
Mapping Component Models on Distributed
Architectures: Correctness Checking

Christian Attiogbé
LINA - UMR CNRS 6241 - University of Nantes

F-44322 Nantes Cedex, France
christian.attiogbe@univ-nantes.fr

Abstract—We propose a method to check if a distri-
bution of components, proposed to implement a given
assembly of components, is correct with respect to the
targeted host distributed architecture. The method is
based on the principle of checking that the accessibility
relation induced by the proposed distribution of com-
ponents, is consistent with the accessibility relation im-
posed by the designed component model. The benefit is
twofold: either to refine the designed component model
or to adapt the envisioned deployment. The study is
illustrated with examples of component models. The
Event-B framework is used to check correctness, and we
have developed a simulation prototype tool to support
experimentations.

keywords: Abstract Component Model, Distributed
Architecture, Verification, Deployment, Event-B

I. Introduction

Context. Component-based software development still
poses many challenges among which the correctness of the
deployment of a given component-based design on a tar-
geted execution architecture. More specifically, distributed
applications are made of components which services are
linked together through a network, with a provide-require
relationship which emphasizes a dependency or an acces-
sibility feature.

In the current work we deal with one of the chal-
lenges: the correctness of the projection1 of an assem-
bly of components on a host distributed architecture.
Indeed the interaction between the involved services of
the components may be broken in case of an inappropri-
ate distribution of the components on the nodes of the
distributed architecture. We argue that the correctness of
the whole development process from the design step to the
deployment step can be assisted by rigorous and pragmatic
methods and tools. This work follows a series where we
experiment on formal analysis of component-based models,
using especially the Event-B method [1], [2].

An assembly of components, is the specification of in-
teracting component services; a service of a component
will be running on a host node; accordingly an assem-
bly of components and their services will be running on
various nodes of a distributed architecture. The concern

1the projection is an envisioned deployment

is as follows: is a given projection or a deployment of
the assembly on an existing targeted network of nodes is
correct or not? This aspect is not covered by the numerous
works, proposals and industrial solutions2 that already
exist; indeed they mostly focus on low level and platform-
specific features (versions, file systems, runtime details,
etc.) for the deployments of components.

We are motivated by the need of such methods and
tools to ensure that an abstract model of an assembly
of components is well distributed on a host architecture
which is viewed as a graph of nodes. We can then ensure
that the deployment and its future evolution preserve
the design time dependency requirements. Indeed highly
distributed or mobile platforms demand very efficient
component deployment techniques. Besides, in the case
of maintenance or evolution of the host architecture, a
redeployment of components may be performed for an
already deployed component-based application; thus on-
the-fly deployment of components, needs a correctness
checking to ensure that the redeployment will be free
of inconsistencies. A model-based correctness checking is
likely to ensure confidence; this perspective is considered
as preliminary step before unit deployment of components
and their bindings.

Starting from an abstract model of an assembly
of components and a proposed distribution related
to a target architecture, we show how the proposed
distribution can be checked. We define the rules that
ensure the correctness of a distribution; incorrect
distribution can then be detected. To build our solution
we consider that one input parameter, an assembly
of components, involves an accessibility graph of the
services provided and required by the components used
in the assembly. In the same way, the second input
parameter, a given distributed architecture intended to
host the execution of application assemblies, is viewed
as a directed graph of nodes. Therefore the proposed
method is based on the principle of checking that the
accessibility relation induced by the proposed distribution
of components, is consistent with the accessibility relation
required by the designed assembly. We have already used

2For instance Java and Corba CCM; the DLLs; .NET framework,
the OMG’s DC approach



Event-B to check some properties on component-based
models, we follow this approach by considering here
Event-B and its tools to illustrate the proposed method.

Contribution. The contribution of the current work
is a pragmatic method to check the correctness of a
distribution of an assembly of components on an existing
physical network architecture; i) we define the correctness
and a set of rules to check it; ii) we define a systematic
method and an accompanying generic architecture based
on Event-B to check the correctness, by reusing the
consistency obligation proof of Event-B. The Event-B
method being designed for a correct-by-construction
approach, it is not straightforward to use it to check such
a property independently; iii) we experiment on several
cases with the Event-B generic structure and the Rodin
tool; we have developed an accompanying prototype
in Python for simulation purpose to get user-friendly
feedback.

Structure of the article. In Section II we give the material
necessary for our method. We introduce a general abstract
component method and the Event-B formalism. Section
III is devoted to the proposed approach to check the
correctness of a distribution. Section IV deals with the
experimentation conducted with Event-B and the devel-
oped prototype. Finally Section V concludes the article
and comments on related and future works.

II. Background: Component Models and
Event-B

A. An Abstract Component Model Core

We consider the common features of various component
models in order to have a general approach independent
of any specific component model. The minimal common
features are: component, required service, provided service
and assembly. Some component models permit several pro-
vided services or behaviours (like Kmelia [3], Fractal[4]).

Whatever the formalism a component model has at
least a provided service; a service is a functionality often
modelled as an automata. A component model may have
one or several required services (those needed to achieve
the functionalities or services which are provided).

Components are assembled to build larger models. An
assembly is built by linking required services and provided
services of different components. A basic semantics of a
link between a provided service p and a required one r,
is that the link denotes a possible call to the provided
service s from a service of the component that declares
the required service r.

A dependency relationship can be computed from any
assembly of components, by considering that a component
depends on another, if the last one provides at least one
service to the former. Given an assembly A, extracting a
dependency relationship between the components of A is
straightforward: a component Cr depends on a component

Cp if at least one service of Cr requires at least one service
of Cp; that is Cr requires at least one service provided by
Cp.

In this study, we restrict the description of components
to their main features: a component is modelled by a
set of provided services and a set of required services;
an assembly is modelled by a set of components together
with the links between some required services and provided
services of different components. We do not need the other
features of a component-based model. We do not consider
the behavioural aspect of the services or component; but
note that a behaviour of an abstract service is often
described by a transition system. An assembly supports
the interaction between linked services; this interaction
is modelled by the composition of the labelled transition
systems which describe the behaviour of the services.

A formal model of a core abstract component assembly

Formally we define an abstract model of an assembly of
components as a directed graph of components. We call a
link the connection between two components via a service
providing relationship, it is a dependency relationship.
Let Ip(c) be the set of the services provided by the
component c and Ir(c) the disjoint set of the services
required by c. The union of Ip(c) and Ir(c) is the interface
of c. A link between a component ci and a component cj
exists when there exists a service of ci which requests at
least one service provided by cj . Let Component be a set
of components.

componentModel : Component↔ Component
∀(ci, cj) ∈ componentModel . Ip(ci) ∩ Ir(cj) 6= ∅

The relation3 componentModel describes not only the
assembly of the components, but also the accessibility re-
lationship between the components. If (ci, cj) is a member
of componentModel, then ci can access cj , that means cj
provides a public service accessed (or called) by a service
of ci.

This core abstract model can be easily extended with
the other features (detailed signatures, properties, service
behaviours, etc) of a component model without breaking
the forthcoming correctness checking method.

B. An Overview of the Event-B Method

Event-B [5], [6] is a modelling and development method
where abstract machines are constructed and refined into
concrete machines. An abstract machine describes a math-
ematical model of a system behaviour4. In an Event-
B modelling process, abstract Machines constitute the
dynamic part whereas Contexts are used to describe the
static part. A Context is seen by machines. It is made
of carrier sets and constants. It may contain properties
(defined on the sets and constants), axioms and theorems.

3The symbol ↔ denotes a relation; dom (resp. ran) denotes the
domain (resp. codomain) of a relation.

4A system behaviour is a discrete transition system



A machine is made of variables, invariants and several
event descriptions.

a) State Space of a Machine: The variables con-
strained by the invariants describe the state space of a
machine. The change from one state to the other is due to
the effect of the events of the machine. Specific properties
required by the model may be included in the invariants.
I(x) where x is the state variables, denotes the invariants
of the machine.

b) Events of an Abstract Machine: Within Event-
B, an event is considered as the observation of a transi-
tion. Events are spontaneous and show the way a system
evolves. An event e is modelled as a guarded substitution:
e =̂ Guard =⇒ Body where Guard is a predicate which
describes the conditions in which the event may occur
and Body is the action which is achieved when the event
occurs.

An event may occur only when its guard holds. The
action of an event describes with simultaneous generalized
substitutions, how the system state evolves when this
event occurs: disjoint state variables are updated simul-
taneously.

c) Rodin Tool: The Rodin5 tool is an open tool dedi-
cated to building Event-B models and to formal reasoning
on them. It is made of several modules (plugins) to work
with Event-B models or to interact with related tools.

III. The Proposed Distribution Checking
Approach

In this section we define a systematic method to check,
giving a component-based model, a target distributed host
architecture and a proposed distribution of the compo-
nents on the host architecture, if the proposed distribution
is correct or not. We define for this purpose the structure
of a host architecture and what is a correct distribution.

C1 C2

C3

C5

C4

Fig. 1. An abstract component model

A distribution of components on a host physical architec-
ture

The physical host architecture is a set of nodes that will
host the components (as depicted in Fig.2). Remember

5Rodin http://wiki.event-b.org/index.php/Main Page

that a directed graph is a set of nodes, connected by a set
of edges which have a direction. The physical architecture
is modelled as a directed graph of nodes representing the
host machines. Here the nodes are the machines that really
exist and are physically connected on a network; they
can access each other following the direction of the edges.
We use a function6 supportNode to model the fact that
a component is (proposed to be) deployed on one node;
consequently several components can be deployed on the
same node, but a component cannot be deployed on several
nodes.

physArchitecture : Node↔ Node
supportNode : Component→ Node

The relation physArchitecture describes a directed
graph. When (ni, nj) is in physArchitecture then the node
ni can access nj ; consequently the components supported
by ni can access the components hosted by nj . Moreover
the nodes in the architecture are those used to host the
components7.

dom(physArchitecture) ∪ ran(physArchitecture)
⊆ ran(supportNode)

A. Checking the Correctness of a Distribution of Compo-
nents: the Principle

First we consider the case of a normal deployment; that
means without consideration of failure on the targeted
architecture. The case with the risk of failure is considered
later in the article. Figure 1 depicts an example of a
component-based model to be deployed; the � denotes
a provided service; a � denotes a required service. Fig.2
depicts a target physical architecture where the filled
nodes represent the ones used as support of component
deployment. In Fig.3 we have a proposed distribution of
the components on the nodes.

N4

N1 N2

N5

N6

N3

Fig. 2. A target physical architecture

Assume that we have the component-based model of
a distributed application with the components and their
client-server relationship as shown in Fig. 1 and a physical

6denoted by the symbol →
7The set operators: card, dom, ran mean cardinal of a set, domain

and range of a relation



N4

N1

N3C1

C5

N2
C2,C3

C4
N5

Fig. 3. An abstract view of the target architecture

host architecture (Fig.2); A deployment proposed in Fig. 3
is: [(N1, {C1}); (N2, {C2, C3}); (N5, {C4}); (N4, {C5})].

The correctness checking approach is based on the
following set of hypothesis and rules.

• The component model is represented by a set of
links between the services of the components; this is
denoted by a relation between the components.

• The link between the components via their services
denotes a dependency relation between the involved
components.

• The targeted physical architecture is represented by
an accessibility graph of nodes.

• A node can support the deployment of zero, one
or several components. Consequently the number of
nodes used for the deployment may be less than the
number of components to be deployed.

• An abstract component-based model can be deployed
on only one node (in the particular case where we do
not have distribution).

Definition (CorrectDistribution) A distribution of the
abstract model of a component assembly is correct if

• all the components of the component model are de-
ployed on the nodes of the physical architecture in
such a way that,

• the client-server relationship between the services of
the abstract model is preserved in their distribution
on the physical architecture.

Basic rules for the distribution correctness

Let Component and Node be the set of components
and the set of nodes; in the following ci are elements of
Component and ni are elements of Node. According to
Definition III-A, the correctness of a proposed distribution
is established by the following rules.

RexistPhys. There is at least one node in the target
physical architecture:

card(physArchitecture) > 0

RtotalDepl. Each component is deployed on one node
and all the components of an assembly are deployed. This
is already obtained by defining supportNode as a total

function.

dom(componentModel) ∪ ran(componentModel)
⊆ dom(supportNode)

RallLinkAccess. For all link (ci, ck) in the
component model, the node where ci is deployed
has access to the one that supports ck; that means
(supportNode(ci), supportNode(ck)) is in the accessibility
graph of the physical architecture.

∀(ci, ck) ∈ componentModel .
(supportNode(ci), supportNode(ck)) ∈

physArchitecture∗8

RtransAcces. Transitivity: Closure of the accessibility.
If the accessibility graph contains the edges
(supportNode(ci), supportNode(cj)) and
(supportNode(cj), supportNode(ck)), then the component
ci can access the component ck.

RselfNodeAccess. Reflexivity. To enable the deployment
and the mutual access of several components on the same
nodes, we need the reflexivity of the accessibility such that
any node ni in the hosting network architecture can access
itself.

∀ni ∈ Node.(ni, ni) ∈ physArchitecture

Consequently several components or a whole assembly can
be deployed on a single node.

Illustration

Applying the rules on the example of Fig.3, we detect
that the proposed distribution is wrong (at least one rule
—RallLinkAcces— is not respected).

Inputs:
• The component assembly:

componentModel =
{(C2, C1), (C3, C1), (C5, C1), (C4, C1), (C4, C5)}

• The hosting network architecture:
physArchitecture =
{(N1, N4), (N4, N1), (N2, N4), (N2, N5), (N3, N2)}

• The proposed deployment (see Fig.3):
[(N1, {C1}); (N2, {C2, C3}); (N4, {C5}); (N5, {C4})]

Output:
• Incorrect distribution,
• C4 lacks access to C5.

Indeed, (C4, C5) is a link in the component as-
sembly, but the node N5 where C4 is deployed does
not have access to N4 which supports the compo-
nent C5. The rule RallLinkAcces is not respected. That

8the closure of physArchitecture



is (supportNode(C4), supportNode(C5)) = (N5, N4)
and (N5, N4) /∈ physArchitecture and (N5, N4) /∈
physArchitecture∗. If the component C4 was proposed to
be deployed on N3 instead of N5, we won’t have a wrong
distribution.

B. Checking the Correctness of a Given Distribution: the
Method

Consider as input, an abstract component-based model
A, a host distributed architecture H and a proposed
distribution D of the abstract component model on the
host architecture. We have to check that the distribution
D is correct. The steps of the correctness checking are as
follows:

1) Check that the physical architecture A exists, by
applying the rule RexistPhys.

2) Check that all the components of A are deployed,
by applying the rule RtotalDepl. In case of failure,
the process stops.

3) Check that all the assembly links of A are sup-
ported by accessible nodes of H, by applying rules
RallLinkAcces, RselfNodeAccess, RtransAccess. In case of
failure, the process stops.

The verdict of a correctness analysis may have various
forms due to the step of the failure.

C. Handling Multi-services Component Model

A component may provide several services and require
other ones. Accordingly we can have symmetric links and
cycles of links between components. In the basic case
presented above, (ci, cj) is in the assembly if a service
sk of ci uses a service su of cj . In the case where a
service su of cj also uses a service sk of ci we should have
the link (cj , ci) in the description of the assembly, either
directly via physArchitecture or indirectly via the closure
physArchitecture∗.

As far as the deployment is concerned, ci and cj should
be deployed on nodes that are mutually accessible in order
to have a correct deployment. The deployment will be
incorrect if the components are deployed on nodes that
are not directly or indirectly9 connected. Consequently,
the correctness rules of our method are appropriate to deal
with multi-services components models.

D. Handling Fault Tolerance and Non-Functional Proper-
ties

A given component which is considered as critical may
be deployed on a specific node or even deployed on more
than one node in order to have a redundancy which favors
failure management. In the same way, a given risky node or
a given vulnerable node may be relayed by an emergency
node. In order to handle a fault tolerance in case of a node
failure, a component may be deployed on more than one
node. This breaks the working hypothesis considered in

9bidirectional connection is not required since a connection can be
indirect via the closure.

the normal situation. The supportNode function should
be then transformed into a relation in order to express
that a component may be deployed on several nodes.

To deal with this requirement of fault tolerance we
adopt the following policy. When nodes are redundant,
only one of them is active, that is, the tasks are performed
by only one node which however, may be replaced by
another one in case of failure. The adopted solution is that
we require the description of the effective redundancy:
which node is an emergency node of another? we use the
notion of active node to support the deployed critical
components; a function state is introduced to give the
state of each node. Consequently the previous abstract
model and rule set is increased with specific rules as
follows.

supportNode : Component↔ Node
redundancy : Node↔ Node
state : Node→ {active, inactive}

RNF
oneNodeActive: If a component ci is deployed on more

than one nodes, then these nodes are redundant and at
most one of them should be active10.

∀ci ∈ Component. (card(supportNode(ci)) > 1⇒
(card(supportNode(ci) ∩ state−1[{active}]) = 1))

Concerning non-functional properties, a component may
have some requirements with respect to the host support
node; for instance the energy consumption, the battery
autonomy or any other resource availability. The pro-
posed models with the correctness rules together with
the checking policy are easily extensible. We have to
define the categories of requirements which are common
to components and hosts. Let NFc and NFh be the
functions that give respectively a given non-functional
property of components (pc) and hosts (ph). Depending on
the properties, a conformance relation C should be defined
on properties in such a way that C(pc, ph) holds.

Assume that we have to deploy a component ci with
a requirement Pi = NFc(ci) with respect to its host
support; the conformance should be stated for Pi and
NFh(supportNode(ci)).

RNF
PConform. All components are deployed on support

nodes and each component is deployed on a host node
that has the appropriate non-functional properties: the
rule RtotalDepl should hold and moreover we should have:

∀ci ∈ dom(supportNode).
(supportNode(ci) ∈ dom(NFh) ∧ ci ∈ dom(NFc))⇒

C(NFc(ci), NFh(supportNode(ci)))

The current rule set can be easily extended as shown by
the previous cases.

10When r is a relation, r[s] denotes the image of the set s



IV. An Implementation with a Generic
Architecture

We have implemented our approach using the Event-B
framework to effectively check the correctness of a compo-
nent distribution on a target architecture; it supports the
following two key features:

• the formalisation of the model of the component
assemblies, the formalisation of the host architecture,
and the formalisation of the proposed distribution of
components;

• the appropriate way to check the correctness by ap-
plying the introduced rules.

While the formalisation in Event-B of the used models
is straightforward, a challenging point is to find a specific
Event-B structuring to handle the correctness via the de-
fined rules. Indeed the classical approach in B is to build
a correct model with respect to an invariant; here the
question is how to check a given model with respect to
a set of rules involving other models.

On the one hand a model of a component assembly
is expressed as a standalone Event-B abstract machine
equipped with the relation and function componentModel,
supportNode (see Section II-A) describing the architec-
ture of the component model. On the other hand a host
distributed architecture is expressed as another standalone
Event-B abstract machine that describes the graph of the
architecture.

The input distribution proposed for the assembly, de-
pends on both machines. We describe the distribution
as a relation between the components (described in one
machine) and the nodes of the host architecture (described
in the other machine). We have studied several solutions
in order to exploit the Event-B consistency checking for
the rule-based correctness checking:

i) From the involved input structures, an event can be
enabled to notice the correctness of the structures:
here the correctness definition should be put in a
guard of an event;

ii) An enabled event can notice that the input structures
do not respect the definition, and the abstract ma-
chine deadlocks when the input structures meet the
definition;

iii) From the involved input structures we build a ma-
chine with an invariant that states the definition
of the correctness; any values of the state variables
that establish the invariant will be correct. The issue
here is that the machine should be initialised (and
rechecked) with the distribution one wants to check;
another solution is to use an non-deterministic initial-
isation that establishes the invariant and then to use
a simulation tool to find the solution of initialisations
(the ProB tool is able to deal with this constrained
initialisation); this solution can be used to compute
possible distribution.

iv) The defined rules that establish the correctness defini-
tion can be integrated in the invariant of a machine,
with a generic initialisation. In this case, a correct
distribution (used as an input Event-B model) will
be proved correct whereas an incorrect distribution
will not be proved;

v) The different rules can be integrated in the guards of
events with their negative form; these events will be
enabled if the rule that they denote is not true.

The last two solutions were retained; the solution iv)
is simpler to implement than the others and, it helps
checking gradually the correctness. The last solution is
retained for debugging/simulation purpose (see Section
IV-B), an enabled event raises the failure of a rule.

To ease the assessment of the method, we propose
a reusable generic Event-B architecture (see Fig.5) to
model this framework dedicated to the implementation of
our method of correctness checking. Indeed, all the used
models are treated as parameters and separated from the
Event-B machine that contains the correctness checking
rules. Therefore the machine on the top (CheckDistrib)
is defined once for all, with the described correctness
policy; it contains all the rules to be checked for the
correctness of deployment (see Fig.6). In the same way,
the abstract component model is defined once for all in
the machine CompoModel (see Fig.5); here the structuring
rules of components and their assemblies are formalised
and may be extended independently from any further
deployment checking rules. Besides, we have the network
of nodes which will be used to host a deployment of a
given component assembly; it is also a standalone machine
PhysArchi. Note that a given distribution to be submitted
for checking, needs both the machines CompoModel and
PhysArchi which are therefore the parameters.

The leaf context machines (see Fig.5) contain the spe-
cific parameters values of an application context (for exam-
ple the names of components, the names of host machines);
they do not need to be changed. The intermediary context
machine (Distribution, see Fig.4) contains the input
structures that one wants to check; only this context
machine is changed to reflect another given input. This
is achieved very simply as an initialisation of variables as
shown in Fig. 4.

A. Proving a Distribution Correctness via Consistency
Checking in Event-B

A synoptic of a reusable architecture for checking the
correctness of a given distribution is depicted in Fig.5. It
is generated by the Rodin11 framework which is used to
perfom the experimentations.

The main point is how one can check, using the Event-B
tools, that the rules defined to establish the correctness of
a distribution are respected. The simple idea is to reuse the

11http://wiki.event-b.org



CONTEXT Distribution
EXTENDS PhysArchi,CompoModel
CONSTANTS supportNode

AXIOMS
...
supportNode ∈ Component 7→ Node
physArchitecture = {(N1 7→ N4), (N4 7→ N1),
(N2 7→ N4), (N2 7→ N5), (N3 7→ N2)}
componentModel = {(C2 7→ C1), (C3 7→ C1),
(C5 7→ C1), (C4 7→ C1), (C4 7→ C5)}
supportNode = {(C1 7→ N1), (C2 7→ N2), (C3 7→ N2),
(C4 7→ N3), (C5 7→ N4)}

END

Fig. 4. The machine dedicated to a specific distribution to be checked

consistency checking of the Event-B approach to establish
the correctness of the distribution. Accordingly we have
defined an abstract machine equipped with a rule-based
invariant and parameterised by the distribution that we
have to check. Therefore all the rules that we have to
check have been put into the invariant. Consequently if
the machine is proved correct then we conclude that the
given distribution is correct since the invariant is made of
the correctness rules.

Fig. 5. The reusable architecture for checking distribution correct-
ness

The proposed architecture is generic and it enables
one to manage the parameterisation of the distribution
checking process without changing anything in the main
machine dedicated to the verification process. The param-
eter of the generic structure is the machine Distribution;
it is the only machine to be changed according to a new
distribution. The other machines are defined once and they
remain unchanged.

In the same way, the used component-based model and

the structure of the physical architecture are separated
from their valuations which are done via the extensions
of contexts as shown in Fig.5. The leaf layer context
machines of the structure contain the fixed contexts for
component assemblies and for host architectures.

B. A Simulation Approach

Using the same generic architecture, we simulate the
correctness checking using the Event-B tool. The adopted
solution is as follows; for each rule defined by a predicate
(say ruleIdPred), we build an event named notRuleId;
the event is guarded with the negation of the rule that it
checks. The shape of the event is as follows:

eventName notRuleId
when

not(ruleIdPred)
then

notify a failure
end

The machine equipped with these events (one for each
rule) is used to simulate the correctness checking. Indeed
when one rule is not respected, the related event is enabled.
This approach is very practical and helpful; when we
use the tools such as ProB12, we get immediately the
rules which are not true as a feedback of the correctness
checking.

C. Implementation with a Prototype Tool

Based on the proposed correctness definition we have
developed a prototype tool to experiment quickly with
examples. The input of the tool is as described in Section
III-B: a model of an assembly, the host architecture and
the proposed deployment. The prototype is developped
with the Python language. This complementary approach
provides a feedback as a graphical display (see Fig.9) of
the distribution of components on the host architecture, if
the distribution is correct; otherwise the feedback makes
the wrong link explicit, as shown in Fig.7.

12www.stups.uni-duesseldorf.de/ProB/



MACHINE CheckDistrib

SEES Distribution
VARIABLES

failure
INVARIANTS

failure ∈ BOOL
card(physArchitecture) ≥ 1

/* Rule RexistPhys */
dom(componentModel) ∪ ran(componentModel) ⊆ dom(supportNode)

/* Rule RtotalDepl */
∀ci, ck ·(ci ∈ Component ∧ ck ∈ Component

∧ (ci 7→ ck) ∈ componentModel)⇒
(supportNode(ci) 7→ supportNode(ck)) ∈

(physArchitecture; physArchitecture)
/* Rule RallLinkAccess */

EVENTS
· · ·

END

Fig. 6. The machine gathering the rules to check the correctness

support nodes C4 : N5 |-> C1 : N1
access needed from C4 to C1
no access from N5 to N1
check link C4 |-> C5
support nodes C4 : N5 |-> C5 : N4
access needed from C4 to C5
no access from N5 to N4
Incorrect distribution

Fig. 7. An example of feedback for an incorrect distribution

The simulation of the example introduced in Section
III with the prototype goes as follows; first the tool
displays the submitted inputs (Fig. 8) and then displays
the distribution (Fig. 9).

----------- The inputs are ---------
Assembly Description:
[(’C3’, ’C1’), (’C2’, ’C1’), (’C5’, ’C1’),

(’C4’, ’C1’), (’C4’, ’C5’)]
Target Network:
[(’N1’, ’N4’), (’N2’, ’N4’), (’N2’, ’N5’),

(’N3’, ’N2’), (’N4’, ’N1’)]
Proposed deployment of components on network nodes:
’C3’: ’N2’, ’C2’: ’N2’, ’C1’: ’N1’,

’C5’: ’N4’, ’C4’: ’N3’

Fig. 8. An example of feedback for a correct distribution

V. Conclusion

Summary of the results. We have proposed a method
to check at preliminary step of deployment process, that
a given distribution of an assembly of components on a

N1 :: ['C1']

N2 :: ['C3', 'C2']

N3 :: ['C4']

N4 :: ['C5']

Fig. 9. An example of feedback for a correct distribution

host architecture is correct. The method is based on the
inputs of an abstract model of the assembly, an abstraction
of the host architecture and a proposed distribution of
the components. This distribution can be viewed as a
specific deployment of the assembly. The early verification
of the mapping between the assembly and the target host
architecture can save considerable effort at design time.
In the context of a highly evolving architecture due to the
mobility of some devices, it is very important to study
the deployment of components and services in such a
way that the provided services continue to be available.
The verification of correctness can happen in different
situations: to help in configuring the assembly, to check
the robustness of an assembly, to study or to debug an
assembly. Very often the physical network to host forth-
coming applications exist with accessibility constraints.
The deployment of new applications should be compliant
with this accessibility relation.

This work complements the various properties that
one should check on the assemblies of components such
as: structural correctness of the assembly, correctness



of behavioural interactions, functional properties, non-
functional properties.

Related works. The contributions presented here should
be linked with the numerous proposals to tackle the
complexity of component-based software deployment. We
have addressed the preliminary steps of the process; other
works focused on many other steps such as dependencies
for installability of components[7], runtime deployment,
deployment constraints in architectural language[8], [9],
unit deployments, version management, predictability of
deployment latency[10], synthesis of deployment solution
based on multi-criteria requirement [11], realtime con-
straints and embedded systems 13, etc. A synthetic view
of some aspects of component deployment is presented
in [12], but distributed deployment is not dealt with.
In [13] the authors propose an incremental approach of
deployment of model level concepts into runnable entities
(i.e. how functionality is distributed over the nodes of a
target system) via an intermediate level of virtual nodes.
Their approach is not formalised. Around the AADL
architecture language, the authors of [14] propose a pro-
totyping methodology and a tool suite that covers the
design, analysis and deployment of models dedicated to
distributed real-time embedded systems. Their results on
the code generation level could be beneficially used in
complement to our framework.

Perspectives. Mobile and embedded systems are highly
dynamic and subject to recovery and many other con-
straints (resource, autonomy, time constraints for inter-
actions). In this context it is desirable to (re)deploy effi-
ciently software components. A perspective of this work
is to extend the proposed method specifically for highly
dynamic environment with the related constraints for their
interactions.

References

[1] P. André, G. Ardourel, C. Attiogbé, and A. Lanoix, “Using
Assertions to Enhance the Correctness of Kmelia Components
and their Assemblies,” Electr. Notes Theor. Comput. Sci., vol.
263, pp. 5–30, 2010.

[2] ——, “Using Event-B to Verify the Kmelia Components and
Their Assemblies,” in ASM, ser. Lecture Notes in Computer
Science, M. Frappier, U. Glässer, S. Khurshid, R. Laleau, and
S. Reeves, Eds., vol. 5977. Springer, 2010, p. 410.

[3] C. Attiogbé, P. André, and G. Ardourel, “Checking Component
Composability,” in 5th International Symposium on Software
Composition, ser. LNCS, vol. 4089, 2006, pp. 18–33.

[4] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B.
Stefani, “The fractal component model and its support in java,”
Softw., Pract. Exper., vol. 36, no. 11-12, pp. 1257–1284, 2006.

[5] J.-R. Abrial, Modeling in Event- B: System and Software Engi-
neering. Cambridge University Press, 2010.

[6] T. S. Hoang, H. Kuruma, D. A. Basin, and J.-R. Abrial, “Devel-
oping Topology Discovery in Event-B,” Sci. Comput. Program.,
vol. 74, no. 11-12, pp. 879–899, 2009.

[7] M. Belguidoum and F. Dagnat, “Dependency Management in
Software Component Deployment,” Electr. Notes Theor. Com-
put. Sci., vol. 182, pp. 17–32, 2007.

13The Syndex Tool, www.syndex.org/index.htm

[8] D. Hoareau and Y. Mahéo, “Constraint-Based Deployment of
Distributed Components in a Dynamic Network,” in ARCS, ser.
Lecture Notes in Computer Science, W. Grass, B. Sick, and
K. Waldschmidt, Eds., vol. 3894. Springer, 2006, pp. 450–464.

[9] C. Tibermacine, D. Hoareau, and R. Kadri, “Enforcing Archi-
tecture and Deployment Constraints of Distributed Component-
Based Software,” in FASE, ser. Lecture Notes in Computer
Science, M. B. Dwyer and A. Lopes, Eds., vol. 4422. Springer,
2007, pp. 140–154.

[10] W. Otte, A. S. Gokhale, and D. C. Schmidt, “Predictable
Deployment in Component-based Enterprise Distributed Real-
time and Embedded Systems,” in CBSE, I. Crnkovic, J. A.
Stafford, A. Bertolino, and K. M. L. Cooper, Eds. ACM, 2011,
pp. 21–30.

[11] S. Voss, J. Eder, and F. Hölzl, “Design Space Exploration and
its Visualization in AUTOFOCUS3.” in Software Engineering
(Workshops), 2014, pp. 57–66.

[12] Y. D. Liu and S. F. Smith, “A formal framework for component
deployment,” in OOPSLA, P. L. Tarr and W. R. Cook, Eds.
ACM, 2006, pp. 325–344.

[13] J. Carlson, J. Feljan, J. Mäki-Turja, and M. Sjödin, “Deploy-
ment Modelling and Synthesis in a Component Model for Dis-
tributed Embedded Systems,” in EUROMICRO-SEAA. IEEE,
2010, pp. 74–82.

[14] J. Hugues, B. Zalila, L. Pautet, and F. Kordon, “From the
prototype to the final embedded system using the Ocarina
AADL tool suite,”ACM Trans. Embedded Comput. Syst., vol. 7,
no. 4, 2008.


