
Abstract Interpretation for Block Diagrams -
Two Case Studies

Christian Dernehl
Informatik 11 Embedded Software

RWTH Aachen University
Aachen, Germany

dernehl@embedded.rwth-aachen.de

Jan Kühn
Informatik 11 Embedded Software

RWTH Aachen University
Aachen, Germany

kuehn@embedded.rwth-aachen.de

Stefan Kowalewski
Informatik 11 Embedded Software

RWTH Aachen University
Aachen, Germany

kowalewski@embedded.rwth-aachen.de

Abstract—Model based development is increasingly used in
embedded systems, which are often deployed in a safety critical
environment. Verification techniques, supporting the development
process can not only increase safety, but also help to speed
up the process. In many cases models are designed with block
diagrams, assisting rapid prototyping. Instead of focusing on
code, we apply abstract interpretation to models consisting of
block diagrams. In addition to a value range analysis, we propose
the computation of bounds for the rate of change for each signal,
which can be used to check rate requirements automatically,
which arise from physical constraints of the environment. We
evaluate our work in two case studies from ongoing research
projects. The first case study is from the medical domain, while
the second example is a drone. Both systems are also verified
with a commercial verification tool, highlighting benefits of the
tool and our implementation.

I. INTRODUCTION

In recent years, digitalization of control has emerged and
software plays an increasingly role for designing embedded
systems. More flexibility than hard wired layouts and rapid
prototyping are a few reasons for preferring software solutions.
However, questions about safety must also be considered.
Various norms, such as IEC-61511, 61513, 62279, 62061,
ISO-26262, DO-178C, to name a few, specify how safety
critical software systems must be developed. In many cases
testing is preferred to validate against requirements, how-
ever, formal methods become increasingly popular. Automatic
verification techniques, which are applicable to large scale
systems, pose a challenge due to large computational overhead.
Nonetheless, static methods, such as abstract interpretation
have been applied to large scale industry models [1], [2].
Abstract interpretation aids the developer to identify potential
errors and, what is even more important, can prove absence of
defects. Nevertheless, to our knowledge, there is currently no
solution, which focuses on the rates of change for signals. In
practice, rates of change play an important role in embedded
environments, where sensors, controllers and actuators have
rate limitations.

We propose in this work a way to extend our previously
introduced static value range analysis [3] by including abstrac-
tions for rates of change, so that requirements about the rate
of change can be verified automatically. Since our method also
calculates bounds on the rate of change for system internals,

limitations for individual parts can be analyzed, for instance
a nonlinear controller, which may only operate in certain
frequency ranges. Finally, providing information about rates
gives the developer a better understanding of the system, which
is vital in large scale projects. Our static analysis technique
is part of the artshop framework [4], which contains a model
repository, tool adapters and analysis plugins.

a) Abstract Interpretation: Static methods may perform
style checks, analyze code structure, identify desired and
undesired patterns, but can also be used to compute bounds on
variables and calculate the call graph. With this data, certain
non functional requirements can be fulfilled by ruling out
errors, such as division by zero, under- and overflows, unreach-
able code or invalid function calls, such as sqrt(-1). One
way to compute the necessary data is abstract interpretation
[5], which abstracts a program and proves properties in the
abstract domain, which can be transfered to properties of the
original program. In detail, states are abstracted by a domain,
such as intervals, yielding potentially an over approximation,
but also providing guarantees on the bounds of variables for
a given program location. Termination of the algorithm is
proven by widening, i.e. over approximating program states,
so that a fix point within the abstract domain can be found.
Although intervals can be used as abstract domain, others can
be integrated such as relational domains [6], congruences [7],
digital filters [8] and more.

b) Block Diagrams: With commercial tools available1

for programming languages such as C/C++, abstract interpre-
tation is used in industry. However, with growing complexity
and integration of different disciplines in embedded systems,
bridging knowledge is crucial in development processes, which
may be supported by model based design methods [9]. With
visual programming languages, complex software models tend
to be easier understood by staff, who is not firm with classical
programming languages. Model based development is sup-
ported by various commercial tools, among them Simulink2

and SCADE3. Both provide a user interface to design block
diagrams by connecting blocks with arrows, so that thebehav-

1Such as Astree, Frama-C, Goanna, Lint, PolySpace and more.
2See http://www.mathworks.com/products/simulink/ .
3See http://www.esterel-technologies.com/products/scade-suite/ .

ior is described by a data flow from sources to sinks through
the model. While blocks model operations, users can construct
systems by choosing from a given palette of basic blocks, so
that complex designs are constructed in a bottom up fashion.
Subsystems provide ways to construct hierarchical models,
making comprehension easier.

A block may either define memoryless time invariant func-
tions, or have internal states to model dynamics, for example,
integrators or transfer function blocks in Simulink. Contrary
to SCADE, which is depending on discrete time, Simulink
provides also ways to specify continuous system, making the
design of hybrid systems possible. Though this is an advantage
for modeling purposes, continuous time models depend on a
solver, which can either be variable size or fixed step size.
These solvers are in many cases a Runge-Kutta variant to
solve the resulting differential equations. Nevertheless, code
generation for continuous time models is limited in many cases
to fixed step solvers.

Generated code can be verified with the presented methods
from abstract interpretation, however, if errors are found,
these must also be corrected in the block diagram, since
a regeneration of code reproduces the error. To ease this
process, we have proposed in previous work to apply abstract
interpretation with interval sets on block diagrams, providing
the developer with valuable notifications about potential errors
[3].

c) Applications: Bounds on rates of change may be used
for a variety of applications, as they bound systems by a linear
increase. With a given specification on rates for signals, our
analysis can automatically checks if these are fulfilled. Static
or dynamic rate limiter blocks4 from the standard Simulink
block set allow the user to specify bounds on the output rate.
Our technique can automatically verify, whether the placement
of such a block is necessary and provide the quantity of the
limitation.

Rates of change can also help the user to identify potential
mistakes in the model. Combined with rates, static analysis
can prove not only whether a condition becomes true or a
switch is eventually triggered, but also can potentially provide
a lower bound on the time of activation. For instance, consider
a relational operator, which checks whether a signal is below
a given bound. This information can be used in the value
range analysis to rule out false positives. Additionally, with
a limited rate of change and a user specified upper bound on
the execution time, value intervals can be tightened.

d) Contribution: In this paper we extend our static
analysis to compute rate of change bounds on the signals and
states of a block diagram. We show how a value range analysis
can be combined to improve rate of change bounds and present
our results in two case studies.

In the following Section, we highlight related research find-
ings regarding software verification in general and applications
to block diagrams in particular. Afterwards, in Section III we
present how abstract interpretation can be used to compute

4See http://www.mathworks.com/help/simulink/slref/ ratelimiter.html .

bounds on rates. Eventually, we evaluate our solution in two
larger case studies, where the first is a medical device and the
second a drone project.

II. RELATED WORK

Verification of software system has been an important
topic in recent decades. We have already introduced abstract
interpretation in the introduction, so this section focuses on
other verification techniques.

a) Software Verification: Model checking [10] is a tech-
nique to verify whether a model satisfies a given formal
specification. Model checker implementations, such as SPIN
[11] or UPPAAL [12] require the specifications to be in a
(extended) temporal logic, such as linear temporal logic or
computation tree logic. Though if a model does not fulfill
the requirement, a counter example is shown to the user.
Although model checking can be used to verify bounds on the
rate of change of variables, our solution is based on abstract
interpretation.

Another approach to verification is to use symbols to ex-
press and verify properties. Implementations such as NuSMV
[13], [14] or the newer nuXmv [15] have been proven useful
for many applications [16], [17]. As symbolic solvers play an
important role, a variety of sat modulo theory (SMT) solvers
[18]–[20] are also available. With SMT solvers, users can
rewrite their model into a set of logic expressions, which can
be solved, while the results can be used to prove or disprove
properties of the model. Unlike symbolic representations, our
concepts is based on intervals for rate of change.

b) Block Diagram Verification: Block diagrams can be
verified either by translation into a formal format or by
interpreting the model. Tripakis et al. [21] translate discrete
Simulink models to Lustre, which can be used for model
validation. With graph transformations, Agrawal el al. [22]
transformed systems in Simulink to hybrid automata, so that
verification techniques for hybrid automata can be applied.

A similar solution to abstract interpretation of block dia-
grams has been carried out by Chapoutot et al. [23], where
the authors define formal semantics for the continuous solver.
Furthermore Chapoutot et al. use abstractions o investigate
the behavior of continuous solvers and resulting floating point
errors [24], [25]. Reicherdt and Glesner applied the Boogie
verification tool to verify Simulink models [26] with a SMT
solver [18]. Unlike the presented work, our concept focuses
on rates of change for discrete models.

In previous work [3], we have demonstrated how abstract
interpretation can be adapted to block diagrams. We have used
interval sets, based on interval arithmetic [27] to abstract signal
values and internal states of the model.

III. MODEL VERIFICATION

With related findings presented, we focus on our proposal
for model verification. In a first step, assumptions and limita-
tions of our approach are shown. Afterwards, we demonstrate
how block diagrams can be abstracted for verification and
present ideas to calculate rates for each signal.

A. Model Assumptions

In our current implementation, we support over 60 different
blocks from the standard Simulink block set5. We presume
that blocks, which are not supported by out tool, operate
locally, i.e. an unsupported block does not affect other blocks.
The value range and intervals for the rate of change for
the outputs of unsupported blocks is chosen to be a set,
which over approximates all possible values, e.g. {[−∞,∞]}.
Nevertheless, we presume, that unsupported block do not
change the behavior of other unrelated parts in the model,
i.e. that the block operates locally.

Blocks may either perform memoryless operations or linear
computations with memory. In addition, the output of blocks
at time step k ∈ N may either depend only on the internal on
also requires the input. Those blocks, which are dependent on
the input at the same time step are called feed through blocks,
which includes arithmetic operations, for example.

With our given assumptions, loops can be constructed
within the block diagram, which is used for instance to
design Feedback control systems. An algebraic loop is a finite
sequence of feed through blocks b1, b2, . . . , bn, so that bi,
i ∈ N, 2 ≤ i ≤ n, is a block for which the output can
only be computed depending on the input of bi−1 and the
input of b1 depends on the output of bn at the same time
step. Mathematically, this poses a problem, since for a given
time step, a signal can have two distinct values. Algebraic
loops can be solved by introducing a block with an internal
state, however, this changes also the behavior. In our work,
we assume, that models do not contains algebraic loops. We
believe this to be a valid assumption, since code generation is
not supported for such models.

For the Simulink block diagram, we assume that a fixed
step solver is used, i.e. we rule out variable step solvers.
However, for our and other applications, this is no limitation,
since variable size solvers are not recommended for code
generation. Still, continuous blocks can be used with a fixed
step solver. Hence, our algorithm abstracts the ordinary dif-
ferential equation solver, which is configured for the model,
similar to the work presented by Bouissou and Chapoutot
[23]. Depending on the embedded target, minor steps might
be executed on the desktop machine, but not on the embedded
system, yielding inconsistent behavior for continuous systems.
Since our technique assumes no minor steps, we issue a
warning if the model contains continuous blocks. Although
we have designed abstractions for many signal types, signals
containing a complex, i.e. real and imaginary part, are not
supported. Thus, a negative real input to a square root yields
a Not-a-Number(NaN) float value.

B. Value Range Analysis

Much of the work of the value range analysis for block
diagrams has been presented previously [3], therefore, we
focus in this paper on rates of change and provide only a
brief introduction and reference to our previous work. During

5See http://mathworks.com/help/simulink/blocklist.html .

execution, the state of a block diagram depends on the signals
at each port and the internal states of blocks. Therefore,
we define a map, which links ports and internal states to
variables V . Formally, a the set of all states σ of a block
diagram is defined by the set Σ,

Σ := {σ|σ : V → R∞} (1)

where R∞ := R ∪ {±∞}. Note, for this work, we use a
real number abstraction for all scalars within a block diagram,
since we need properties, such as associativity, which are not
available when using IEEE-754 floating point numbers. We
can use our previous analysis [3] to prove for a given model,
that the NaN symbol does not occur and assume the absence
of NaN for the rest of the paper.

a) Scalars: Simulink provides a variety of data types,
such as integer types, uint8, uint16, uint32, int8,
int16, int32, which are either signed or unsigned and
can be 8,16, or 32 bits long. Additionally, a boolean type
bool is provided. Regarding floating point types, there are
two variants, either 32 or 64 bits, i.e. float32, float64.
For each integer scalar, a value set with the corresponding type
boundaries is used.

b) Custom Types: In addition to scalars, signals can
also have composite types, such as matrices or buses6, which
are similar to structures in the C programming language. In
matrices, all entries are of the same data type, while buses can
be used may group signals of different types and dimensions
together. For instance, a 2x2 matrix of type uint8 and a
float64 scalar might be combined to a bus. Since buses
are signals themselves, a bus may contain other buses, hence,
hierarchical signal structures can be designed. For our algo-
rithm, we implemented matrices and buses containing abstract
signals and scalars.

c) Operations: We have defined abstract operations for
arithmetic operations, such as +,-,*,/, trigonometric functions
sin, cos, tan, arcsin, arccos, arctan, exponential and loga-
rithmic, square root, power and modulo. In addition, rounding
operations, logical and relational operators are abstracted.
Furthermore, for each cast towards a primitive data type,
abstract casting operations are implemented.

Expressions can be constructed from constants, variables
and the listed operations. For example sin(3 ∗ 2 ∗ x + 3 ∗
y) − x ∗ x is an expression. The valuation function valσ :
Expr × Σ → R∞ maps an expression and state to R∞ and
describes the semantics of the constructed expressions. For
constants c, variables v ∈ V , unary (�) and binary operations
(♦) the semantics are the following.

valσ(c) = c

valσ(v) = σ(v)

valσ(�e) = � valσ(e)

valσ(e1♦e2) = valσ(e1)♦ valσ(e2)

For example, valσ (v1 + v2 + c1) evaluates to σ(v1)+σ(v2)+
c1, assuming variables v1, v2 ∈ V and constant c1. Note, that
unary operations include minus, trigonometric functions, ex-
ponential, logarithm, and type casting, while binary operations

6See http://mathworks.com/help/simulink/slref/buscreator.html .

include arithmetic (+,−, ∗, /), logical (¬,∧,∨), relational
(>,<,>=, <=,==,∼=), power and modulo.

With matrices in mind, operations are applied element wise7

and can be mapped to a set of scalars semantics.

valσ

e11 e12 . . . e1n
e21 e22 . . . e2n

...
...

...
em1 em2 . . . emn

 :=

valσ (e11) valσ (e12) . . . valσ (e1n)
valσ (e21) valσ (e22) . . . valσ (e2n)

...
...

...
valσ (em1) valσ (em2) . . . valσ (emn)

 (2)

For the abstract domain for scalars, we have chosen interval
sets

ISR∞ : P(R∞ × R∞)

over R∞, which consist of multiple intervals. Unary �I and
binary ♦I operations for intervals have already been explained
in previous work, for example by Hickey [27]. Binary oper-
ations of two interval sets IS1 ∈ ISR∞ and IS2 ∈ ISR∞ are
applied for each combination of intervals within IS1 and IS2.

IS1♦
#IS2 :=

⋃
I1∈IS1
I2∈IS2

I1♦II2 (3)

Corresponding to the concrete valuation function, the abstract
valuation function Expr × {ρ|ρ : V → ISR} → ISR maps
expressions to abstract values.

val#ρ (c) = {[c, c]}
val#ρ (v) = ρ(v)

val#ρ (�e) = �# val#ρ (e)

val#ρ (e1♦e2) = val#ρ (e1)♦# val#ρ (e2)

For example, {[−7,−2], [6, 9]}+#{[−3,−1], [1, 3]} yields the
interval set {[−10, 1], [3, 12]}. The abstract valuation functions
for value sets and rates of change of matrices are also applied
element-wise, similar to Equation(2).

d) Blocks and Diagrams: With the given expressions,
all standard Simulink blocks can be modeled. Using directed
graphs, in which vertices and edges represent ports and lines,
block diagrams can be represented, while a set of ports is
assigned to a block. The execution order can be extracted
from Simulink, which yields a set of block schedules. This
schedule consists of execution contexts, forming a hierarchical
graph, where elements on the same level can be computed
independently. Leafs in the tree describe an ordered set, in
which blocks must be executed.

During execution, a block has different phases. Some blocks
compute the output depending on the current state and there-
fore do not rely on input immediately. Hence, in each step a
block updates its internal state and compute an output, where
the order depends on the block implementation. With the given
operations, the state updates and output computations can be
modeled. For example, an discrete time integrator block has
an update equation, in which the state is changed by the input.
This can be expressed by multiplication and addition operators.

7Except for special cases, such as matrix multiplication and inversion.

C. Abstract Interpretation with Rates

In this work, we extend our abstract interpretation with rates
as abstract domain. Consider two consecutive states σk+1 and
σk with a step size of ∆tk ∈ R>0, then the rate of change for
expression e is given by

val(σk+1,σk),R(e) :=
valσk+1

(e)− valσk
(e)

∆tk

With a sound abstraction for the value ranges, an over approx-
imation of the rate abstraction can be made by incorporating
the minimum and maximum value of an expression e.

val#(ρk+1,ρk),R
(e) v#

{[
− 1

∆tk
,

1

∆tk

]}
∗#(

max
ρ′∈{ρk,ρk+1}

val#ρ′(|e|)− min
ρ′∈{ρk,ρk+1}

val#ρ′(|e|)
)

(4)

For example, if the value range for expression e is [−1, 1] in
ρk and [−5, 3] in ρk+1, the rate can be over approximated
safely by [−9, 9] if ∆tk is one.

We can apply this over approximation on all functions with
a fixed bounded input, if the minimum and maximum is known
in advance. In addition, time invariant memoryless nonlinear
functions can be over approximated in that way, if a fixed point
for the value set is found. Consider for example trigonometry,
in particular sin or cos, which are bounded by ±1 for reals.
Independent of the input, the output rate is limited by [−2, 2]
in one time step. Blocks with bounded functions include
saturation, modulo, remainder, min, max, logic operations and
trigonometric functions, such as sin, arcsin, cos, arccos.

a) Linear Systems: Considering the standard Simulink
block set, many blocks do not have an internal state and those
which have a state describe a linear system performing a state
transition from σk to σk+1

valσk+1
(x) = valσk

(Ax+Bu) (5)
valσk

(y) = valσk
(Cx+Du) (6)

with matrices A,B,C,D, input u, state x and output y vector
for discrete time. As a result, rate of change computations
must be defined for linear discrete time systems and nonlinear
time invariant memoryless operations.

For a linear system, the output rate depends on the input
value and rate ranges. Assume for simplicity D = 0, since
the part where D 6= 0 can be extracted as a linear operation
without a state, i.e. an offset bounded by the input value range.
The solution of the recursive Equation (5) with respect to y
from Equation (6) for any discrete time linear system with
D = 0 and σ0(x) = 0 can be expressed by

valσN
(y) =

N∑
k=0

CAkB valσN−k
(u)

and

val(σk+1,σk),R(y) =

N∑
k=0

CAkB val(σN−k+1,σN−k),R(u)

for rates of change respectively. Assuming D 6= 0 an addi-
tional gain must be added to the equations and if σ0(x) 6= 0,
the product ANσ0(x) must be added. As a result, we can
compute the output rate with the given formula for any linear
block. Examples for the included block types are gain, sum,
transfer function, state space. Note, that assuming N →∞, the
sum exists only if all eigenvalues of A reside within the unit
circle, i.e. |λi(A)| < 1 for each eigenvalue λi of A. In cases
where A = V DV −1 is diagonalizable, which is true for many
control applications, a solution can be computed, which yields
a closed form. Otherwise we draw no conclusions about the
output rates. For special blocks, such as integrators, the output
rate can be narrowed with the input value set if the input is
constant or bounded. Although we have shown how linear
operations can be treated, these results only hold if the system
is truly linear, which is not the case if under- or overflows
occur. Consequently, we add a check, based on information
from the value range analysis, whether such nonlinearity can
occur.

In case no under- or overflow occurs, suppose ρ′ is a fix
point for the rates on input variable u, so that

val#(ρN−k+1,ρN−k),R
(u) v# val#ρ′,R(u)

then an over approximation for all consecutive states can be
given.

val#(ρk+1,ρk),R
(y) v# ||C||∞ ||B||∞ ||V ||∞

∣∣∣∣V −1∣∣∣∣∞
∞∑
k=0

#

||D||k∞ val#(ρ′),R(u)

Since we assume, that all eigenvalues of A reside within the
unit circle, the infinite sum is a geometric sum and can be
simplified to 1/(1 − maxi λi(D)), where λi(D) is the i-th
eigenvalue of the diagonal matrix D.

b) Casting Operations: Since our static analysis is type
sensitive, rates are also calculated for type casts. In case all
elements fit into the target data type the rates stay the same.
This is always true, if the target data type is larger. If the cast
is executed towards a smaller data type, the value interval set
can be used to estimate, if an under- or overflow is possible.
For under- and overflows, the rate interval is depended on the
boundaries of the target type. Consider the uint8 type, whose
maximum value is 255. With Equation (4) the resulting rate
interval is [−255, 255].

c) Nonlinear Functions: For other functions, such as
the square root, logarithm or exponential function, certain
properties can be exploited by using the computed value range.
Suppose a square root block has a valid input signal with
values between s ≥ 0 and e, then the input interval can be
split at one. Due to the structure of the square root, for the
first part, i.e. [s, 1], the input rate is a lower bound, while for
the second interval [1, e] the input rate is an upper bound.
Likewise bounds of the input rates can be used to improve the
exponential, logarithm and power functions. A special cases
arises for the clock signal, which represents the time duration.
In this case the calculation simplifies to constant ∆tk.

d) Widening: Abstractions for rates can be used to com-
pute abstract sets for each concrete state. However, termina-
tion, i.e. finding a fix point for rates, is not guaranteed. In
our previous work, we have used widening of value ranges to
guarantee termination of our algorithm. In case a fix point for
the value range is found, but not for the rate of change, we use
Equation (4) as a fix point, as this is a safe over approximation
and we already have a fix point on the value range.

IV. CASE STUDIES

After introducing a method to derive bounds on rates with
abstract interpretation, we evaluate our solution with two
models from ongoing research projects. Both systems have
each more than 1000 blocks and in both cases, code is
generated and compiled onto a target device, which is used for
field applications. The first model is from the medical domain
and is used as part of a controller in a networked intensive
care setup. Although, timing constraints can be on a large
scale compared to other fields of application, but can be very
critical in such an application. In this example the model has
to estimate the gas transfer in an extracorporeal blood circuit.
Therefore it has to react to the incoming inputs in reasonable
time to allow a safe and efficient control of the therapy to
the actual state of the patient. The second model is from
the aerospace domain and describes a one meter wingspan
tilt-wing unmanned aerial vehicle (UAV). In this application,
various tasks, such as take-off, cruise flight and landing are
automated. However, the major complexity is drawn from the
instability of the airframe concept, which is stabilized using a
controller.

Table I lists all blocks, which have been used in both
models. A major difference between both models is that the
medical application is discrete, while the tilt-wing model
uses continuous blocks. Due to the computation of attitude,
trigonometric functions are inevitable for the tilt-wing model.

A. Medical Software Case Study

One of our case studies is a Simulink model consisting of
more than 2000 Simulink Blocks which is part of ongoing
research in a complex medical intensive care system. The
system is an extracorporeal lung assist system (ECLA) applied
to treat severe cases of the acute respiratory distress syndrome
(ARDS) [28]. It consists of several connected medical devices
acting as sensors or actuators and a dedicated control device.
The given Simulink model is part of the therapy automation
software on this control device (Figure 1). Its purpose can
be summarized as model based estimation of a value difficult
to be measured directly. The method in use is based on a
Kalman filter, which is a common estimator in many other
fields of application like navigation software. Basis is a grey
box model of the real system which is described in detail in
[28].

a) Model Description: As mentioned before some input
values necessary for an exact calculation are difficult to mea-
sure and rely on expensive equipment with a high sensitivity
regarding operating problems like sensor misplacement.

Block Type ECLA UAV Block Type ECLA UAV Block Type ECLA UAV
Abs 3 4 FromWorkspace 20 0 Relay 0 1
Bias 1 0 Gain 134 73 Rounding 3 0
BusAssignment 2 0 Goto 34 1 S-Function 4 4
BusCreator 32 16 Inport 641 245 Saturate 25 42
BusSelector 63 28 Integrator 0 5 Scope 4 17
Clock 2 1 Logic 0 2 Selector 5 0
Constant 375 155 Lookup n-D 0 25 Signum 0 1
DataTypeConversion 0 85 Math 90 3 Sqrt 0 2
DataTypeDuplicate 0 4 Memory 0 2 SubSystem 220 153
Delay 14 0 MinMax 1 5 Sum 328 132
Demux 8 7 MultiPortSwitch 18 0 Switch 13 29
DiscreteIntegrator 44 0 Mux 11 2 Terminator 12 7
DiscretePulseGenerator 0 1 Outport 335 161 TransferFcn 0 4
DiscreteTransferFcn 1 0 Product 228 45 Trigonometry 0 4
EnablePort 5 0 Quantizer 6 0 UnitDelay 8 0
Fcn 0 2 RateTransition 26 0 VariableTransportDelay 19 0
From 38 4 RelationalOperator 8 14 ZeroOrderHold 6 0

TABLE I
SYSTEM CONTENTS

The Kalman filter is used to estimate the internal model
states and the disturbances. For this purpose, the nonlinear
model is linearized with respect to each operation point for
the prediction step of the filter.

Target of the static analysis is the whole validation model,
which contains the filter and the nonlinear system model.
Further components regard the data import from workspace,
handling of the test signals and evaluation. This allows com-
parison of the Kalman filter with values measured directly or
generated by simulation of the nonlinear system model.

Significant characteristics of the model are a high number
of math functions. Most of the blocks are used for the calcu-
lation of physiological values with exponential or logarithmic
functions. Saturation blocks and limitations for integrators are
used to prevent overflow. A separate clock and rate transition
blocks are used at the inputs and outputs of the filter, to allow
execution in an interval different from the surrounding test
system.

The desired filter behavior for tests was defined by upper
and lower bounds regarding the quality measures of a step
answer. Therefore the rate of change is an important outcome
of the static analysis to check the implementation for the
violation of timing constraints.

b) Integration on Hardware Platform: The Simulink
model is used on a real-time capable hardware platform as
central control device in the network. The platform in use
is a MicroAutoBox II (dSpace GmbH, Paderborn, Germany)
with vendor tool chain. Its widely used for development and
research in automotive and automation.

The tool chain provides a vendor extension of the Simulink
code generator, which generates the platform specific binary
file. Furthermore it provides an environment to create graphical
user interfaces. These allow supervision of the hardware
platform by a connected computer. A crucial aspect here is,
that otherwise static model elements like Constant blocks can
be changed by the user during execution. Obviously, this has
to be taken into account for a reliable static analysis of such
a model.

µC

pump

ventilation

controller

CAN

oxy

µC

gas
blender

pump
control

µC

monitoring
(pressure,
blood gas…)

Fig. 1. Automated extracorporeal lung assist in intensive care

B. UAV

In the recent years, the development of unmanned air
vehicles (UAVs) has rapidly increased and nowadays, small
UAVs can be bought off the shelf for end users. Due to
their limited size, the resource constraints are stronger, making
energy efficient concepts more interesting. The second pre-
sented application is a one meter wingspan vertical take-off
and landing plane, as shown in Figure 2 allowing to tilt the
wing [29], [30], to transit between hover and forward fixed
wing flight. Tilt-wings are applied as light weight drones for
diverse use cases.

a) System Setup: In the last years, several instances of
the UAV have been constructed. Thrust is generated by a
DC engine at each wing, while an additional rotor at the tail
increases stability during hovering. With an almost constant
turn rate, the blade pitch of the tail rotor can be manipulated
to control lift. An aileron at each wing allows to change yaw

Fig. 2. Tilt-wing UAV after take-off in vertical flight. Two main engines at
the wing yield thrust for take-off, while the tail rotor stabilizes pitch

during hovering and the roll angle in fixed wing flight. Dif-
ferential thrust at the main engines controls yaw during fixed
wing flight and roll in hovering mode. This coupling effect
has been investigated in wing tunnel experiments, yielding 25
large lookup tables for the transition, which is indicated in
Table I.

Since autonomous features require information about the
environment, several sensors are attached to the air frame. An
inertial measurement unit (IMU) with a GPS receiver compute
a precise attitude and position, while a pressure sensor with an
connected pitot tube estimates the wind speed. Finally, an ultra
sonic sound sensor and barometer improve the altitude calcu-
lation. In case the autopilot fails, a pilot can take over with an
remote control. Still, due to induced complexity from roll yaw
coupling, only roll, pitch and yaw commands are transmitted.
These commands are translated to actuator settings by a PID
controller combined with lookup tables. Eventually, a mission
controller manages flight tasks automatically, such as take-off,
cruise flight between waypoints and landing.

b) Model Description: For the software development
process, model based design methods were used by modeling
the flight automation in Simulink with Stateflow. On the top
level of the model, inputs from sensors are scaled and grouped
into buses, which themselves are merged into a bus. Inputs
include data from remote control, IMU, GPS, pressure, battery
status and environment data. The data is feed into a Stateflow
chart, in which different flight stages are modeled. Results
from the chart include reference position, which is feed to
an altitude, longitude and latitude controller. Afterwards, an
attitude controller calculated output for the control surfaces.
Due to the strong non-linearity of the model, corresponding
lookup tables map the reference attitude combined with wind
data to the control surface output. Finally, the outputs are
scaled again to the corresponding value ranges of the actuators.

preciser ECLA UAV
ranges SLDV artshop SLDV artshop
with p.i. 60 282 29 26
without p.i. 595 9 324 4

TABLE II
THE NUMBER OF PORT RANGES CALCULATED MORE PRECISELY

COMPARED TO THE OTHER TOOL, INCLUDING THE INFLUENCE OF
ARTSHOP PARAMETER INTERPRETATION (P.I.)

c) Integration on Hardware Platform: While the engi-
neer designs a specific Simulink controller model, a second
block diagram for code generation is constructed automati-
cally. Although the inputs, i.e. sensors, and outputs are fixed
during the development process and may not be changed,
custom blocks allow the engineer to specify parameters and
scopes for signals with additional external inputs. This is due
to the fact, that during flight testing additional parameters
may be changed and further states have to be watched.
Hence, from the custom blocks, additional global inputs and
outputs are included, yielding a model from which C code
can be generated. In a final step, the C code is automatically
integrated into the existing framework.

C. Evaluation

Both case studies were tested with the abstract interpretaion
implemented as part of the tool artshop. It was run on a
desktop computer with an Intel i5 2.67 GHz CPU, eight GB
memory and a 64 bit Microsoft Windows 7 operating system.

To our knowledge, there is currently no comparable solution
to compute rates of signals, however, we have used the
Simulink Design Verifier (SLDV) R2015b by Mathworks, to
provide an estimate on how our algorithm for value range
analysis performs compared to a commercial tool.

In contrast to our abstract interpretation, the SLDV in the
given version does not support continuous models as it is the
case for the UAV model. One workaround to test a continuous
model with the tool is to test the discretized version, as it was
used here.

Another notable difference between the tools is, that block
parameters are usually left uninterpreted by the SLDV. This
results in a high number of overapproximated ranges. For
instance, a constant block is assumed to allow any possible
output value. However, it is not a disadvantage in general, as
proven by the case study models. In both applications platform
dependent code generation allows variables representing con-
stant blocks to be overwritten by the target platform during
execution. Since this is commonly used for user interface
purposes and testing, it has to be taken into account for our
analysis. In doing so, we added an option, which allows the
user to decide whether block parameters shall be interpreted
or not.

a) Precision of the value range analysis: Table II shows
that, neglecting parameter interpretation, SLDV calculates for
several ports more precise results than artshop. If parameters
are fix and cannot be changed externally, our solution improves
the outcome significantly. Examples, in which the value ranges
are tighter include constant, PID controller and lookup table

SLDV artshop
with p.i. without p.i.

ECLA time [s] 1840 181 63
warnings 227 28 180

UAV time [s] >7200 13 7
warnings 71 35 73

TABLE III
THE COMPUTATION TIME OF THE ANALYSIS AND THE NUMBER OF ISSUED

WARNINGS OF EACH TOOL INCLUDING THE INFLUENCE OF ARTSHOP
PARAMETER INTERPRETATION (P.I.)

SLDV artshop
p.i. no p.i.

ECLA Division by zero 187 23 175
Overflow 39 10 10
Array Bounds 1 0 0
Total 227 33 185

UAV Division by zero 36 3 13
Overflow 35 48 95
Array Bounds 0 0 0
Total 71 51 108

TABLE IV
ISSUED WARNING TYPES FOR BOTH MODELS WITH ALL EVALUATED

TECHNIQUES.

blocks, where initial values or internal limitations can be
set. Especially in case of the ECLA model, artshop produces
tighter intervals, due to existing abstractions for several blocks,
e.g. lookup tables, within the ECLA model, which are not sup-
ported by the SLDV and therefore overapproximated. Leaving
the feature of parameter interpretation aside, the our approach
is less sophisticated than the SLDV, which uses a logic solver
to calculate tighter bounds for many cases. By integrating an
logic solver, the computational overhead increases, which can
be seen in the computation time. Table III lists the number of
ports, for which each tool produced tighter value ranges. The
abstract interpretation with the value range analysis in artshop
took between several seconds and a few minutes. SLDV used
more computation time due to the fact that a logic solver is
applied to improve the outcome. A time limit of two hours
was applied for the SLDV analysis, which was only reached
in case of the UAV model. Smaller time limits might reduce
the precision, but were not considered here.

b) Warnings: Table IV lists in detail, which warning
types are issued by each technique for both models. In total,
the SLDV supplies three warning categories for our models,
division by zero, overflow and invalid array bound access.
Additional warnings given by artshop, but not mentioned in
the table, include warnings on unsupported blocks, possible
underflows, division by infinite values, implicit rate transitions
and constant resets. Based on the increased precision by
interpretation of block parameters, the number of warnings in
Table III is also significantly decreased in case of the proposed
algorithm. We focus in the following on our technique without
interpretation of parameters, since this is the relevant approach
for both use cases. Considering divisions by zero and invalid
array access, our technique yields less warnings regarding the
ECLA model. The first is mostly influenced by the abstraction
of artshop which allows a more precise handling of some block

1
Out

1
In

 >=

Switch

0PreGain
Offset 0 PostGain

Offset

17

Positive Value Gain

2

Negative Value Gain

Fig. 3. UAV model parts where SLDV performs better due to constraint
propagation

types. An example are lookup table blocks, where the SLDV
cannot handle the interpolation in certain cases which results
in a division by zero. Similar problems occur for the saturation
blocks.

The invalid array access warning arises from the filter block
implemented in Matlab code in the ECLA model. Here, a
filter input signal is assigned in this manner: internalvar
= initial([1:12]). However, initial is a signal
provided by a constant block containing sufficient elements,
which seems to result in a false positive given by the SLDV.

Nonetheless, on overflow warnings the SLDV performs bet-
ter in the UAV model, which is due to constraint propagation.
Figure 3 shows an example, in which cases artshop issues a
false positive. The positive part is multiplied with a different
gain, compared to the negative part. Since our algorithm does
not use constraint propagation from the switch blocks, the
gain of 17 is applied also to the negative part, while 2 is
also multiplied with positive input.

Further noticeable are the warnings, which can only be
given by artshop with parameter interpretation, which shows
the relevant cases for these additional information about the
block behavior. For example, it allows to return warnings
for constant reset conditions, which are part of the block
parameters. This might be a false positive, if the constant
reset is overwritten externally during testing. In such cases,
an automatic detection of external variation points can help
the analysis to understand, which signals are manipulated
externally.

Finally, performance of artshop is comparable to the SLDV
regarding warnings and false positives. Both provide different
features, which help to reduce the number of false positives.

Compared to the necessary test case development and the
guaranteed safety of testing by simulation of the model the
verification can be less time consuming. In contrast to testing,
where we have to provide a sufficient range and combination
of input signals, the verification can also be done for all pos-
sible inputs to test safety specifications like output limitations.

c) Rate of Change: For both models, rates of change
have been analyzed as well and provide, in case these have not
to be overapproximated by the value range analysis, additional
information about the system properties. Since both case study
models were thoroughly tested to be successfully applied
on the target platforms, the rate of change analysis did not

reveal an overall significant unexpected behavior. One positive
outcome regarding the first case study revealed an error which
was also found by testing with the appropriate test case.

We verified for the ECLA case study, that the rate of
change of the relevant outputs behaves as specified, despite
one output describing the artificial gas exchange realized via
the extracorporeal circuit. Its calculated rate of change is
unexpected high which corresponds to an undesired dynamic
compared to the expected range. This causes an unnecessary
sensitivity to noise. By adjusting the filter parameters, the
noise sensitivity can be reduced.

As a result of the UAV model verification, a high rate of
change of the servo speed control signal before scaling to pulse
width modulation could be shown. This yields to dangerously
high changes of the pulse width per time step in the final
output for each actuator, which might lead to broken servos.
Further testing is necessary to guarantee an acceptable rate for
all actuator outputs.

In both models, which were already tested in simulations
and as prototypes, the rate of change highlighted possible flaws
in corner cases. With the rates of changes, potential models
errors can be identified. Furthermore specifications usually
include timing constraints which can be very important, espe-
cially in safety critical applications and automatically proven
with this technique.

d) Drawbacks: After having highlighted the benefits of
our proposal, we discuss drawbacks of our technique. Abstract
interpretation requires, due to its static nature, necessary
overapproximations for states, yielding potential false posi-
tives. Considering rates of change, we have shown that this
method was helpful to find design flaws of the case studies.
Nevertheless, in general this might not be the case, since the
maximal rate of change might often be approximated with
the maximum difference allowed by the value range. In this
case saturation blocks might be helpful to narrow the rates
afterwards. Thereby, limiting the signal between system parts
does not only directly facilitate a safer model design, but also
increases the efficiency of verification for parts which are not
supported. This is especially true, if the model contains blocks,
for which no abstractions have been defined.

Another aspect is the usefulness of data about rate of
change. While we believe value ranges are an important aspect,
since potential arithmetical errors can be identified, there is no
such benefit without further requirements. Thus, results from
the rate of change computations might often only be helpful
to experts, who have a deep knowledge about the system
behavior. Though bounds on the rates of change might be
provided, no further time frame is specified, in which this
bound holds. In particular for cases, in which the maximum
rate of change can only occur in the very first time steps, the
bounds might prove to be unhelpful.

Considering our current implementation, only value and
rate ranges with warnings are yielded. Although with model
slicing techniques, the potential sources can be identified,
no concrete counter example is given. Furthermore, without

relational domains or symbolic support, interval sets prove to
be very overapproximative.

V. CONCLUSION

In this paper we have shown that abstract interpretation for
block diagrams is feasible. Therefore, the proposed approach
was successfully applied to two models already implemented
and tested in research prototypes in the domain of intensive
care and unmanned air vehicles. Furthermore we presented
how dynamics properties, such as rate of change can be
included in a static analysis. It has to be tested to what extend
this might improve the precision of a value range analysis. In
conclusion, our evaluation highlights challenges of real world
examples, as well as the advantages and drawbacks of our
method, which trades precision for speed.

VI. ACKNOWLEDGMENTS

The authors gratefully acknowledge help and support from
the Institute for Flight System Dynamics, headed by Professor
Moormann and the Philips Chair for Medical Information
Technology headed by Professor Leonhardt, both at RWTH
Aachen University, who provided the case study models.

Furthermore the authors gratefully acknowledge the contri-
bution of the German Research Foundation DFG (Grant PAK
138/2; LE 817/15-1; KO 1430/14-1; RO 2000/18-1).

REFERENCES

[1] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival,
“Why does ASTRÉE scale up?” Formal Methods in System Design,
vol. 35, no. 3, pp. 229–264, 2009.

[2] S. Stattelmann, S. Biallas, B. Schlich, and S. Kowalewski, “ Applying
Static Code Analysis on Industrial Controller Code ,” in 19th IEEE Inter-
national Conference on Emerging Technologies and Factory Automation
(ETFA). IEEE, 2014, work in Progress Best Paper Award.

[3] C. Dernehl, N. Hansen, T. Gerlitz, and S. Kowalewski, “Static value
range analysis for matlab/simulink-models,” in INFORMATIK 2015.
Douglas W. Cunningham, Petra Hofstedt, Klaus Meer, Ingo Schmitt,
2015, pp. 1649–1660.

[4] T. Gerlitz, N. Hansen, C. Dernehl, and S. Kowalewski, “ artshop: A
Continuous Integration and Quality Assessment Framework for Model-
Based Software Artifacts ,” in 12. Dagstuhl-Workshop Modelbasierte
Entwicklung eingebetteter Systeme (MBEES). fortiss Technischer
Bericht, 2016, pp. 13–22.

[5] P. Cousot and R. Cousot, “Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or
Approximation of Fixpoints,” in Proceedings of the 4th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages, ser.
POPL ’77. New York, NY, USA: ACM, 1977, pp. 238–252. [Online].
Available: http://doi.acm.org/10.1145/512950.512973

[6] A. Miné, “Relational abstract domains for the detection of floating-point
run-time errors,” in Programming Languages and Systems. Springer,
2004, pp. 3–17.

[7] P. Granger, “Static analysis of arithmetical congruences,” International
Journal of Computer Mathematics, vol. 30, no. 3-4, pp. 165–190, 1989.

[8] J. Feret, “Numerical abstract domains for digital filters,” in International
workshop on Numerical and Symbolic Abstract Domains (NSAD), 2005.

[9] M. Broy, S. Kirstan, H. Krcmar, B. Schätz, and J. Zimmermann, “What
is the benefit of a model-based design of embedded software systems
in the car industry?” Software Design and Development: Concepts,
Methodologies, Tools, and Applications, p. 310, 2013.

[10] E. M. Clarke, O. Grumberg, and D. E. Long, “Model checking and
abstraction,” ACM transactions on Programming Languages and Systems
(TOPLAS), vol. 16, no. 5, pp. 1512–1542, 1994.

[11] G. J. Holzmann, “The model checker SPIN,” IEEE Transactions on
software engineering, vol. 23, no. 5, p. 279, 1997.

[12] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a nutshell,”
International Journal on Software Tools for Technology Transfer (STTT),
vol. 1, no. 1, pp. 134–152, 1997.

[13] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “NuSMV: A new
symbolic model verifier,” in Computer Aided Verification. Springer,
1999, pp. 495–499.

[14] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “Nusmv 2: An opensource
tool for symbolic model checking,” in Computer Aided Verification.
Springer, 2002, pp. 359–364.

[15] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli,
S. Mover, M. Roveri, and S. Tonetta, “The nuXmv symbolic model
checker,” in Computer Aided Verification. Springer, 2014, pp. 334–
342.

[16] A. Lomuscio, C. Pecheur, F. Raimondi et al., “Automatic Verification
of Knowledge and Time with NuSMV.” in IJCAI, 2007, pp. 1384–1389.

[17] M. Panti, L. Spalazzi, and S. Tacconi, “Using the NuSMV model checker
to verify the kerberos protocol,” 2002.

[18] L. De Moura and N. Bjørner, “Z3: An Efficient SMT Solver,”
in Proceedings of the Theory and Practice of Software, 14th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, ser. TACAS’08/ETAPS’08. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 337–340. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1792734.1792766

[19] S. Gao, S. Kong, and E. M. Clarke, “dReal: An SMT solver for nonlinear
theories over the reals,” in Automated Deduction–CADE-24. Springer,
2013, pp. 208–214.

[20] B. Dutertre and L. De Moura, “The yices smt solver,” Tool paper at
http://yices. csl. sri. com/tool-paper. pdf, vol. 2, no. 2, 2006.

[21] S. Tripakis, C. Sofronis, P. Caspi, and A. Curic, “Translating discrete-
time simulink to lustre,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 4, no. 4, pp. 779–818, 2005.

[22] A. Agrawal, G. Simon, and G. Karsai, “Semantic translation of
Simulink/Stateflow models to hybrid automata using graph transforma-
tions,” Electronic Notes in Theoretical Computer Science, vol. 109, pp.
43–56, 2004.

[23] O. Bouissou and A. Chapoutot, “An operational semantics for simulink’s
simulation engine,” ACM SIGPLAN Notices, vol. 47, no. 5, pp. 129–138,
2012.

[24] A. Chapoutot and M. Martel, “Abstract Simulation: A Static Analysis
of Simulink Models,” in Embedded Software and Systems, 2009. ICESS
’09. International Conference on, May 2009, pp. 83–92.

[25] ——, “Static analysis of simulink programs,” Model-driven High-level
Programming of Embedded Systems (SLA++ P08), ENTCS, 2008.

[26] R. Reicherdt and S. Glesner, “Formal Verification of Discrete-Time
MATLAB/Simulink Models Using Boogie,” Software Engineering and
Formal Methods, pp. 190–204, 2014.

[27] T. Hickey, Q. Ju, and M. H. Van Emden, “Interval arithmetic: From
principles to implementation,” Journal of the ACM (JACM), vol. 48,
no. 5, pp. 1038–1068, 2001.

[28] C. Brendle, K.-F. Hackmack, J. Kühn, M. N. Wardeh, R. Kopp,
R. Rossaint, A. Stollenwerk, S. Kowalewski, B. Misgeld, S. Leonhardt,
and M. Walter, “In silico evaluation of gas transfer estimation during
extracorporeal membrane oxygenation,” in 9th IFAC Symposium on
Biological and Medical Systems, 2015, to appear.

[29] M. Schütt, P. Hartmann, and D. Moormann, “Fullscale windtunnel inves-
tigation of actuator effectiveness during stationary flight within the entire
flight envelope of a tiltwing MAV,” in IMAV 2014: International Micro
Air Vehicle Conference and Competition 2014, Delft, The Netherlands,
August 12-15, 2014. Delft University of Technology, 2014.

[30] P. Hartmann, C. Meyer, and D. Moormann, “Unified approach for
velocity control and flight state transition of unmanned tiltwing aircraft,”
in AIAA Guidance, Navigation, and Control Conference, 2016, p. 2101.

