
Modeling State Diagrams with And-Cross Transitions

Opeyemi O. Adesina, Stéphane S. Somé, Timothy C. Lethbridge

School of Electrical Engineering and Computer Science

University of Ottawa, 800 King Edward Ave., Ottawa ON K1N 6N5, Canada

oadesina@uottawa.ca, ssome@eecs.uottawa.ca, tcl@eecs.uottawa.ca

Abstract—We propose an approach to encode state diagrams

with and-cross transitions. The notion of and-cross transitions is

being rejected by researchers and practitioners in model-driven

engineering community for reasons that include limited use-in-

practice, unmanageable underlying complexity, and availability

of alternative modeling solutions. In this paper, we show that

and-cross transitions can be useful in practice and its underlying

structural complexity can be managed for the purpose of

analysis.

Index Terms—Formal Methods, Model-Driven Engineering,

Umple, Symbolic Model Verification, State Machine Diagrams,

And-Cross, Region-Cross.

I. INTRODUCTION

We present a novel approach to modeling systems under

analysis (SUAs) with and-cross transitions for the purpose of

formal analysis. By and-cross transitions, we mean transitions

whose sources and destinations states are located in parallel

regions of an orthogonal state. For example, transition 𝑡2 from

Emergency to Applied (in Figure 1) is an and-cross transition.

An orthogonal state is a composite state with regions whose

submachines execute in parallel. The proposed approach is not

limited by depth of and-cross transitions.

The underlying complexities of formal specification,

verification and validation of safety-critical and embedded

systems are increasing relentlessly [1]. Research efforts on

managing these complexities have given rise to a variety of

implementation solutions. These include solutions based on

programming [2]–[4], modeling [4]–[6] and simulation of

software abstractions [7]–[9] prior to implementation or

deployment.

Model-Driven Engineering (MDE) [10] emerged as a

disciplined approach to address software complexity and

effectively represent domain concepts. It provides a level of

abstraction demanded to represent components of software

systems. MDE advocates domain-specific modeling languages,

transformation engines and generators as means of managing

emerging complexities in the software industry.

Umple is a model-driven engineering (MDE) technology

that merges programming with modeling to facilitate the

development and generation of complete software systems. In

particular, it supports the model-code duality principle by

representing models not only as diagrams but also text [4]. It

provides succinct constructs for the representation of both

static and dynamic aspects of software abstractions. These

include class, state machine, and composite structure models.

In this work, our goal is to present an approach to compute

enabling or disabling transitions for states and sub-state

machines of an SUA. This cleanly separates concerns and eases

analysis even in the presence of and-cross transitions

irrespective of the depth. Our approach works on full Umple

state machines, including those with deep nesting, and

concurrent regions. In particular, we support and-cross

(including what Faghih and Day called unusual transitions in

[11]).

Harel’s state-chart semantics (see [12], [13]) for and-cross

transitions facilitate re-initializing every concurrent sub-

machines (of an orthogonal state) but setting the target machine

(i.e., host machine of the next state of and-cross transition) to

the next state of the transition. The notion of and-cross is

however being rejected by researchers and practitioners in

model-driven engineering community for its limited use in

practice; underlying complexity; and alternative modeling

solutions. This is exemplified by the recent removal of and-

cross transitions support from the UML [14].

However, since the goal of MDE is to provide sufficient

level of abstraction to manage the complexities arising from

the development of modern-day software systems, we deem it

important to facilitate the representation and analysis of and-

cross transitions. The construct is simple and sufficiently

abstract to be substituted with the details provided by

alternative solutions. Consequently, we focus on providing an

approach to manage the complexities of and-cross transitions

for the purpose of formal analysis by model checking.

In the literature, various encodings or implementations exist

for the representation of state diagrams for symbolic model

verification and the reasoning of temporal properties. These

include RSML2SMV [15], BSML2SMV [11], SMUML [16]

and STATEMATE2SMV [17]. But general problems with

these tools or approaches include: a complete neglect of or only

partial solutions to and-cross. We introduce modeling

strategies to address these issues. First, we cleanly separate

concerns but systematically integrate components of

hierarchical systems. We also assume deterministic transitions

during the transformation as our algorithm presented in [18]

can be applied to compute a set of pairs of potentially

conflicting (non-deterministic) transitions that can be further

analyzed for actual cases of non-determinism.

The rest of the paper is organized as follows: In Section II,

we present a modeling example that inspired this work. Section

III presents formal background on the syntax and semantics of

Umple. Section IV presents our approach to handling and-

crossing by example. Section V discusses the state of research

mailto:oadesina@uottawa.ca
mailto:ssome@eecs.uottawa.ca
mailto:tcl@eecs.uottawa.ca

on and-crossing for model checking. Section VI concludes this

work and state future thoughts.

II. MOTIVATING EXAMPLE

In this section, we present a modeling example with the goal of

demonstrating the need (or an application) of and-cross

transitions in the design of real-world systems. There may be a

possibility of modeling the system we presented here with an

alternative approach but we only assume that and-cross

transition will facilitate a more intuitive representation of the

expressed concept.

We consider a collision avoidance feature of a vehicle with

the focus on the aspect that takes action autonomously without

driver input (i.e., by braking at a lower speed). In particular, a

typical use case relevant to our example may involve the

activation of a collision detection system when a stationary

object (e.g., vehicle, pedestrian, animal, etc.) is detected in a

close-range (e.g., warning radius – 3 meters) and requires

maximum braking force. Collisions in this category may be

forward or rearward. For example, a realistic automotive case

is experienced whenever a threat is detected during parallel

parking. Avoiding a collision in this instance demands issuing

a warning and actuating the braking mechanism autonomously.

Let us assume a collision system is a collection of parallel

sub-systems such as object detection, braking, transmission

and engine. The object detection sub-system is equipped to

periodically send signals to its environment so as to detect

objects within its range of detection. If an object is discovered,

it is classified according to its position and heading and an

input signal is generated from the environment indicating an

object is discovered. The object detection sub-system is

initially set to “Normal” but transitions to “Emergency” mode

whenever an object is detected. At this point, the braking

system is autonomously invoked.

The automatic braking sub-system (ABS) is initially

“Released”. Whenever the brake is applied, a signal is

generated and the brake changes to “Applied” from its initial

mode. Suppose the driver releases the brake, it is reset to the

initial mode. The transmission sub-system can be in “Park”,

“Neutral”, “Reverse” and “Drive” modes. We regard “Drive”

 Key: and-cross transition high-level transition

Figure 1. Visual Representation of a Simplified Collision Avoidance System

Key: additional transitions and-cross to be replaced

 𝑘: = 𝑤𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑑𝑖𝑢𝑠 ≤ 3 && 𝜐ሺ$𝑂𝑏𝑗𝑒𝑐𝑡𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛, 𝑠𝑖ሻ = 𝐸𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦

 𝑚: = 𝑤𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑑𝑖𝑢𝑠 ≤ 3

Figure 2. Alternative Modeling Solution to the Collision Avoidance System

as a black box entity in the design.

The engine sub-system can assume any of the following

modes: “Off”, “Idle”, and “Driving”. A release trigger causes a

driving engine to become idle but accelerate causes a change of

state to “Driving” and so on. The details of our motivating

example are expressed graphically in Figure 1.

And-cross semantics is relevant in this case because in an

emergency situation, the brake is applied, object detection and

transmission are reset to normal and park respectively, and

engine is turned off (to avoid potential risk of fire, etc.) in a

step. In essence, all other parallel submachines of orthogonal

state – “CollisionAvoidance” must be re-initialized except the

brake whose state must be changed to a non-initial state -

“Applied”. As an alternative solution to the use of and-cross

transition, this semantics may be modeled by introducing

several transitions from non-initial states (e.g., “Idle”) to the

initial states of their parent machine (for non-targeted

machines) such that whenever emergency arises, the non-

targeted submachines are reset to their initial states. We present

this modeling approach in Figure 2.

To facilitate comprehension, we introduce operator “$”

such that given a non-orthogonal composite state, say A then

“$A” is the corresponding state machine of “A”. Similarly, we

introduce environment operator “𝜐” such that 𝜐ሺ$𝐴, 𝑠𝑖ሻ is the

state of “$A” at step 𝑠𝑖.

According to Figure 2, we would need additional 7

transitions to model the semantics under consideration as

opposed to one (1) and-cross transition. These are represented

in red arrows. They include “Driving → Off” (i.e., 𝑡15), “Idle →

Off” (i.e., 𝑡16), “Drive → ParkAndNeutral” (i.e.,𝑡17), “Reverse

→ ParkAndNeutral” (i.e.,𝑡19), “Drive → ParkAndNeutral”

(i.e.,𝑡18), “Emergency → Normal” (now 𝑡2) and “Released →

Applied” (i.e., 𝑡20). The execution of a subset of these

transitions will reinitialize all the submachines except the

Brake (i.e., set to “Applied”). We require these transitions to

ensure there are paths to the initial states of these submachines

at any given time irrespective of the current states.

In Figure 3, we present another alternative solution to the

same problem. The figure represents the maximum possible

abstraction without the use of and-cross transitions. It requires

four additional transitions as opposed to seven transitions in

Figure 2. These include “Emergency → Normal” (i.e., 𝑡2),

“Released → Applied” (i.e., 𝑡15), “Transmission →

Transmission” (i.e., 𝑡16), and “Engine → Engine” (i.e., 𝑡17).

However, a single and-cross transition (i.e., 𝑡∗) is required

with the semantics of such transition being sufficient for the

required initialisations based on Harel’s state machine

semantics. In particular, suppose 𝑡∗ is enabled at step 𝑠𝑗−1 and

Key: additional transitions

 𝑘: = 𝑤𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑑𝑖𝑢𝑠 ≤ 3 && 𝜐ሺ$𝑂𝑏𝑗𝑒𝑐𝑡𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛, 𝑠𝑖ሻ = 𝐸𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦

 𝑚: = 𝑤𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑑𝑖𝑢𝑠 ≤ 3

Figure 3. Alternative Modeling Solution to the Collision Avoidance System (Maximum Abstraction)

Listing 1. Collision Avoidance System (Umple)
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

class Example {

 Integer warningRadius;

 sm {

 CollisionAvoidance {

 ObjectDetection {

 Normal { objectDiscovered -> Emergency; } //t1

 Emergency { [warningRadius <= 3] -> Applied; }

 //t2

 }

 ||

 Brake {

 Released { applyBrake -> Applied; } //t3

 Applied { release -> Released; } //t4

 }

 ||

 Transmission {

 ParkAndNeutral {

 selectReverse -> Reverse; //t5

 selectDrive -> Drive; //t6

 Park { selectneutral -> Neutral; } //t9

 Neutral { selectPark -> Park; } //t10

 }

 Reverse { selectPark -> Park; } //t7

 Drive { selectNeutral -> Neutral; } //t8

 }

 ||

 Engine {

 Off { turnOn -> Idle; } //t11

 Idle { accelerate -> Driving; } //t12

 Driving {

 release -> Idle; //t13

 applyBrake -> Idle; //t14

 }}}}}

executes at step 𝑠𝑗 then

 𝜐ሺ$Brake, 𝑠𝑗ሻ = 𝐴𝑝𝑝𝑙𝑖𝑒𝑑,

𝜐ሺ$Transmission, 𝑠𝑗ሻ = 𝑃𝑎𝑟𝑘𝐴𝑛𝑑𝑁𝑒𝑢𝑡𝑟𝑎𝑙,

𝜐ሺ$ParkAndNeutral, 𝑠𝑗ሻ = 𝑃𝑎𝑟𝑘,

𝜐ሺ$ObjectDetection, 𝑠𝑗ሻ = 𝑁𝑜𝑟𝑚𝑎𝑙, and

𝜐ሺEngine, 𝑠𝑗ሻ = 𝑂𝑓𝑓.

This is synonymous to what is achievable with the 7

transitions of the alternative solution. We can thus observe

better abstraction as advocated by MDE with and-cross

transitions. Therefore, managing the underlying complexities

of the notion of and-crossing becomes critical and the focus of

this paper.

III. BACKGROUND

We present the syntax and semantics of Umple. To ease

readability of Listing 1 simple state names are green;

composite state names are red; and keywords are blue.

Umple is a model-oriented programming technology for the

development of real-world software systems. It supports the

model-code duality principle by representing software models

interchangeably as diagrams and text [4]. Umple allows

developers to model static views (i.e., class diagrams) and

dynamic views (i.e., state diagrams) of software systems and

automatically generates code for languages such as Java, C++,

Ruby, and Php from the model. Umple achieves this by

providing constructs and environments to express an extended

subset of the Unified Modeling Language (UML) [19]. By

extended, we mean that we provide a few features that UML

does not support; for example, UML 2.5 [14] does not allow

and-cross (or region-cross) transitions but we support this

notion. Similarly, Umple allows developers to merge modeling

with programming [20]. In particular, algorithmic logics are

expressible in the dialect of the target language (e.g. Java, C++,

Ruby, Php, etc.).

Listing 1 is an Umple version of the collision avoidance

system presented in Figure 1. We will use this to describe the

constructs of Umple.

A. Informal Syntax and Semantics of Umple

The notion of state machines as facilitated by Umple provides

constructs to represent states (simple, composite, and

orthogonal), transitions (regular, guarded, high-level), and

events. State machines in Umple can either be simple or

hierarchical. A simple state machine is composed of a set of

simple states. For a hierarchical state machine, there are one or

more composite or orthogonal sub-states.

An example of a simple state is “Emergency” defined in

line 7 of Listing 1; an example composite state is

“ParkAndNeutral” defined in lines 17-25 of Listing 1.

Orthogonal states (e.g., “CollisionAvoidance” defined on

lines 4-33 of Listing 1) exist when two or more sub-states all

become activated whenever control is transferred to their

parent. For example, sub-states “ObjectDetection”, “Brake”,

“Transmission” and “Engine” become activated whenever

“CollisionAvoidance” is activated. In other words, the

execution of sub-states occurs concurrently. Child states of

composite and orthogonal states may be simple, composite, or

orthogonal themselves.

By default, the first state (i.e., simple or composite) defined

within an Umple state machine at any level of the hierarchy is

regarded as its initial state (e.g., the state “CollisionAvoidance”

in Listing 1).

Associated with a state, there can be any number of

transitions. A state with zero outgoing transition is considered

as an “end” state. A state can also be tagged as ‘final’ implying

the end of the object’s life whenever control is transferred to

that state. Several transitions, indicated by “->” are shown in

Listing 1. The state enclosing the transition is referred to as the

‘source’; while the target state is referred to as the

‘destination’. For transition 𝑡4 on line 13 of Listing 1,

“Applied” and “Released” are its source and destination states

respectively. A basic transition is a transition without a guard

statement.

A guarded transition has a Boolean expression controlling

whether or not a transition is taken whenever an event arrives

or automatically taken whenever it is an auto-transition. A

high-level transition is any kind of transition defined outside of

sub-states in a composite state, but which has effect in all the

sub-states (e.g., 𝑡5, line 18 of Listing 1). Associated with every

transition is an event (e.g., “selectPark” on line 23 of Listing

1).

Although, the subset of Umple considered in this work

excludes actions, we consider it necessary to discuss variables

and types supported in Umple since the values of guards are

computed from the variables at every step of execution. Umple

allows the use of primitive and non-primitive data types. The

primitive data types of focus are Boolean, Integer and Real.

For example, on line 2 of Listing 1 we present a definition of

an Integer variable “warningRadius” defaulted to “0”.

Umple transforms hierarchical state machine (e.g., “sm” of

Listing 1) internally into a collection of state machines. For

each non-orthogonal composite state, there is a corresponding

state machine such that its sub-states become the states of the

state machine when active. We introduce a special ‘null’ state

for every state machine such that these state machines are in

their ‘null’ state until they are being activated. Similarly, for

every region of orthogonal states, there is also a corresponding

state machine. A state machine is also generated for the root

state machine but without the ‘null’ state, since the root is

always active throughout its containing object’s life cycle. But

sub-state machines are only active whenever control is

transferred to their parent state or any of their sub-states [4],

[21].

B. Formal Syntax and Semantics of Umple

To facilitate easy discussion of concepts involved in our

approach to managing and-crossing, a formal description of

syntax and semantics of Umple becomes critical.

A state machine in Umple (e.g., “sm”, lines 4-35), say 𝐴, is

a 6-tuple 〈𝑛𝐴, 𝑆𝐴, 𝑙𝐴, 𝑠𝐴
0, 𝑉𝐴, 𝑅𝐴〉; such that 𝑛𝐴 is the name, 𝑆𝐴 is a

finite set of top-level states (excluding indirect sub-states),

𝑠𝐴
0 ∈ 𝑆𝐴 is the initial state (e.g., “CollisionAvoidance”), 𝑙𝐴 is a

finite set of labels, 𝑉𝐴 is a finite set of variables (or attributes –

“warningRadius”) and 𝑅𝐴 ⊆ 𝑆𝐴 × 𝑙𝐴 × 𝑆𝐴 defines a transition

relation on 𝐴. By ‘indirect sub-state’ of a state machine, we

mean a state whose ancestor is a top-level state of the state

machine under consideration irrespective of its depth. A

submachine of a composite state is a state machine

encapsulating a region enclosed by the state. For example, a

non-orthogonal composite state encloses a region but an

orthogonal composite state encloses at least two regions. In our

approach a state machine is defined for every region.

Let 𝑈𝑠 be the universal set of states of a SUA. 𝑈𝑠 contains

all the states of the model at any level (e.g., Engine, Idle, Park,

Reverse, Brake, Emergency etc.). Let 𝑈𝑙 (e.g., {𝑡𝑖| 1 ≤ 𝑖 ≤ 14}

for Figure 1) be the set of all labels in the SUA and 𝑅 be the

universal set of transitions of the SUA such that 𝑅 ⊆ 𝑈𝑆 ×
𝑈𝑙 × 𝑈𝑆.

Let 𝑉𝐴 be a set of pairs 〈𝑛𝑣 , 𝑡𝑣〉, where 𝑛𝑣 is a name and 𝑡𝑣 ∈ 𝕋

is a type of a given variable 𝑣 ∈ 𝑉𝐴, such that 𝕋 =
{integer, boolean, real}. We consider 𝐺𝑙 as the universal set

of guards, 𝐸𝑙 as the universal set of non-parameterized events,

and 𝐴𝑙 as the universal set of actions such that 𝑙𝐴 ⊆ 𝐺𝑙 × 𝐸𝑙 ×
𝐴𝑙..

Let 𝛾: 𝑙𝐴 → 𝐸𝑙 such that 𝛾ሺ𝑔, 𝑒, 𝑎ሻ = 𝑒 We also define

𝐿: 𝑅𝐴 → 𝑙𝐴 such that 𝐿ሺ𝑠, 𝑙, 𝑠′ሻ = 𝑙.
Given any state 𝑠 ∈ 𝑆𝐴, we define a mapping function

𝛽: 𝑠 → ℕ to map a state, s to its number of sub machines; such

that ∀𝑠 ∈ 𝑆𝐴
 𝛽ሺ𝑠ሻ = 0, 1, 𝑛 when 𝑠 is simple, non-orthogonal

composite and orthogonal composite states respectively where

𝑛 > 1. For example, 𝛽ሺAppliedሻ = 0, 𝛽ሺParkAndNeutralሻ =
1, and 𝛽ሺCollisionAvoidanceሻ = 4.

We say 𝑀 is a simple state machine if and only if ∀𝑠 ∈ 𝑆𝑀

𝛽ሺ𝑠ሻ = 0 and it is hierarchical ∃𝑠 ∈ 𝑆𝑀
, such that 𝛽ሺ𝑠ሻ ≥ 1. To

facilitate the specification of hierarchical structures, we

introduce a binary relation ⊑ on 𝑊, such that 𝑊 is the set of

all sub-state machines (including the root). If 𝑀, 𝐿, 𝑍 ∈ 𝑊 then

𝑀 ⊑ 𝐿 specifies 𝐿 as a direct ancestor or a parent state machine

of 𝑀. ⊑⃛ is the reflexive closure of ⊑ on W. Where 𝑀 ⊑⃛ 𝑍

defines 𝑀 as a submachine of 𝑍, such that 𝑍 is ancestrally-

related to 𝑀. We introduce a partial mapping function 𝜌 ∶ 𝑀 →
𝑈𝑆 such that 𝜌ሺ𝑀ሻ = 𝑠, 𝑠 being the parent state of M. Hence,

we say 𝑍 is a root state machine iff 𝜌ሺ𝑍ሻ is undefined. On the

other hand, for any non-root state machine 𝑀, 𝜌ሺ𝑀ሻ is defined.

In particular, there can only be a submachine 𝑀 if and only if

𝑆𝐿 being a set of states of state machine 𝐿, ∃𝑘 ∈ 𝑆𝐿
, 𝜌ሺ𝑀ሻ = 𝑘

and 𝑀 ⊑ 𝐿.

Recall that 𝑘 is an orthogonal state iff 𝛽ሺ𝑘ሻ ≥ 2. In

essence, there are at least two sub-state machines for 𝑘. We

introduce the relation ⊑|| to define parallelism between any

two orthogonal state machines, such that 𝑀 ⊑|| 𝐿 iff ∃𝑦 ∈ 𝑆𝐻
,

𝜌ሺ𝑀ሻ = 𝜌ሺ𝐿ሻ = 𝑦 and 𝑀 ⊑ 𝐻, 𝐿 ⊑ 𝐻.

A pair of elements 𝑗, 𝑠 ∈ 𝑈𝑠 such that 𝑗 ≅ 𝑠, implies 𝑠 (e.g.,

Engine, line 27-33) is ancestrally related to 𝑗 (e.g., Idle, line

29. Let 𝑈𝑡 be a universal set of transitions of the SUA (e.g.,
{𝑡𝑖| 1 ≤ 𝑖 ≤ 14}) such that if 𝑍 is a root state machine, then

𝑈𝑡 = 𝑅𝑍. Let 𝐹, 𝑋 ⊆ 𝑈𝑡 × 2𝑈𝑠 such that 𝑡 ∈ 𝑈𝑡, ሺ𝑡, 𝐹𝑠ሻ 𝑖𝑛 𝐹

and ሺ𝑡, 𝑋𝑠ሻ 𝑖𝑛 𝑋 where 𝐹𝑠, 𝑋𝑠 ∈ 2𝑈𝑠 are sets of from (source)

and next (destination) states of transition 𝑡 respectively.

IV. OUR WORK

In this section, we present our approach to enabling and

disabling states and sub-machines for and-cross transitions.

However, we present more formal definitions of some concepts

to facilitate the discussion.

DEFINITION 1. AND-CROSS TRANSITION

Given an orthogonal composite state, say 𝑘 (i.e., 𝛽ሺ𝑘ሻ ≥ 2)

and M, N are two parallel sub-state machines of k (𝜌ሺ𝑀ሻ =
𝜌ሺ𝑁ሻ = 𝑘 and 𝑀 ⊑|| 𝑁); O, P such that 𝑂 ⊑⃛ 𝑀 ∧ 𝑃 ⊑⃛ 𝑁; 𝑠1,

𝑠2 embedded states such that 𝑠1 ∈ 𝑆𝑂 , 𝑠2 ∈ 𝑆𝑃; any transition 𝑡

such that there are ሺ𝑡, 𝐹𝑠ሻ 𝑖𝑛 𝐹, ሺ𝑡, 𝑋𝑠ሻ 𝑖𝑛 𝑋 with 𝑠1 𝑖𝑛 𝐹𝑠
and 𝑠2 𝑖𝑛 𝑋𝑠 is an and-cross transition. The set of and-cross

transition of a composite state k is denoted as 𝛿ሺ𝑘ሻ.

We introduce an operator 𝜀ሺ𝑀ሻ which defines a union of a

set of transitions whose target state is external to 𝑠, an

orthogonal but parent state of 𝑀 and a set of external-and-cross

transitions of 𝑠 with respect to 𝑀.

DEFINITION 2. EXTERNAL TRANSITION

We say transition 𝑡 is an “external transition” of a composite

state 𝑠, if there is a state 𝑘 such that 𝑘 ≅ 𝑠 and sub-state

machines 𝑀, 𝑁 such that 𝜌ሺ𝑠ሻ = 𝑀, 𝑀 ⊑ 𝑁 then 𝑡 ∈ 𝑅𝑁 is

external with respect to 𝑠 whenever 𝑘 ∉ 𝑋ሺ𝑡ሻ. We represent

this transition set as extሺsሻ.

DEFINITION 3. EXTERNAL-AND-CROSS TRANSITION

An external-and-cross transition 𝑡 of state s with respect to sub-

machine 𝑀 (denoted as 𝜔ሺ𝑠, 𝑀ሻ), where 𝑡 ∈ 𝛿ሺ𝑠ሻ and 𝑠 =
𝜌ሺ𝑀ሻ. If there exist states 𝑗, 𝑥 such that 𝑗 ∈ 𝑆𝑀, 𝑥 ≇ 𝑗 and 𝑥 ≅
𝑠. If 𝑥 ∈ 𝑋ሺ𝑡ሻ then 𝑡 is an external-and-cross transition.

Hence, 𝜀ሺ𝑀ሻ is simplified as {𝑡, 𝑡′} where 𝑡 ∈
𝜔ሺ𝑠, 𝑀ሻ, 𝑡′ ∈ 𝑒𝑥𝑡ሺ𝑠ሻ.

DEFINITION 4. DISABLING TRANSITION

Transition 𝑡 disables sub-machine 𝑀 if there exists a state 𝑠

such that 𝑠 ∈ 𝑆𝑁, 𝑡 ∈ 𝑅𝑁, 𝑀 ⊑ 𝑁, 𝑠 = 𝜌ሺ𝑀ሻ and 𝑡 ∈ 𝜀ሺ𝑀ሻ. In

other words, a sub-machine is disabled or will remain disabled

whenever a transition whose next state is the parent state or

non-embedded sub-state of the parent state of the sub-machine

under consideration execute (i.e., external transition) or an and-

cross transition whose destination state is not a direct or

indirect sub-state of the sub-machine is fired. By “non-

embedded sub-state” of a composite state 𝑠, we mean states

outside the boundaries of 𝑠 but local to the host state machine

Listing 2. $ParkAndNeutral sub-machine (SMV)
1

2

3

4

5

6

7

8

9

10

11

12

13

MODULE $ParkAndNeutral (sm, transmission)

 VAR

 state : { Park , Neutral , null };

 ASSIGN

 init(state) := null;

 next(state) := case

 sm.t5 | sm.t6 : null; -- disabling transitions

 sm.t10 | sm.t7 : Park; -- enabling transitions

 sm.t9 | sm.t8 : Neutral; -- enabling transitions

 transmission.state = ParkAndNeutral &

 state = null : Park;

 TRUE : state;

 esac;

of 𝑠.

By this definition, not only orthogonal submachines are

disabled but also non-orthogonal ones. For example, in Figure

1 “ParkAndNeutral” is a non-orthogonal composite state and

“ParkAndNeutral” is its sub-state machine. The SMV

representation of “$ParkAndNeutral” sub-state machine is

presented in Listing 2. Its set of disabling transitions is given

as: {𝑡5, 𝑡6}. We computed this set as follow:

a) “$ParkAndNeutral” ⊑ “$Transmission”.

b) 𝑡$𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = {𝑡𝑖 | 5 ≤ 𝑖 ≤ 10}.

c) 𝜔(ParkAndNeutral, $ParkandNeutral) = ∅.

d) 𝑒𝑥𝑡(ParkAndNeutral) = {𝑡6, 𝑡5}.

e) 𝜀ሺ𝑀ሻ = {𝑡5, 𝑡6} ∪ ∅ = {𝑡5, 𝑡6}.

On another hand, the set of disabling transitions for an

orthogonal submachine is dependent on the destination or

source of an and-cross transition. In particular, an orthogonal

sub-machine whose sub-state is a destination of an and-cross

transition may be disabled only by external transitions of its

parent state. For example, the set of disabling transition for

“$Brake” is ∅. We determined this as follow:

a) 𝑡2 is an and-cross transition from “$ObjectDetection” to

“$Brake”.

b) “$Brake” ⊑ “$Sm”.

c) 𝑡$𝑆𝑚 = {𝑡𝑖 | 1 ≤ 𝑖 ≤ 10}.

d) 𝜔(CollisionAvoidance, $Brake) = ∅.

e) 𝑒𝑥𝑡(CollisionAvoidance) = ∅.

f) 𝜀ሺ𝑀ሻ = ∅ ∪ ∅ = ∅.

The SMV representation of the “$Brake” sub-state machine

is presented in Listing 3. Since the disabling set is empty, there

was no expression assigning “null” to the state variable of the

sub-state machine.

An orthogonal sub-machine whose sub-state is not a

destination of an and-cross transition may be disabled by at

least and-cross transitions whenever the set of and-cross

transition of its parent state is non-empty. Let us consider

“$Engine” sub-state machine. The set of disabling transition is

given as: {𝑡2}. We derived this as follow:

a) 𝑡2 is an and-cross transition from “$ObjectDetection” to

“$Brake”.

b) “$Engine” ⊑ “$CollisionAvoidance”.

c) 𝑡$𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐴𝑣𝑜𝑖𝑑𝑎𝑛𝑐𝑒 = {𝑡𝑖 | 1 ≤ 𝑖 ≤ 10}.

d) 𝜔(CollisionAvoidance, $Engine) = {𝑡2}.

e) 𝑒𝑥𝑡(CollisionAvoidance) = ∅.

f) 𝜀ሺ𝑀ሻ = {𝑡2} ∪ ∅ = {𝑡2}.

The SMV representation of the “$Engine” sub-state

machine is presented in Listing 4. Note that whenever a

member of the set of transitions external to the parent state of a

sub-state machine under consideration executes, it is

guaranteed that the machine is inactive at any given step. The

disabling transitions of a machine are therefore necessarily a

subset of transitions of the state machine containing its parent

state.

The process of enabling a sub-state machine differs. In

particular, we enable a machine based on the transitions

enabling its direct or indirect sub-state(s) or by default. By

“default”, we mean enabling the machine whenever a transition

whose next state includes the parent state of the machine under

consideration executes. We introduce operator 𝜈 ∶ 𝑀 → 𝑆𝑀 to

facilitate further discussion, such that, 𝜈ሺ𝑀ሻ is the current state

of the machine 𝑀. We formally define state activation by

default as follows:

DEFINITION 5. ACTIVATION BY DEFAULT

State 𝑠 ∈ 𝑈𝑠 is activated by default in a micro-step, say 𝑠′′ if

and only if there exist module 𝑀, state 𝑗 such that 𝑠 = 𝑠𝑀
0 , 𝑗 =

𝜌ሺ𝑀ሻ, 𝜈ሺ𝑀ሻ = 𝑛𝑢𝑙𝑙 and 𝑗 becomes enabled at the previous

micro-step 𝑠′.

For example, “$ObjectDetection” sub-state machine will be

enabled whenever state “Normal” is activated by default.

Furthermore, we define a transition set to enable states of a

state machine.

DEFINITION 6. ENABLING TRANSITION

Transition 𝑡 ∈ 𝑈𝑙 is an enabling transition of state 𝑠 if and only

if 𝑠 ∈ 𝑋ሺ𝑡ሻ or there is a state 𝑘 ∈ 𝑈𝑠 such that 𝑘 ≅ 𝑠 and 𝑘 ∈
𝑋ሺ𝑡ሻ. In other words, a state is enabled by a set of transitions

into itself and those of its sub-states.

For example, consider simple state “Applied” of Figure 1,

the set of transitions enabling this state are 𝑡2. The set of

enabling transitions of non-orthogonal composite state

“ParkAndNeutral” are: {𝑡𝑖 | 5 ≤ 𝑖 ≤ 10}. To enable orthogonal

composite state “CollisionAvoidance” the following set of

transitions are relevant: {𝑡𝑖 | 1 ≤ 𝑖 ≤ 10}

For a concurrent machine, whenever a transition into a sub-

state of a parallel machine executes, the parent state is activated

in the same micro-step and the parallel machines are activated

in the next micro-step. These cycle continues until the system

assumes a stable state. In other words, the semantics we

adopted for this case is “run-to-completion” paradigm [14]. A

global configuration based on our approach is defined as

follows:

Listing 3. $Brake sub-machine (SMV)
1

2

3

4

5

6

7

8

9

10

11

12

MODULE $Brake (sm)

 VAR

 state : { Released , Applied , null };

 ASSIGN

 init(state) := null;

 next(state) := case

 sm.t4 : Released; -- enabling transitions

 sm.t2 | sm.t3 : Applied; -- enabling transitions

 sm.state = CollisionAvoidance &

 state = null : Released; -- default activation

 TRUE : state;

 esac;

Listing 4. $Engine sub-machine (SMV)
1

2

3

4

5

6

7

8

9

10

11

12

13

MODULE $Engine (sm)

 VAR

 state : { Off , Idle , Driving , null };

 ASSIGN

 init(state) := null;

 next(state) := case

 sm.t2 : null; -- disabling transitions

 sm.t13 | sm.t11 | sm.t14 : Idle;

 sm.t12 : Driving; -- enabling transitions

 sm.state = CollisionAvoidance &

 state = null : Off; -- default activation

 TRUE : state;

 esac;

DEFINITION 7. GLOBAL CONFIGURATION

A global configuration of an Umple state machine 𝐴 is a

quadruple 〈𝑀 × 𝑈𝑠 × 𝐸𝑠 × 𝑉𝐴〉 such that 𝑀 is the set of sub-

state machines (including the root), 𝐸𝑠 is a set of execution

steps and 𝑉𝐴 is a finite set of pairs 〈𝑛𝑎, 𝑣𝑎〉 such that 𝑛𝑎 is a

variable name and 𝑣𝑎 is its value. Equation (1) defines the

configuration of an SUA at step 𝑖 where sub-machine 𝑚1 is in

state 𝑠1, variable 𝑛1 is evaluated to value 𝑣1, and 𝑘, 𝑗 are the

number of variables and sub-machines respectively.

〈〈𝑚1, … , 𝑚𝑗〉, 〈𝑠1, … , 𝑠𝑗〉, 𝑠𝑖 , 〈〈𝑛1, … , 𝑛𝑘〉, 〈𝑣1, … , 𝑣𝑘〉〉〉 (1)

If an enabled transition fires, it may lead to a change in

configuration. In particular, it may change the states of sub-

machines (for non-self-transitions) as well as the values of

variables (for transitions with non-empty actions statements).

In summary, a sub-state machine becomes active in a micro-

step its sub-state is activated. This includes the micro-step at

which its initial state receives control or activated by default.

However, it is worthy to note that the root state machine is

enabled throughout the life cycle of the model under analysis.

We will also like to emphasize that our approach is not limited

by the depth of and-cross transitions. The set of transitions

composed for enabling and disabling states and sub-state

machines as presented in this paper have been implemented in

Umple2SMV [22].

V. RELATED WORK

And-cross transition has gained limited attention in model-

driven engineering community due to its complexity or

availability of alternative solutions or their limited use-in-

practice. We present an overview of the literature to discuss the

state of research on and-crossing.

Faghih and Day [11] propose an algorithm for creating a

semantics-based, parameterized translator from a family of big-

step modeling languages (BSML) to SMV for model checking

purposes. The translator developed allowed configuration of

semantics for different modeling languages. It handles various

kinds of consistency checks (including non-determinism) and

allows the specifications of and-cross transitions. However,

and-crossing within a child and-state of an and-state is not

supported. This kind of transitions is what Faghih and Day

referred to as unusual transition. The semantics of and-cross

transitions are based on the concept of scope. A scope defines

the least-common ancestor to the source and destinations of a

transition. Hence, the sub-states to be exited and entered are

determined.

Harel et. al [13] presents Rhapsody, an implementation of

the semantics of state charts [12]. Rhapsody allows the

execution of object-oriented state charts. Among various

notions facilitated are And-state, Or-state and basic states, join,

connector, etc. It also facilitates the representation of

compound transition (including and-crossing). The semantics

of compound transitions are based on the concept of scope as

in [11].

Chan et al. [23] translated RSML specification of TCAS II

system to SMV for symbolic model verification. RSML

(Requirements State Machine Language) is a communicating

state machine model. It includes features like parallel state

machines and hierarchical abstractions. Composite structures

are abstracted into super-states. The applicability of the

approach presented to and-crossing is not discussed.

Sreemani and Atlee [24] implemented a program that

translates a requirement expressed in Software Cost Reduction

(SCR) into an equivalent SMV specification. The focus of their

work is to demonstrate the feasibility of symbolic model

checking to reason about temporal properties of large software

specifications. They successfully applied their approach and

falsified some properties. However, the work lacks details on

the notions facilitated and and-crossing is also not discussed.

VI. CONCLUSION AND FUTURE WORK

We presented an approach to model the semantics of and-cross

transitions for the purpose of symbolic model verification. The

need for and-crossing was exemplified in this work. We also

present both informal and formal background on Umple to

facilitate formal discussion of our approach to enable or disable

sub-machines and states involved in and-crossing. We applied

our approach to the motivating example to demonstrate how

these sets are being composed.

Our long-term goal is to apply this technique to several

industrial case studies for the formal verification of complex

systems modeled using and-cross transitions.

VII. REFERENCES

[1] O. Adesina, “Integrating formal methods with model-driven
engineering,” in 18th International Conference on Model Driven

Engineering and Languages and Systems (MODELS’15), 2015, pp.

6–10.
[2] W. Ahrendt, B. Beckert, D. Bruns, R. Bubel, C. Gladisch, S.

Grebing, R. H??hnle, M. Hentschel, M. Herda, V. Klebanov, W.

Mostowski, C. Scheben, P. H. Schmitt, and M. Ulbrich, “The KeY
platform for verification and analysis of Java programs,” in Lecture

Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 2014,
vol. 8471, pp. 55–71.

[3] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani, “Automatic

predicate abstraction of C programs,” in Proceedings of the ACM
SIGPLAN 2001 conference on Programming language design and

implementation, 2001, vol. 36, no. 5, pp. 203–213.

[4] O. Badreddin and T. C. Lethbridge, “A manifestation of model-code
duality: facilitating the representation of state machines in the umple

model-oriented programming language,” 2012.

[5] J. Cabot, R. Clarisó, and D. Riera, “UMLtoCSP: A tool for the
formal verification of UML/OCL models using constraint

programming,” ASE’07 - 2007 ACM/IEEE Int. Conf. Autom. Softw.

Eng., pp. 547–548, 2007.
[6] B. Bordbar and K. Anastasakis, “UML2ALLOY: A tool for

lightweight modelling of discrete event systems.,” Guimarães, N.,

Isaías, P. IADIS Int. Conf. Appl. Comput. 2005, no. 1999, pp. 209–
216, 2005.

[7] D. Jackson, “Alloy: a lightweight object modelling notation,” ACM

Trans. Softw. Eng. Methodol., vol. 11, pp. 256–290, 2002.
[8] A. Cimatti, E. Clarke, and E. Giunchiglia, “Nusmv 2: An

opensource tool for symbolic model checking,” in International

Conference on Computer Aided VerificationComputer Aided
Verification, 2002, vol. 2404, pp. 359–364.

[9] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A.

Micheli, S. Mover, M. Roveri, and S. Tonetta, “The NUXMV
Symbolic Model Checker,” in 26th International Conference on

Computer Aided Verification, 2014, pp. 334–342.

[10] D. C. Schmidt, “Model-Driven Engineering,” Comput. Comput.
Soc., no. February, pp. 25–31, 2006.

[11] F. Faghih and N. A. Day, “Mapping Big-Step Modeling Languages

to SMV,” 2011.

[12] D. Harel, “Statecharts: A visual formalism for complex systems,”
Sci. Comput. Program., vol. 8, no. 3, pp. 231–274, 1987.

[13] D. Harel and H. Kugler, “The Rhapsody Semantics of Statecharts

(or, On the Executable Core of the UML),” Integr. Softw. Specif.
Tech. Appl. Eng., vol. 3147, pp. 325–354, 2004.

[14] Omg, “OMG Unified Modeling Language: Version 2.5,” vol. 5, no.

September, p. 786, 2013.
[15] W. Chan, R. J. Anderson, P. Beame, S. Burns, F. Modugno, D.

Notkin, and J. D. Reese, “Model checking large software

specifications,” IEEE Trans. Softw. Eng., vol. 24, no. 7, pp. 498–
520, 1998.

[16] J. Dubrovin and T. Junttila, “Symbolic model checking of

hierarchical UML state machines,” in 8th International Conference
on Application of Concurrency to System Design, 2008, pp. 108–

117.

[17] E. M. Clarke and W. Heinle, “Modular translation of statecharts to
SMV,” 2000.

[18] O. O. Adesina, T. C. Lethbridge, and S. S. Somé, “A Fully

Automated Approach to Discovering Nondeterminism in State
Machine Diagrams,” in 10th International Conference on the

Quality of Information and Communications Technology, 2016, pp.

73–78.
[19] J. Rambaugh, I. Jacobson, and G. Booch, Advanced Praise for The

Unified Modeling Language Reference Manual , Second Edition,

2nd ed. Toronto: Addison-Wesley, 2004.
[20] T. C. Lethbridge, V. Abdelzad, M. H. Orabi, A. H. Orabi, and O. O.

Adesina, “Merging Modeling and Programming Using Umple,” in
Leveraging Applications of Formal Methods, Verification and

Validation: Discussion, Dissemination, Applications, vol. 17, T.

Margaria and B. Steffen, Eds. Corfu: Springer International
Publishing, 2016, pp. 187–197.

[21] O. Badreddin, T. C. Lethbridge, A. Forward, M. Elasaar, and H.

Aljamaan, “Enhanced Code Generation from UML Composite State
Machines,” in Modelsward 2014, 2014.

[22] CRUiSE, “UmpleOnline: Generate Java, C++, PHP, or Ruby from

Umple code,” UmpleOnline: Generate Java, C++, PHP, or Ruby
from Umple code, 2016. [Online]. Available:

http://cruise.eecs.uottawa.ca/umpleonline/. [Accessed: 18-Jan-

2016].
[23] W. Chan, S. Member, R. J. Anderson, P. Beame, S. Burns, D.

Notkin, S. Member, and J. D. Reese, “Model Checking Large

Software Specifications,” IEEE Trans. Softw. Eng., vol. 24, no. 7,
pp. 498–520, 1998.

[24] T. Sreemani and J. M. Atlee, “Feasibility of Model Checking

Software equirements : A Case Study,” in COMPASS ’96, Systems
Integrity. Software Safety. Process Security., 1996, pp. 77–88.

