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Abstract. We present our work in progress in the direction of gener-
ating realistic, challenging and diverse test data in order to evaluate
a banknote checking system. Test image generation can be divided
into, firstly, the design and composition of highly diverse patterns to
form the digital design of a banknote, secondly, the application of
different variations which are caused by ink, paper and physically
printing the note and, thirdly, the simulation of the subsequent image
acquisition, which includes variations due to banknote transport, illu-
mination, camera optics and electronics. These simulations are based
on and compared to scans of demo banknotes. We present initial re-
sults in simulation of banknote paper, printing and image acquisition.
We demonstrate the approach in an initial investigation on synthetic
defect generation and its impact on banknote checking results. Al-
gorithmic validation of checking routines is also demonstrated. First
conclusions are drawn and further work is discussed.

1 Introduction

High quality standards in banknote production are commonly
achieved by optical inspection systems. As large numbers of ban-
knotes are printed each year, e.g. 8 billion notes in Eurosystem in
2014, the quality inspection system has to run at high speed. Please
note that counterfeit detection is not an issue for our work. The va-
riety of printing processes, e.g. intaglio and offset printing [10], and
security features complicates the inspection system. Additional vari-
ations are introduced by different printing presses as well as vari-
ation in banknote paper etc. Finally, the image acquisition process
itself also introduces variations. The common approach in optical
banknote inspection is to define a set of so called fit banknotes to be
accepted by the banknote inspection system, i.e. the system is trained
on these. Any significant deviation from this set renders a banknote
unfit [6].

In this paper we present our work in progress in the direction of
generating realistic, challenging and diverse test data [1] in order to
evaluate a banknote checking system. For this, a software framework
has been set up with two main goals in mind. Firstly, to evaluate
the results of banknote checking systems when certain defects are
applied to its input images and, secondly, to experiment with and
improve on existing algorithms. Fig. 1 shows the components of the
presented test system for banknote checking.

This paper is organized as follows. Sec. 2 introduces our modular
approach to generate test data. Some use cases of our tool are dis-
cussed in Sec. 3, and Sec. 4 summarizes the state of the work and
suggests future work.
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Figure 1. Subsystems of our test system for banknote checking: test
pattern generation, simulation of the production of banknotes, simulation of

the image acquisition, which is usually done with a line scan camera that
includes a transport mechanism. The original software that makes up the

banknote checking system itself is used and evaluated.



Figure 2. An artificial banknote pattern composed of 32 different tiles,
which mimic high-resolution features of intaglio printing.

2 Test Data Generation

The central aspect of this work is to generate realistic, challenging
and diverse test data that is then entered into the banknote checking
system.

Test image generation can be divided into

1. the design and composition of patterns to form the digital design
of a banknote with a high variability, which will be presented in
Sec. 2.1,

2. application of different variations which are caused by physically
printing the note, which usually happens in different phases and
includes variabilities due to paper, ink and the press itself, see
Sec. 2.2 and

3. image acquisition, which includes transport, (varying) illumina-
tion conditions and camera optics and electronics, as well as the
sensing itself, see Sec. 2.3.

The banknote checking system receives digital images of a ban-
knote as an input, performs several tests and returns a fit/unfit deci-
sion. With the aid of this work, we can evaluate and improve existing
algorithms, see Sec. 3.

2.1 Pattern Generation

In order to have test images, whose print and acquisition could be
simulated, a set of exemplary patterns was developed. Our print pat-
terns are subdivided into tiles. The reference image in Fig. 2 mimic
especially high-resolution features of intaglio printing [9], e.g. Guil-
loche patterns. Some tiles with extreme artificial test patterns are also
included.

The considered resolution is 0.2 mm/pixel (127 dpi), which is typ-
ical for current banknote checking systems [7]. However, the ref-
erence images (see Fig. 2) are designed in eightfold precision, that
is 0.025 mm/pixel (1016 dpi), which allows for introducing errors in
sub-pixel accuracy and simulating aliasing and other digitizing prob-
lems. The high resolution images are rotated in the range from −5◦
to +5◦ with an interval of 0.05◦ and (separately) shifted by 0 to 15
pixels in x- and y-direction with an interval of 1 pixel (0.025 mm).
The reason for using the range of 0 to 15 pixels for shifting is that
this covers the range of 2 pixel in the considered resolution. These 2
pixels are advisable because of a following down-sampling step.

Figure 3. A sample of demo banknotes provided by Oesterreichische
Banknoten und Sicherheitsdruckerei (OeBS) that were used for scanning in

order to have meaningful statistics about print variations.

2.2 Simulating Banknote Paper and Printing

To derive a realistic model of all the different factors that cause
prints to look differently, we took a reverse engineering approach
and scanned the front and back side of 110 demo banknotes at a res-
olution of 1016 dpi with a standard Epson scanner, see Fig. 3.

We then cut out blank banknote regions; the average pixel value
in a blank region of a banknote (”allonge”) allows for calibrating the
color values. After subtracting this average, the remaining deviations
show how inhomogeneous white paper is.
The material shows a certain ”cloudiness” that can be seen when the
contrast in the gray value image is enlarged (see Fig. 4, top). This
behavior can be quantified using a set of co-occurrence matrices [8].
From the 110 scanned images, which show quite some variety, we
generate an even larger number by taking convex combinations of
these and then use the texture synthesis algorithm of [3] to generate
new synthetic paper images (see Fig. 4, bottom).

We plan to do the same with printed regions of the banknote scans
in order to receive a model for color variations.

2.3 Simulating Image Acquisition

There is a number of effects that have to be considered when mod-
eling the image acquisition process [4, 5]. Besides of optical effects
e.g. focus, lens distortions, and lens aberrations, there are further ef-
fects caused by the camera chip like camera-noise, dynamic range,
quantization, integration over the pixel area and, as the case may be,
demosaicing. Also illumination variations – e.g. caused by aging of
illumination units – influence the appearance of images. Moreover,
as banknotes are often acquired in a line-scan inspection process,
distortions caused by the transport play a crucial role.

We started modeling the image sharpness given a certain camera
and optics. The image sharpness results from the lens’ sharpness
combined with the pixel resolution of the camera chip and possi-
ble transport blur. Measuring the sharpness of an image is done by
means of the slanted edge method [2] for digital camera and scanner
analysis. The slanted edges are sharp black/white edges on a calibra-
tion chart (Fig. 5). In the camera image that edge appears blurred due
to the mentioned effects. By measuring the blur of the edge within
the image perpendicular to the edge itself, one can derive the spa-
tial resolution, i.e. sharpness, of the camera system. A robust edge
spread function (ESF) measurement can be obtained by combining a
number of measurements along an edge.

The calibration sheet image, artificially generated in high-
resolution, is blurred with a number of different Gaussian kernels.



Each blurred image is down-sampled to target resolution and the
result’s sharpness is measured in horizontal and vertical directions.
Those measures are compared with the measured sharpness values
from the camera system’s image. The chosen Gauss-Kernel is the
one resulting in the smallest sharpness difference. By means of that
identified blurring kernel it is possible to simulate the sharpness of
the target camera system for arbitrary patterns, artificially generated
or scanned ones.

Additionally we modeled the camera noise, as this effect can be
relatively easily measured for the real camera system. A noise pattern
comprising the same statistical data was then be generated and added
to modeled target images.

3 Testing the Banknote Checking System
With the synthetic images of Sec. 2, we carried out experiments for
the two main goals of our testing software, namely evaluate banknote
checking systems and experiment with inspection algorithms.

3.1 Evaluating the System with Synthetic Data
We placed 8∗16 = 128 exemplary defects in form of red dots on our
synthetic banknote, see Fig. 6, top. This was done at high resolution,
where each dot has a diameter of 48 pixels (1.2 mm). The red dots in
the top row have sharp edges. The sharpness decreases from top to
bottom. The blending factor decreases for each column from α = 1
on the left to α = 1/16 on the right.

The banknote checking system was trained using 456 synthetic
generated banknotes (256 translations and 200 rotations) with added
random noise. The banknote with the added red dot defects was then
checked resulting in Fig. 6, bottom. The red and green markings show
found defects. Each severe defects (red marking) alone would be
sufficient to classify the banknote as unfit. Moderate defects (green
marking) are acceptable if there number is not too big.

Figure 4. ”Cloudiness” of original banknote paper (top, amplified
contrast) and synthetic (bottom, amplified contrast) texture obtained using

[3]. These variations were applied to our artificial banknote patterns in order
to simulate the printing process.

Figure 5. Our calibration sheet used for slanted edge sharpness
measurements comprising slanted sharp edges in (near) horizontal and

vertical directions, respectively.

3.2 Improving Existing Algorithms
The camera resolution is 0.2 mm/pixel, but in our inspection system
the pixel by pixel inspection is done in 0.4 mm/pixel. The images are
warped (rectification to compensate shifts and rotations) and reduced
to this resolution. The reduction is done by applying a smoothing
filter and selecting every second pixel (we call this shrinking). We
have therefore the steps warp, smooth and shrink. It is inevitable to
smooth before shrinking but it is not that clear when warping should
be done. It has been suspected that it is best to warp first. We verified
this with our test system.

The currently checking system is heavily adopted and optimized to
specialized hardware. We have therefore reimplemented some parts
of the inspection process in our simulation. This code is less effi-
cient but much more flexible. It was then easy to test different orders
of warp, smooth and shrink. The results are presented in Fig. 7. It
shows pixel by pixel the gaps between lowest and highest intensity
values in the training set. Large differences (dark pixels in Fig. 7) in-
dicate wide ranges of allowed pixel values which means less sensible
inspection. It can be observed that is best to warp first (Fig. 7 (e) and
(f)). But it is acceptable to warp between smoothing and shrinking.
This may not look very appropriate but can help to optimize run-
time when warping (pixel interpolation) is computational expensive
with the used hardware. The gray backgrounds in the images on the
right side of Fig. 7 are caused by the artificial noise added to the test
images.

4 Conclusions & Future Work
As most of this paper is work-in-progress, only preliminary results
in test data validation could be presented here. However, it could
be shown that banknote checking systems can be benchmarked
with simulated printing defects using synthetic data. Furthermore,
an evaluation for the order in which specific steps of the checking
system should be applied, was carried out.

Aside from implementing missing steps that were already de-
scribed in the previous sections, we plan

1. to carry out the whole testing with synthetic color images and to
inspect the color of the print itself,

2. to use more realistic printing defects like blank spots/streaks,
blade streaks or hickeys and

3. to investigate relative shifts of the printing plates, i.e. incorporate
different printing phases and the alignment of the printing plate
w.r.t. the paper sheet.



Figure 6. Evaluation results: top: Artificial defects (red dots) with decreasing intensity (left to right) and edge sharpness (top to bottom) on a synthetic
banknote. bottom: Defects recognized by our banknote checking system. Severe defects are marked in red and moderate defects in green. The most severe

defect is marked by a cyan border (first defect column, defect row 6).



(a) ‖image‖ = 34.5 (b) ‖image‖ = 62.5

(c) ‖image‖ = 12.5 (d) ‖image‖ = 44.0

(e) ‖image‖ = 9.5 (f) ‖image‖ = 43.3

Figure 7. Performance evaluation for different orders of processing: Difference images of trained Min- and Max-images are shown. The images are doubled
in contrast and inverted (white means 0) for presentation purposes. Left (a c e): without noise. Right (b d f): with added noise. (a) and (b) Smooth → Shrink →

Warp. (c) and (d) Smooth → Warp → Shrink. (e) and (f) Warp → Smooth → Shrink.



ACKNOWLEDGEMENTS
We thank Oesterreichische Banknoten und Sicherheitsdruckerei
(OeBS) for providing the demo banknotes.

REFERENCES
[1] Kevin Bowyer and P Jonathon Phillips, Empirical evaluation tech-

niques in computer vision, IEEE Computer Society Press, 1998.
[2] Peter D. Burns, ‘Slanted-edge MTF for digital camera and scanner anal-

ysis.’, in Proc. of PICS, pp. 135–138. IS&T, (2000).
[3] Alexei A Efros and Thomas K Leung, ‘Texture synthesis by non-

parametric sampling’, in Proc. ICCV, volume 2, pp. 1033–1038. IEEE,
(1999).

[4] EMVA. Standard 1288, standard for characterization of image sensors
and cameras, 2010.

[5] Robert D Fiete, Modeling the imaging chain of digital cameras, SPIE,
Bellingham, 2010.

[6] Jan-Mark Geusebroek, Peter Markus, and Peter Balke, ‘Learning ban-
knote fitness for sorting’, in Proc. of International Conference on Pat-
tern Analysis and Intelligent Robotics (ICPAIR), volume 1, pp. 41–46.
IEEE, (2011).

[7] Giesecke & Devrient, www.gi-de.com/gd_media/media/
en/documents/brochures/processing_1/OBIS-3.pdf,
OBIS 3 - High-resolution Optical Banknote Inspection System for
BPS R© 2000 OBIS.

[8] Robert M Haralick, Karthikeyan Shanmugam, et al., ‘Textural features
for image classification’, IEEE Transactions on systems, man, and cy-
bernetics, (6), 610–621, (1973).

[9] J. Hofmann, E. Gillich, H. Dörksen, D. Chassot, Th. Türke, and V. Lo-
hweg, ‘New strategies in image processing for standardized intaglio
quality analysis in the printing process’, in Proc. ODS, (2014).

[10] R. L. van Renesse, Optical document security, Artech House,
Boston/London, 3rd edn., 2005.


