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Abstract—The paper presents a novel method for reconstruc-
tion of missing data in time series. The method is based on
the decomposition of known parts of time series into mono-
components (Intrinsic Mode Functions, IMF) using Empirical
Mode Decomposition (EMD), construction of prediction models
for each IMF using known parts of times series and their com-
position using weighted average. We demonstrate the efficiency
of the proposed approach using a synthetic time series data.

I. INTRODUCTION

Knowledge-based decision-making processes (such as busi-
ness decisions) are very dependent on the availability of data,
from which information can be extracted. These processes
often use predictive models or other computational intelligence
technique that take observed data as inputs. However, in
some cases due to various reasons (power failure, sensor
failure, maintenance, human error, etc.) data could be lost,
corrupted or recorded incompletely, which affects the qual-
ity of data negatively. Most decision-making and machine
learning tools such as the commonly used Artificial Neural
Networks (ANN), Support Vector Machines (SVM), Principal
Component Analysis (PCA) and many other computational
intelligence techniques cannot be used for decision making
if data are not complete [1]. Missing values in the data
can severely affect the interpretation and hinder downstream
analysis such as supervised or unsupervised classification or
clustering. Since the decision output should still be maintained
despite the missing data, we have to deal with the problem
of missing data. Therefore, in case of incomplete or missing
data, the first step in data processing is to estimate the missing
values.

The task, also known as missing value imputation [2] or gap
filling, is an important one in cases where it is crucial to use
all available data and not discard records with missing values.
It is especially relevant in many real-world time series such as
obtained by remote sensing observations made without direct
physical contact with the observed object [13], in which raw
data can be corrupted, obstructed and hindered by multiple,
often unforeseen, ways. Such time series may contain multiple
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gaps, which must be dealt with before applying other signal
processing techniques such as spectral analysis. Consequently,
the quality and the completeness of these time series are
essential. Previously researchers [4] have demonstrated that
missing values imputation can significantly improve the overall
prediction or data analysis when information about the data
is incorporated into the imputation. Thus the problem of
gap-filling (or data reconstruction) is a fundamental one in
computational intelligence.

The applications of gap filling (aka missing data imputation)
are numerous and include bioinformatics (gene microarray
data) [5] and remote sensing observations [13]. The existing
gap-filling techniques depend upon the size of gap series
and the nature of data. If gaps are small, the solutions are
simple and well researched. For example, mean imputation
[4] substitutes every missing value with the mean of the
observations. Because of its simplicity, mean imputation is
commonly used in the social sciences. Regression imputation
replaces missing values with predictions made by a regression
(curve fitting, interpolation) model of the missing value on
variables observed for the data vector. If there is abundance
of complete data, hot-deck imputation can be used to substitute
missing values according to data vectors with similar values.
However, if gaps expand over several cycles of data in time
series, specific methods should be developed.

The specific gap filling methods can be categorized accord-
ing to the type of information used as global and local. Using
global approach, the algorithms perform missing values esti-
mation based on global correlation information obtained from
the entire data matrix. An example of such algorithms includes
the SVD imputation [6]. Peng and Zhu [7] used Independent
Component Analysis (ICA) and Self Organizing Maps (SOM)
to handle missing values. Gaussian mixture models are used in
[8]. Ssali and Marwala [9] combined decision trees, Principal
Component Analysis Neural Network (PCA-NN) and Auto
Associative Neural Network (AANN) to estimate the missing
values. The power of evolutionary computing in imputation
process is emphasized in [10] by combining ANN with either
GA or Particle Swarm Optimization (PSO). In [11], [12] it
was used a composite neuro-wavelet reconstruction system
composed by two neural networks separately trained to obtain
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the reconstruction. For local approach, the algorithms exploit
only local similarity structure in the data sets to perform
missing values imputation.

The signal decomposition methods split the signal into
additive components. The time series are then reconstructed
using only the components of interest, usually by removing the
high frequency components considered as noise. Because the
decomposition is performed over a limited temporal window,
only a limited amount of information is used when filling gaps.

The Iterative Caterpillar Singular Spectrum Analysis
Method (ICSSA) [13] is a modification of the CSSA [14]
method developed to describe time series and fill missing
data by decomposing the time series into empirical orthog-
onal functions (EOF). This method allows filling gaps and
forecasting data at the extremities of the time series.

Empirical mode decomposition (EMD) method [15] con-
sists in decomposing the time series into a small number
of intrinsic mode functions (IMFs) derived directly from the
time series itself using an adaptive iterative process based on
local characteristics of data in the time domain. The first IMF,
mostly affected by noise, can be discarded or thresholded to
remove the high frequency fluctuations [16]. Note that the
EMD method requires the time series to be continuous. EMD
has been used before in for gap-filling in [17]. In this method,
gap filling is based on adding artificial local extrema in the
missing part of the data based on the assumptions that behavior
of the missing data is similar to the neighbourhood of the gap,
and for each IMF, every two consecutive extrema in the gap
are equally distant. The modified EMD produces IMFs with
gaps, and the gap data is reconstructed by summing up the
IMFs. However, the assumption that the behavior of the data
does not change in the gap may not hold true. Furthermore,
the method involves the selection of extrema points manually
based on the appearance of each gap-filled IMF, which is time-
consuming. Kandasamy et al. [13] filled the missing data by
linear interpolation and then applied signal decomposition by
EMD. However, as linear interpolation provides generally poor
performances in case of long periods without observations, the
EMD-based method fails when there is a significant fraction
of gaps (more than 20 %).

The aim of this paper is to propose and evaluate a novel
method for reconstruction of missing data in time series. The
method is based on the decomposition of known parts time
series into mono-components (IMFs) using EMD, construction
of prediction models for each IMF using known parts of times
series and their composition using weighted average.

The structure of the remaining parts of the paper is as
follows. The proposed method is described in Section II.
The metrics for evaluation the accuracy of the solution are
discussed in Section III. The experiment is described in
Section IV. The results of the experiment are presented in
Section V. Finally, conclusions and discussion of future work
are presented in Section VI.

II. DESCRIPTION OF METHOD

A. Task

Consider a time series X ∈ RT with m ≤ T −2 data points
missing. The missing data are indicated by a vector X̂ ∈ Rm

with components xt = 1 for all t ∈
{

1, 2, . . . , T
}

where xt
is defined, and xt = −1 for all t ∈

{
1, 2, . . . , T

}
where xt is

not defined. Let the zero crossing rate of X be

zcr(X) =

T∑
t=1

I
{
xtxt−1 < 0

}
(1)

here I{A} is the Iverson operator: I{A} is 1 if its argument
A is true, and 0 otherwise.

Hereinafter we introduce the simplification and consider
only such X, for which zcr(X) = 2 and x0 = 1. That is the
time series starts with known data, then follows all missing
data, and the time series ends with known data. Hereinafter,
we denote the known data at the beginning of the time series
X before the missing data as the left series Xl, and the known
data at the end of the time series X after the missing data as
the right series Xr, and the missing series as Xm.

B. Outline

The proposed method consists of the following steps:
1) Perform decomposition of Xl into a set of IMFs IMFl,

and decompose Xr into a set of IMFs IMFr using
EMD.

2) Perform prediction of IMFl into the future by m steps
using the polynomial prediction model. Let predicted set
of series is IMF ′.

3) Perform prediction of IMFr into the past by m steps
using the polynomial prediction model. Let the predicted
set of series be IMF ′′.

4) Combine the predicted series IMF ′ and IMF ′′ using
the linearly weighted average. Let the result be IMF.

5) Sum IMF to derive the prediction of Xm. as Y.

C. EMD for decomposition

The steps comprising EMD method [15] are as follows:
1) Identify local maxima and minima of signal x(t), where

t is time.
2) Perform cubic spline interpolation between the maxima

and minima to obtain envelopes Emax(t) and Emin(t).
3) Calculate the mean of the envelopes as M(t) =

(Emax(t) + Emin(t))/2.
4) Calculate the difference between a signal and the mean

of its envelopes as C1(t) = x(t)−M(t).
5) IF the number of local extrema of C1(t), is equal to or

differs from the number of zero crossings by one, and
the average of C1(t) is close to zero,
THEN IMF1 = C1(t);
ELSE repeat steps 1-4 on C1(t) instead of x(t), until
new C1(t) satisfies the conditions of an IMF in Step 5.

6) Calculate residue R1(t) = x(t)− C1(t).
7) If residue R1(t) is above a threshold value, then repeat

steps 1-6 on R1(t) to obtain next IMF and a new residue.
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As a result, n orthogonal IMFs are obtained from which the
original signal may be reconstructed as follows

x(t) =
∑
i

IMFi(t) +R(t). (2)

D. Prediction using polynomial model

Prediction is performed using a polynomial model that finds
coefficients for a polynomial p(x) of degree n that is a best fit
(in a least-squares sense) for the data in y using M previous
values of x. Here a linear case of the model is shown:

p(xi) = a0xi−1 + a1xi−2 + . . .+ aM−1xi−M + aM . (3)

E. Weighted averaging

The predictions are averaged using the weighted average as
follows:

X = X ′w(t) +X ′′(1− w(t)), (4)

where w(t) is a linear monotonous increasing function in the
range [0; 1] from 0 to m− 1.

III. PERFORMANCE EVALUATION USING STATISTICAL
MEASURES

Evaluation of the data gap filling results is a crucial step to
demonstrate reliability and accuracy of the proposed method.
In validation, the performance indices are computed between
the reconstructed and known original values. The quality of
the reconstructed data also can be evaluated independently of
the original data using the smoothness criterion.

We evaluate the accuracy of the results using the following
metrics:

Root Mean Square Error (RMSE) of a model prediction with
respect to the estimated variable y is defined as the square root
of the mean squared error:

RMSE =

√∑n
i=1(xi − yi)2

n
, (5)

where x1, x2, . . . , xn are n observed values and y1, y2, . . . , yn
are the corresponding values predicted.

Mean Absolute Error (MAE) measures the average magni-
tude of the errors in a set of forecasts, without considering
their direction. It is used to measure how close forecasts or
predictions are to the eventual outcomes:

MAE =
1

n

n∑
i=1

|xi − yi|. (6)

Mean Square Error (MSE). If yi is a vector of n predictions,
and xi is the vector of observed values corresponding to the
inputs to the function which generated the predictions, then
the MSE of the predictor can be estimated by:

MSE =
1

n

n∑
i=1

(xi − yi)2. (7)

Fig. 1. A fragment of example synthetic time series.

Pearson correlation coefficient R2 is a measure of the
strength and direction of the linear relationship between two
variables that is defined as:

R2 =

{∑
(xi − x̄)(yi − ȳ)

}2∑
(xi − x̄)2

∑
(yi − ȳ)2

. (8)

IV. EXPERIMENT
A. Data and motivating example

We use the following synthetic time series (also analyzed
in [18]):

x(t) = sin

(
2π

300
t

)
· cos

(
2π

40
t+

π

2
sin

2π

120
t

)
(9)

The known data to the left and right of the gap was decom-
posed using EMD and the IMFs were derived. The polynomial
model based prediction method described in Section II.D was
used to derive the forward prediction from the IMF data to
left side of the gap and the backward prediction from the IMF
data to the right side of the gap.

Fig. 1 shows a fragment of the original time series with
missing data (gap is in the middle of the time series, gap
length = 50). Fig. 2 shows the IMFs derived for known
continuous fragments of data before and after the gap. Fig. 3
shows the adjusted IMFs with reconstructed IMF values for the
missing data using the combination of forward and backward
prediction using linearly weighted averaging. Finally, Fig. 4
shows the true data and reconstructed data (only the gap of
time series is shown).

For comparison, the results of reconstruction without signal
decomposition are also shown. Even by visual inspection of
figures we can see that the proposed method performs better.

B. Methodology
To obtain a statistically valid evaluation of the efficiency of

the method, we, first, have generated a synthetic series with
a large length

(
N = 10000

)
. Then we have extracted M =

20 different subseries of selected length
(
500, 1000, 2000

)
at

random locations of the original large time series. The gap in
the data is always located in the middle of series and has the
length of K(K = 10, 20, . . . , 100). Gap filling is performed
using the proposed method and accuracy is calculated. Results
of computational experiments are presented in Section V.
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Fig. 2. IMFs from known data of synthetic time series.

Fig. 3. Gap filling on the IMF level.

Fig. 4. Reconstructed missing data in the gap.

V. RESULT

In order to evaluate the performance of the gap-filling,
we have repeated the gap filling experiment 20 times with
different subseries at random locations of the original time
series. The numerical simulation was performed using MAT-
LAB 8.1 (R2013a). The experimental results are presented in
Figs. 5-8 for the values of RMSE, MAE, MSE and Pearson
correlation values vs the gap ration (length of gap divided by
the length of subseries under consideration).

We can see that the EMD decomposition-based method fails
to improve the accuracy of missing data reconstruction for
large gaps. Yet, when the size of gap is small (10 or less),

Fig. 5. Average RMSE with respect to the length of gap.

Fig. 6. Average MAE with respect to the length of gap.

Fig. 7. Average MSE with respect to the length of gap.

the method allows to achieve some improvement as compared
with the direct prediction of missing data from the known time
series data. The results are summarized in Tables I-II.

VI. CONCLUSION

The paper has presented a novel method for the reconstruc-
tion of missing data in time series. The proposed method
is model-free, fully data-driven, and does not impose any
technical assumptions. The results of experiments with the
synthetic data show that better results have not been achieved
for gap filling task using the EMD decomposition if gap length
is large (more than 10 missing data points). The reasons for
that may be the inherent deficiencies of the EMD method
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Fig. 8. Average correlation with respect to the length of gap.

TABLE I
RESULTS WITHOUT AND WITH DECOMPOSITION FOR SUBSERIES OF

LENGTH 500

Gap length Decomposition RMSE MAE MSE R2

10
yes 0.0316 0.0262 0.0014 0.9890
no 0.0304 0.0257 0.0014 0.9887

20
yes 0.0912 0.0764 0.0136 0.9499
no 0.0964 0.0813 0.0148 0.9440

30
yes 0.2393 0.1823 0.0815 0.9301
no 0.2034 0.1543 0.0561 0.9418

40
yes 0.4062 0.3085 0.1810 0.7010
no 0.3632 0.2775 0.1514 0.7449

TABLE II
RESULTS WITHOUT AND WITH DECOMPOSITION FOR SUBSERIES OF

LENGTH 1000

Gap length Decomposition RMSE MAE MSE R2

10
yes 0.0449 0.0382 0.0026 0.9870
no 0.0445 0.0380 0.0025 0.9855

20
yes 0.0870 0.0714 0.0120 0.9808
no 0.0732 0.0609 0.0093 0.9829

30
yes 0.2760 0.2166 0.1004 0.7968
no 0.2684 0.2123 0.0974 0.7913

40
yes 0.2893 0.2220 0.0979 0.8109
no 0.2902 0.2247 0.0985 0.7828

TABLE III
RESULTS WITHOUT AND WITH DECOMPOSITION FOR SUBSERIES OF

LENGTH 2000

Gap length Decomposition RMSE MAE MSE R2

10
yes 0.0415 0.0354 0.0025 0.9719
no 0.0391 0.0333 0.0023 0.9800

20
yes 0.1095 0.0920 0.0242 0.8538
no 0.1157 0.0973 0.0250 0.8499

30
yes 0.1813 0.1409 0.0482 0.8952
no 0.1809 0.1402 0.0466 0.9023

40
yes 0.2973 0.2278 0.1143 0.7743
no 0.2615 0.2004 0.0922 0.8273

also noted by other researchers such as the boundary problem
and the mode mixing problem, which can significantly affect

the accuracy of analysis results. The correct prediction of
locations of minima and maxima in data gap, could allow
to better estimate the envelope of data. The main reasoning
for using EMD is that IMFs would be less complex than the
original data. However, the higher frequency IMFs do not
always have a simple waveform, which would allow more
accurate prediction of their values. Thus no gain by predicting
a simpler could be achieved. Additionally, the method requires
more computation, which also negatively affects the accuracy.

Future work will focus on performing more extensive
experiments with synthetic time series and the application
of the proposed method to real world time series and the
examination of other signal decomposition and prediction
methods to overcome the shortcoming of EMD and to improve
the proposed method.
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