in the context of our use case is
given below:

Figure 3. The Manual/Remote sub-state machine of AVL489.

3.2.1 Concrete examples

1. If the state machine contains several parallel sub-state ma-
chines, the UML semantics requires the user to incorporate
hidden boolean variables for communication between these
sub-state machines. This issue is best described in the form
of an example: Figure 3 shows the Manual/Remote sub-state
machine of the AVL489 device. The MD can only receive
commands from PUMA when it is in the state Remote.
Thus all the inputs that change the states of a parallel
sub-state machine (e.g. Standby, Measure, etc.) can only
be accepted if this condition is fulfilled. However, the UML
semantics does not allow for direct communication between
the respective sub-state machines. Instead, the transition
guards depend on boolean variables that communicate the



respective states. These variables have to be explicitly set
in the states’ entry actions. For example, in the entry ac-
tion of the state Manual, the Manual variable is set to true,
while it is set to false in Remote. This appears somewhat
strange as it reads like ”When you are in Manual, then be-
come Manual”. These internal variables are not visible at
first glance, so they reduce the readability and somewhat
undermine the graphical nature of the model. In MDML
this shortcoming does not occur, as the decision tree can
be made directly dependent on all state variables present
in the model, for example:

given Connect ionState = Remote {
given DeviceState = Standby {

when . . . }
given . . . }

2. In addition to the state diagram, the UML approach re-
quires several class diagrams to describe the interface be-
tween the system under test and the environment, which
explicitly defines all possible inputs and outputs. In MDML
this information is replaced by a short header segment that
defines the state variables and inputs in the following way:

public statevar DeviceState {Pause , Standby ,

. . . } = Pause ;

input Action {SPAU, STBY, . . . } ;

State variables are defined by their name, their range and
their initial state. The keyword public denotes that its
current state is visible to the environment. Input symbols
are explicitly defined and can be grouped into named input
channels, e.g. ”Action”. Currently, MDML does not allow
the explicit definition of outputs, but this feature can be
added, should the need arise.

3.2.2 Maintainability

The debugging and fine-tuning of the UML model of AVL489
took up to 40 hours. This is due to the fact that the accurate
representation of all small details turned out to be difficult
and sometimes required a complete model revision. Due to
the improvements mentioned above and to the guidance that
our MDML IDE aims to provide, we hope to greatly reduce
the necessary effort. It is also worth mentioning that all el-
ements in an MDML model are immediately visible to the
user while important aspects of a UML model can be hidden
in various property menus of the respective editor. Hidden
information can be a desirable feature under some circum-
stances, for example in a graphical representation designed to
show an overview, but it can also pose a great challenge to an
inexperienced user.

3.2.3 Timing behaviour

UML represents timing behaviour in a very intuitive man-
ner. Although timing is an important part of most MDs’ be-
haviour, MDML is currently lacking a representation of timed
transitions. At the moment we treat timed actions as a kind
of input (e.g. ”the user waits for 20 seconds and the device
reacts to the user’s inaction”). However, this leaves a gap in
MDML’s semantics, as it is not defined at which point the
time frame starts. An important part of our current work is

to come up with a clearly defined representation that mirrors
the intuitive timing semantics of UML state diagrams.

3.3 Conclusion and outlook

We have created a language design that proved to be highly
understandable to test engineers and is very easy to learn.
Their current feedback is quite promising and their involve-
ment in the DSL design process has helped to increase the
DSL’s acceptance. While the textual model representation
gives the user great control over small details, there is still
a need for a graphical representation to show the big pic-
ture. The implementation of both a textual and a graphi-
cal representation are important goals of our ongoing TRU-
CONF project. Furthermore, the Eclipse-based IDE will be
extended to encompass a validation of the MDML model in
terms of coverage and unambiguousness. While MDML solved
several issues of the UML approach, its language design is
still incomplete. The most important addition will be a syn-
tax and semantics for timing behaviour. This and other im-
provements are subject of our current work. Most importantly,
though, MDML will ultimately have to prove its worth for in-
dustrial test case generation. An upcoming publication will
describe the conversion of MDML into the intermediate lan-
guage OOAS and the test case generation process.

REFERENCES

[1] W. Krenn, R. Schlick, and B. K. Aichernig, “Mapping UML
to labeled transition systems for test-case generation: A trans-
lation via object-oriented action systems,” vol. 6286 LNCS,
pp. 186–207, 2010.

[2] E. Joebstl, Model-Based Mutation Testing with Constraint
and SMT Solvers. Dissertation, Graz University of Technol-
ogy, 2014.

[3] B. K. Aichernig, J. Auer, E. Jöbstl, R. Korošec, W. Krenn,
R. Schlick, and B. V. Schmidt, “Model-based mutation testing
of an industrial measurement device,” vol. 8570 LNCS, pp. 1–
19, 2014.

[4] “AVL PUMA Open Automation Platform.” https:
//www.avl.com/-/avl-puma-open-automation-platform.
(2016.07.29).

[5] J. Auer, Automated Integration Testing of Measurement De-
vices. Bachelors thesis, Graz University of Technology, 2013.

[6] “NUnit Framework.” http://www.nunit.org/. (2016.07.29).
[7] S. Tiran, “The Argos Manual,” tech. rep., 2012.
[8] “Aldebaran manual page.” http://cadp.inria.fr/man/

aldebaran.html. (2016.07.29).
[9] J. Tretmans, “Test Generation with Inputs, Outputs and

Repetitive Quiescence,” Software-Concepts and Tools, vol. 3,
pp. 103–120, 1996.

[10] “Gherkin.” https://cucumber.io/docs/reference#gherkin.
(2016.07.29).

[11] C. Colombo, M. Micallef, and M. Scerri, “Verifying Web Ap-
plications: From Business Level Specifications to Automated
Model-Based Testing,” Electronic Proceedings in Theoretical
Computer Science, vol. 141, no. Mbt, pp. 14–28, 2014.

[12] K. Jogun, “A Universal Interface for the Integration of Emis-
sions Testing Equipment Into Engine Testing Automation
Systems: The VDA-AK SAMT-Interface,” SAE Technical
Paper, 1994.

[13] “Eclipse IDE.” http://www.eclipse.org/. (2016.07.29).
[14] “Xtext Framework.” https://eclipse.org/Xtext/.

(2016.07.29).
[15] “Visual Paradigm.” https://www.visual-paradigm.com.

(2016.07.29).


