
Local Selection for Heuristic Algorithms
as a Factor in Accelerating Optimum Search

Danuta Jama
Institute of Mathematics

Silesian University of Technology
Kaszubska 23, 44-100 Gliwice, Poland

Email: Danuta.Jama@polsl.pl

Abstract—Increasing the use of heuristic algorithms in practi-
cal applications makes it necessary to perform numerous modifi-
cations in order to minimize possible disadvantages. Acceleration
and increasing precision have become pressing problems of
today’s theory of applied computer science and optimization
theory. In this work, the idea of a factor which minimizes the time
to search the solution space by heuristic algorithms is presented.
The proposed modification is described and tested for various
test functions. The results are presented and discussed in terms
of effectiveness of the proposed modifications.

I. INTRODUCTION

Nowadays, IT solutions can be found everywhere from hos-
pitals and factories to our own homes. Computer systems not
only replace men at various levels of action, but also support
our lives. In hospitals, the use of such solutions allow for faster
diagnosis of disease or even prevent their uprising. In large
factories, production of goods is done automatically, without
the participation of the people due to a more accurate precision
and high speed operation. Moreover, such systems have also
found applications in our lives, eg.: washing machines or blood
pressure monitors.

Each computer activity in their substrates has numerous
algorithms, through which it operates in a certain way. Be-
sides the classic algorithms, the application of computational
intelligence is becoming increasingly popular because of the
ability to obtain accurate results in a short time. Computational
intelligence is represented primarily by three branches – fuzzy
logic, neural networks and algorithms inspired by natural
phenomena. The last group is classified also to optimization
theory, which plays an important role in modern information
technology. In [1], Dugun et al. showed that use of these
algorithms allows for solving optimization problems of con-
struction and in [2], an optimization technique used in order
to solve the capacitated vehicle routing problems was shown.
Additionally, in [3], the idea of using one of the optimization
algorithms to minimize the drug protein integration energy was
discussed. Again in [4], Mohandes discussed the problem of
the quality of solar radiation received by the Earth’s surface
and proposed the idea of modeling global solar radiation using
neural networks and optimization algorithm.

Copyright c© 2016 held by the authors.

Due to the numerous applications of optimization algo-
rithms, in this paper we show that the introduction of local
selection as a factor of decreasing the time of the algorithm
is an effective modification. For testing purposes, some well-
known functions were taken and used for the purposes of
verification of the proposed technique.

II. TEST FUNCTIONS FOR OPTIMIZATION PURPOSES

Test functions for optimization problems are called multiob-
jective function, where the determination of a global minimum
or maximum value is an unsolvable problem for well-known
algorithms for finding extremes. Multiobjective functions are
often called artificial landscapes due to the chart, which is
often a complicated surface likened to the known landscapes
found in nature.

The first function is called Egg holder’s function which
includes many local extremes - it can cause getting stuck in
one of them. The function is defined as

fEggholder(x) = −(x2 + 47) sin

(√∣∣∣x1
2

+ (x2 + 47
∣∣∣)

−x1 sin
(√
|x1 − x2 − 47|

)
,

(1)

wherein x is a point in 3D space with spatial coordinates
marked as x1 and x2. This function has a number of
global minimums/maximums, for instance fEggholder(x) =
−959, 6418 obtained in point x = (512; 404, 2319). Function
is shown in Fig. 1.

Easom function is the second function selected in the mini-
mization problem. The function is described by the following
equation

fEasom(x) =
− cos(x1) cos(x2)

exp((x1 − π)2 + (x2 − π)2)
, (2)

which reaches a global minimum fEasom(x) = −1 at the
point x = (π;π). Function is shown in Fig. 2.

The last function is a Himmelblau’s function representing a
flattened landscape and described as

fHimmelblau(x) = (x21 + x2 − 11)2 + (x1 + x22 − 7)2. (3)

This function achieves only one global maximum at the point
x = (−0, 270845;−0, 923039) equals fHimmelblau(x) =
181.617. Function is presented in Fig. 3.

1

Fig. 1: Egg holder’s function

Fig. 2: Easom’s function.

III. HEURISTIC ALGORITHM

Heuristic algorithms are one of the most important tech-
niques for finding the global optimum for multiobjective
function in large spaces solutions. Until today, several methods

inspired by natural phenomena have been modeled. One of
the drawbacks of this type of algorithms is no guarantee of a
correct solution at a predetermined number of iterations. The
analysis of the convergence of one of the methods, S.Arora and
S.Singh shown in [5]. On the other hand, their use allows to

2

Fig. 3: Himmelblau’s function.

obtain in a short time approximate solution using a computer
with low computational efficiency.

A. Wolf Search Algorithm

In 2012, Tang et al. [6] have created a model of behavior
of wolves while looking for food and avoiding their enemies,
which allowed for the creation of bio-inspired heuristic al-
gorithm. The algorithm assumes that the wolf is represented
as a point x in the solution space. Each wolf has a fixed
visual area with a radius r – wolf can sense the company
only in the visible range and only in this area, he can move
(in one iteration). The position is evaluated in terms of fitness
functions Θ(x) what is understood as a quality of food in this
area. There is a possibility that if the enemy of a wolf appears
in his sight, he will escape to another position outside the
range of his vision.

Wolves stick together, and so the greater the distance
between a pair of wolves, the place is less attractive. Wolf
moves to find prey, and therefore a better place (due to the
fitness function). The movement carried out by the following
equation

xnew = xactual +β0 exp(−r2)(xneighbor−xactual) +γ, (4)

where β0 means the ultimate incentive (it is a parameter which
is set at the beginning of the algorithm), xneighbor is the closest
neighbor with better adaptation, γ is random number from

[0, 1] and r means the distance between xactual and xneighbor
defined as the Euclidean metric

r = d(xactual, xneighbor) =

√√√√ 2∑
i=1

(xactual,i − xneighbor,i)2.

(5)
Wolves hunt using a stalking process , what can be divided

into three stages of preying behavior – initiation, passive action
and escape. The first stage involves the movement in the
field of view of a wolf, which means finding a better place
according to

xnew = xactual + αvγ, (6)

where v is the velocity of a wolf. Passive hunting means stay in
your current location, to the moment when the enemy appears.
The third stage occurs when the enemy is close to a wolf.
Escape is modeled by

xnew = xactual + αsγ, (7)

where s is the step size. Wolf Search Algorithm implementa-
tion is presented in Algorithm 1.

B. Water Waves Algorithm

One of the last algorithms inspired by the natural phe-
nomenon algorithm is a model of water waves movement
presented by Zheng et al. [7]. A point x = (x1, x2) in the
solution space is called the wave. The algorithm simulates
the movement of water waves, and so the following three

3

Algorithm 1 Wolf Search Algorithm

Start
2: Define the number of iterations T , number of wolves n,

radius of the visual range r, step size s, velocity factor α
and coefficient appearance of the enemy palpha
Define fitness condition Θ(·)

4: Create an initial population of wolves in random
t := 0

6: while t ≤ T do
if t > 0 then

8: Generate 80% of new waves
end if

10: for each wolf xactual in population do
Prey initiatively using (6)

12: Generate new position xnew according to (4)
if d(xactual, xnew) < r ∧ Θ(xnew) > Θ(xactual)
then

14: Prey new food passively
end if

16: Generate new location
Generate random number β ∈ [0, 1]

18: if β > palpha then
Escape to a new position using (7)

20: end if
end for

22: if t 6= T then
Take 20% of the best adapted waves to the next
iteration

24: end if
t+ +,

26: end while
Return the best wolf xglobal as a solution

28: Stop

operations are modeled - propagation, refraction and breaking.
Propagation is understood as a movement of waves from deep
water to shallow. During this movement, the wave height
increases but the length decreases. This step is described as

xnew = xactual − 2λnew(xactual)v, (8)

where v is random factor in the range of [−1, 1] and λ(y) is
a function that returns the value of the wavelength y and it is
formulated as

λnew(y) = λactualα
Θ(y)−Θmin + ε

Θmax −Θmin + ε
, (9)

where Θ is a fitness function, Θmin and Θmax are respectively
the minimum and maximum values in a particular iteration of
the algorithm, ε is a small number to prevent division by zero
and α is the wavelength reduction coefficient.

After propagation, the next stage is refraction – it is a
phenomenon of changes in wave direction, where the height
reaches a value of 0. The new position after refraction of the
wave is modeled as

xactual = N(µ, σ), (10)

where N(µ, σ) is a random number from the normal distribu-
tion with µ – mean and σ – standard deviation defined as

µ =
|xglobal + xactual|

2

σ =
|xglobal − xactual|

2

, (11)

where xglobal is the best wave (solution) in current iteration.
During refraction, the height of the wave is also modified by

λnew = λold
Θ(xactual)

Θ(xnew)
. (12)

The final stage of wave movement is breaking, which
describes the movement of the wave at a depth below a certain
threshold level – the velocity exceeds the wave celerity. The
breaking stage is understood as a local search calculated as

xnew = xactual + 2βN(0, 1), (13)

where β is the breaking parameter.

Algorithm 2 Water Waves Algorithm

1: Start
2: Define the number of iterations T , number of waves n
3: Define fitness condition Θ(·)
4: Create an initial population of waves in random
5: t := 0
6: while t ≤ T do
7: if t > 0 then
8: Generate 80% of new waves
9: end if

10: for each xactual do
11: Create xnew using (8)
12: if f(xnew) > f(xactual) then
13: Replace xactual with xnew
14: if f(xnew) > f(xglobal) then
15: Break xnew according to (13)
16: Replace xglobal with xnew
17: end if
18: else
19: Reduce the height of the xactual by one
20: if the height of the wave is 0 then
21: Refract xactual to xnew by (10)
22: end if
23: end if
24: Update the wavelengths using (9)
25: end for
26: if t 6= T then
27: Take 20% of the best adapted waves to the next

iteration
28: end if
29: t+ +,
30: end while
31: Return the best wave xglobal as a solution
32: Stop

4

IV. A FACTOR IN ACCELERATING THE FINDING OPTIMUM

In the heuristic algorithms, the initial population is selected
at random. Such a solution for complex functions increases
the risk of getting stuck in a local optimum (see Fig. 1).
To remedy this situation, the initial population can be placed
in specific locations in the solution space, i.e. all individuals
are positioned at equally-spaced. As a result, the population
forms a grid that covers the entire space. In the next step,
each individual is multiplied to cover a larger area. For every
individual is made local search. Each of the individuals is
evaluated by fitness function and 25% of the best fittest are
selected as the initial population.

Local search is done by a decrease gradient. The algorithm
starts at a point x, for which (the negative for minimization
problem) gradient is calculated as

∇Θxi
=
∂Θ(x1, x2)

∂xi
for i = 1, 2. (14)

Gradient indicates the direction of the fastest growth the
value of the function at the measured point. In the next step,
the next point is found according to the direction defined by
the gradient as

xnew = xactual − λ∇Θx, (15)

where λ is the value of step. A factor implementation is shown
in Algorithm 3.

V. EXPERIMENTAL RESULTS

Numerical tests were performed to search global optimum
of all functions described in Section II. For the selected amount
of the population (n = 100 individuals) and iteration (10,
100, 1000) the results obtained for the original and modified
methods. The results in terms of accuracy are presented in
Tables I, II and III. The obtained average values for 10
experiments in terms of accuracy of the solution from time
are presented in Fig. 4.

Fig. 4: The dependence of the accuracy from the average time.

Based on the obtained data, the application of the mod-
ification in terms of accuracy is only cost-effective for a
large number of iterations - the results are more accurate
than others. For quantities less than 1000, better accuracy

is achieved in the case of original algorithms. In terms of
acceleration of the algorithm, additional calculations slow
down the operations for small number of iterations. Similar
to the accuracy, modifications is valuable when there will be
a need for a much larger number of iterations.

VI. FINAL REMARKS

The proposed modification reduces operational time heuris-
tic algorithms and increasing the accuracy of their operation,
assuming a large number of iterations or very accurate results.
On the basis of the performed test for the selected function,
the modification shown that it is possible to reduce the time.

Algorithm 3 A factor algorithm

1: Start
2: Define
3: Define fitness function Θ(·), solution space Z × B, pop-

ulation size n, step size λ, number of iteration T
4: Arrange the n individuals equally-spaced over the entire

space AxB
5: for each individual x do
6: Create 3 additional individuals and distribute them near

x
7: end for
8: t = 1,
9: for each individual x do

10: while t ≤ T do
11: Calculate xnew according to (15)
12: if Θ(xactual) ≤ Θ(xnew) then
13: xold = xnew
14: end if
15: t+ +
16: end while
17: end for
18: Rate all the individuals using the fitness function
19: Return 25% fittest individuals
20: Stop

REFERENCES

[1] I. Durgun and A. R. Yildiz, “Structural design optimization of vehicle
components using cuckoo search algorithm,” Materials Testing, vol. 54,
no. 3, pp. 185–188, 2012.

[2] M. Reed, A. Yiannakou, and R. Evering, “An ant colony algorithm for
the multi-compartment vehicle routing problem,” Applied Soft Computing,
vol. 15, pp. 169–176, 2014.

[3] A. Ghosh, M. Talukdar, and U. K. Roy, “Stable drug designing by
minimizing drug protein interaction energy using pso,” arXiv preprint
arXiv:1507.08408, 2015.

[4] M. A. Mohandes, “Modeling global solar radiation using particle swarm
optimization (pso),” Solar Energy, vol. 86, no. 11, pp. 3137–3145, 2012.

[5] S. Arora and S. Singh, “The firefly optimization algorithm: convergence
analysis and parameter selection,” International Journal of Computer
Applications, vol. 69, no. 3, 2013.

[6] R. Tang, S. Fong, X.-S. Yang, and S. Deb, “Wolf search algorithm with
ephemeral memory,” in Digital Information Management (ICDIM), 2012
Seventh International Conference on. IEEE, 2012, pp. 165–172.

[7] Y.-J. Zheng, “Water wave optimization: a new nature-inspired metaheuris-
tic,” Computers & Operations Research, vol. 55, pp. 1–11, 2015.

5

TABLE I: Research Results for Egg holder’s function (1)

Wolf Search Algorithm
iterations obtained optimum x Θ(x)

100 (497,350286104414;413,316038741412) -445,109840056073
1000 (470,030297278441;485,562031085399) -747,988554493845

10000 (495,606099411662;401,486352105386) -787,798958711978
Wolf Search Algorithm with modification

iterations obtained optimum x Θ(x)
100 (482,879289436564;394,047534639969) -532,10668463655
1000 (362,447760432236;495,061778684641) -670,883977492652
1000 (459,050439605047;407,631429847158) -827,9315354643

Water Wave Algorithm
iterations obtained optimum x Θ(x)

100 (416,564008862043;457,568839219198) -481,75325119652
1000 (482,862816510192;394,327293482761) -522,678854547558

10000 (429,694043635248;441,956854035126) -893,969574033705
Water Wave Algorithm with modification

iterations obtained optimum x Θ(x)
100 (386,448251729109;445,815733413126) -78,0632300803166
1000 (463,005703484177;494,428448618589) -481,70585333327
1000 (514,777470228624;396,847095860563) -981,843214134724

TABLE II: Research Results for Easom’s function (2)

Wolf Search Algorithm
iterations obtained optimum x Θ(x)

100 (2,34615738054093;3,25216948206172) -0,365027440014811
1000 (3,9124181950057;3,62785225670219) -0,276365363830805

10000 (2,96131405698197;2,17447623478923) -0,212171936285033
Wolf Search Algorithm with modification

iterations obtained optimum x Θ(x)
100 (2,51148351398831;3,47038642199262) -0,461424318331189
1000 (3,2396818237564;1,77784279537287) -0,0315487721933061

10000 (2,19667368391374;1,37504338630244) 0,00205881016133928
Water Wave Algorithm

iterations obtained optimum x Θ(x)
100 (2,1929323068787;2,67858712499895) -0,171094307906584
1000 (3,5790521290987;3,95715529143678) -0,263663206287755

10000 (3,89253193693819;2,23055503807522) -0,111170990040294
Water Wave Algorithm with modification

iterations obtained optimum x Θ(x)
100 (3,21630300125866;3,14909067244692) -0,991576295055776
1000 (2,63754989143347;2,82413371457911) -0,583388074053213

10000 (1,17472107344061;1,67250233454281) 9,45257018956421E-05

TABLE III: Research Results for Himmelblau’s function (3)

Wolf Search Algorithm
iterations obtained optimum x Θ(x)

100 (0,682362732329575;-0,67352732442018) 160,003686302222
1000 (0,633187983945565;-1,88113112742134) 163,753970449623
10000 (-1.0879799313;-0.9926871380) 175.685

Wolf Search Algorithm with modification
iterations obtained optimum x Θ(x)

100 (-0,24526995711274;-0,385508137934612) 178,626060371431
1000 (-0,0459746942138182;-0,795370650848081) 180,212099494084
10000 (-0,234918390044439;-0,621006036932117) 180,680676146925

Water Wave Algorithm
iterations obtained optimum x Θ(x)

100 (-0,526868914965013;-0,343995140559969) 177,35171333301
1000 (-0,086203324182985;-0,733375833711296) 180,378842675413
10000 (-0,594777831153375;-0,345780614924515) 176,703320832286

Water Wave Algorithm with modification
iterations obtained optimum x Θ(x)

100 (-0,877628832998513;-0,409932400290823) 172,640906231244
1000 (-0,89729838347868;-0,823287643875595) 173,520600953295
10000 (-0,282641141341366;-0,948922069253829) 181,606341140222

6

