
Speech Control for HTML5 Hypervideo Players

Britta Meixner1,2, Fabian Kallmeier1

1University of Passau, Innstrasse 43, 94032 Passau, Germany
2FX Palo Alto Laboratory, 3174 Porter Drive, Palo Alto, CA 94304, USA

meixner@fxpal.com, kallmeie@fim.uni-passau.de

ABSTRACT
Hypervideo usage scenarios like physiotherapy trainings or
instructions for manual tasks make it hard for users to use
an input device like a mouse or touch screen on a hand-held
device while they are performing an exercise or use both hands
to perform a manual task. In this work, we are trying to over-
come this issue by providing an alternative input method for
hypervideo navigation using speech commands. In a user
test, we evaluated two different speech recognition libraries,
annyang (in combination with the Web Speech API) and Pock-
etSphinx.js (in combination with the Web Audio API), for their
usability to control hypervideo players. Test users spoke 18
words, either in German or English, which were recorded and
then processed by both libraries. We found out that annyang
shows better recognition results. However, depending on other
factors of influence, like the occurrence of background noise
(reliability), the availability of an internet connection, or the
used browser, PocketSphinx.js may be a better fit.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation (e.g. HCI):
User Interfaces

Author Keywords
Hypervideo; Navigation; Language Processing; Speech Input;
HTML5;

INTRODUCTION
Using speech input, users are nowadays able to control smart-
phones, navigation systems, and Smart-TVs without touching
them. Depending on the system, either certain commands are
recognized (for example in TomTom navigation systems [20]),
or freely formulated questions can be asked (like Siri for
iPhones [1], Utter for Android Phones [10], or the Google
app [9]) which are then processed by the system trying to find
an answer.

However, up to now, only few homepages and Web applica-
tions have built-in support for speech input. Especially hyper-
video players could benefit from speech control. Hypervideos
consist of interlinked video scenes which are enriched with

4th International Workshop on Interactive Content Consumption at TVX’16, June 22,
2016, Chicago, IL, USA
Copyright is held by the author/owner(s).

additional information. Playing such videos requires special
players that provide additional means of navigation in addi-
tional information, in scenes, and between scenes [14]. In
usage scenarios like cooking instructions, physiotherapy and
fitness trainings [15], or physical tasks that have to be done
with two hands, speech controls may help the user to navigate
in the hypervideo without having to interrupt the current task.
The hypervideo may be paused, next scenes may be selected,
or annotations may be read without having to interrupt the
task/exercise using voice commands.

SPEECH RECOGNITION FRAMEWORKS
Several speech recognition APIs exist having varying features
and limitations. Available APIs are, for example, Google
Speech API [6] which accepts 10-15 seconds of audio, the
IBM Speech to Text API [11] which uses IBM’s speech recog-
nition capabilities, wit.ai [26] which is an open and exten-
sible natural language platform, Speechmatics [19] and the
VoxSigma REST API [21] which transcribe uploaded files into
text, or the open source APIs Kaldi [12] and OpenEars [18],
the latter of which provides free speech recognition and speech
synthesis for the iPhone. Hereafter we briefly describe the
combinations of frameworks that will be tested in the remain-
der of this work. We chose these frameworks based on the
following criteria: the framework should be able to process
longer phrases (in case the speech recognition gets extended
in the player). It should be possible to integrate it into a Web
application and the library should not be limited to certain
OSes.

Web Audio API and PocketSphinx.js
The Web Audio API is a “high-level JavaScript API for pro-
cessing and synthesizing audio in web applications” [24]. It
allows splitting and merging of channels in an audio stream.
Audio sources from an HTML5 <audio> or <video> element
can be processed. It is furthermore possible to process live
audio input from a MediaStream via getUserMedia() [24].
The speech recognition library PocketSphinx.js is written en-
tirely in JavaScript. It is running entirely in the web browser
[7], which builds on the Web Audio API. The speech recog-
nizer is implemented in C (PocketSphinx) [3] and converted
into JavaScript using Emscripten [5]. It is possible to add
words, grammar, and key phrases to extend or improve the
recognition [7]. Each language needs its own language model
with a vocabulary.

Web Speech API and annyang
The Web Speech API enables the incorporation of voice
data into web apps [17][23]. The SpeechRecognition (Asyn-

chronous Speech Recognition) interface “provides the ability
to recognize voice context from an audio input (normally via
the device’s default speech recognition service) and respond
appropriately” [17]. The SpeechGrammar interface represents
a container for a particular set of grammar (defined in the
JSpeech Grammar Format (JSGF)) that an app should recog-
nize [17]. As most modern OSes have a speech recognition
system for issuing voice commands, this is used for speech
recognition on the device. Speech recognition systems are, for
example, Dictation on Mac OS X [2], Siri on iOS [1], Cor-
tana on Windows 10 [16], and Android Speech [8]. The tiny
standalone JavaScript SpeechRecognition library annyang lets
users control a homepage with voice commands [4]. The size
of the library is less than 1 kb. The back-end is supported by
the (Chrome) Web Speech API [25].

IMPLEMENTATION
In order to test the annyang and the PocketSphinx.js projects,
we installed a reference platform. It consists of a Web server
(Apache 2.4.10) and a database (MySQL 5.5.38). We used
Perl (Version 5.14.2) for the implementation of the dynamic
test Web page, which shows contents in the selected language
(German or English) and provides a log-in system to avoid
abuse and falsification of the test results. We only used Google
Chrome for our tests, because annyang is built on the Web
Speech API which was only available for Google Chrome at
the time of the tests.

annyang
For an implementation of speech detection and recognition
with annyang, it was only necessary to include the JavaScript
library into the Web application. In order to allow the usage of
the microphone it was mandatory to install an SSL-certificate.
We furthermore rewrote the onResult function of the an-
nyang project to make the implementation conform with the
PocketSphinx.js implementation described hereafter. To test
German words, the language only had to be set to German
using the setLanguage function. Further modifications and
additions were not necessary.

PocketSphinx.js
The implementation of speech detection and recognition with
PocketSphinx.js required more effort compared to the imple-
mentation with annyang, because the source code of Pocket-
Sphinx.js only comes with an English acoustical model. To
avoid having to generate our own acoustical model for Ger-
man words, we used the one provided by VoxForge [22]. We
furthermore used the possibility to add words and grammars
during run-time to avoid too large files which could lead to
crashes of the browser. For that reason we compiled the acous-
tical models outside the main file which led to smaller files
and a better performance.

Test System
The web page used for the tests consisted of a index.pl file
in Perl (which generated the HTML code), some JavaScript
files, and a MySQL database. The database stored user names
and passwords, test words and their pronunciation, test results,
as well as data that might be displayed on the dynamic web

page. JavaScript was used to start and stop voice recording
and recognition in the different technologies. In our tests,
we used a fixed set of words which was shown in our test
application and had to be spoken out loud by the participants.
We furthermore used a timer which limited the recognition
time per word and showed each word for 10 seconds. If a
word was recognized correctly during the first attempt, the
next word was loaded. If it was not recognized, a second
attempt with a new timer was started. The user then had to
repeat the word. The Web page informed the user whether the
word was recognized correctly. The system used versions of
annyang and Pocketsphinx.js available in November 2014.

STUDY/METHOD
To find out if annyang or PocketSphinx.js performs better, we
conducted a study with 58 participants.

Procedure/Data Collection
We used the 18 words shown in Table 1 which represent the key
functions of our HTML5 hypervideo player. The words were
presented to the participants in random order to avoid exercise
effects towards higher word IDs. Each recorded word was
tested with both technologies, annyang and PocketSphinx.js.
Before starting the tests, the users had to select which language
they wanted to do the test in. As a result, 33 participants used
the German version of the test and 25 users participated in the
English version.

Table 1. Words tested for recognition.

ID German word English word
1 abspielen play
2 wiederholen repeat
3 öffnen open
4 schließen close
5 lauter volume up
6 leiser volume down
7 einblenden fade in
8 ausblenden fade out
9 vorwärts previous

10 zurück next
11 Inhaltsverzeichnis content
12 Suche search
13 Tagebuch journal
14 Vollbild full screen
15 Fensteransicht windows view
16 Bild picture
17 Bildergalerie picture gallery
18 Hauptvideo main video

Participants
The participants in our study were mainly between 18 and
60 years old. 34 of the participants were male, 24 were fe-
male. The test was mainly distributed in Germany, so most
of the participants were native German speakers. The tests
were conducted on desktop computers or laptops, whereby 33
participants used internal and 25 participants used external
microphones. See Table 2 for more precise demographic data.

Table 2. Test participant demographics.

part.
Age below 18 1

18-29 32
30-45 11
46-60 14
above 60 0

Gender male 34
female 24

First German 55
language English 0

other 3

Microphone internal 33
external 25

Experience with none 20
speech input some 15

medium 20
often 3
daily 0

Figure 1. Recognition grouped by attempts.

ANALYSIS AND RESULTS
We analyzed the frameworks in two different ways. On the
one hand, we analyzed the number of recognized words per
language and per framework. On the other hand, we com-
pared the two frameworks in different categories relevant for
practical usage in our hypervideo player.

Recognition of Words
We analyze the recognition of the words for the two languages
first separately and then together. Taking a look at the recog-
nition of the German words, it can be said that annyang has a
better recognition rate than PocketSphinx.js (see Table 3 and
Figure 1, blue and gray bars). Out of 594 words (18 words
spoken by 33 test users), annyang recognized 527 words in
the first and 27 in the second attempt which results in 554
recognized words. PocketSphinx.js in contrast recognized 399
words in the first and 62 in the second attempt which results
in 461 recognized words. The annyang library failed to rec-
ognize 37 words, while the number of not recognized words

for PocketSphinx.js was 56. The biggest difference was in
the number of partially recognized words1, where the number
for annyang was quite low, but PocketSphinx.js recognized 77
words partially.

Table 3. Recognition of German words.

annyang PocketSphinx.js
1st attempt 527 399
2nd attempt 27 62
Partially recognized 3 77
Not recognized 37 56

Taking a look at the results for the English words (see Ta-
ble 4 and Figure 1, orange and yellow bars), the results are
similar to those of the German words. Out of 450 words (18
words spoken by 25 test users), annyang recognized 367 in the
first and 25 in the second attempt resulting in 392 correctly
recognized words. In contrast, PocketSphinx.js recognized
269 words in the first and 42 words in the second attempt
resulting in 311 correctly recognized words. Only 1 word was
recognized partially using annyang, whereas PocketSphinx.js
recognized 88 words partially. For the English words, annyang
showed slightly worse results (57 not recognized words) than
PocketSphinx.js (51 not recognized words). One reason for
the higher number of not recognized words might be the fact
that the words were not spoken by native speakers. The level
of correct pronunciation is unfortunately not known in this
case.

Table 4. Recognition of English words.

annyang PocketSphinx.js
1st attempt 367 269
2nd attempt 25 42
Partially recognized 1 88
Not recognized 57 51

Summarizing the results over all languages, it can be noted that
annyang showed better overall results than PocketSphinx.js
(see Table 5). Annyang had a recognition rate of 90.61 %
while PocketSphinx.js recognized only about three quarters
(73.94 %) of the words. The rate of not recognized words
was around 10 % for both libraries. One reason for the worse
results for PocketSphinx.js may be background noise which
has a greater influence on PocketSphinx.js than on annyang.

Table 5. Recognition rate of all words in percent.

annyang PocketSphinx.js
1st attempt 85.63 63.98
2nd attempt 4.98 9.96
Partially recognized 0.38 15.80
Not recognized 9.00 10.25

Taking a look at the recognition performance of individual
words (see Figure 2), it can be stated that the recognition for
1Partially recognized words are words that either are only a part of
the given word or contain the given word (but also other letters),
meaning the recognized word contains more or less letters than the
given word.

Figure 2. Recognition grouped by words.

the German words for annyang did not show huge differences
between the words. The English words in contrast showed
larger differences. The words “fade in” and “journal” were
recognized correctly less than 15 out of 25 times compared to
annyang. The results for German words with PocketSphinx.js
are worse for all words, especially for the word “abspielen”.
Taking a look at the results for the English words, it can be said
that especially the words “fade in”, “search”, “full screen”,
“picture”, and “picture gallery” showed worse results with 10
or less out of 25 recognized words.

Practical Comparison
While the results in the user tests regarding word recognition
performance clearly were in favor of annyang, the decision
for using one of the libraries in real world HTML5 hyper-
video players requires further thoughts. We examined 5 fac-
tors further, namely: dependencies and integration, reliability,
availability, browser support, and supported languages. De-
pendencies and integration as well as supported languages
may be of less interest. Assuming that no large changes are
made in the Web application that uses the speech recognition,
the integration only has to be implemented once. Regarding
language support, both libraries show a large number of sup-
ported languages or provide the possibility to extend or create
language models in case they do not exist aready.

Reliability, availability, and browser support play a more im-
portant role. Depending on the hypervideo application area,
background noise may occur, an internet connection may not
be available at all times, or company restrictions may not
allow to use certain browsers. Please refer to Table 6 for a
comparison what to use best in a given scenario.

CONCLUSION
In this work, we describe the implementation of a test frame-
work for the speech recognition libraries annyang and Pocket-
Sphinx.js. We wanted to test the quality of the recognition of
certain words that could be used to verbally control hypervideo
players. As a result, it can be noted that annyang provides
better recognition results both for English and German words.

Table 6. Practical comparison of annyang and PocketSphinx.js

annyang PocketSphinx.js
Reliability Good: Background

noise is reliably dis-
tinguished from lan-
guage; recognition of
spoken words is reli-
able in most cases

Satisfactory: recogni-
tion is reliable as long
as the surroundings
have no background
noises

Availability Internet connection is
necessary

Application on client
side, no Internet con-
nection necessary

Browser
support

Limited to Chrome All current browsers
except Internet Ex-
plorer

However, recognition may not be the only factor to consider
when integrating one of the libraries into a hypervideo player.
Depending on the application area, the occurrence of back-
ground noise (reliability), the availability of an internet con-
nection, and the used browsers may influence the selection of
the library.

In the tests described in this work, we only used Google
Chrome, due to a missing support of the libraries in other
browsers. In future work a test with other browsers and the
test of other libraries may bring further results that may influ-
ence the selection of one of the libraries.

The voice control should be integrated into the hypervideo
player and tested in a real world scenario measuring user
frustration due to speech recognition performance in a real
world setting. Depending on the scenario the hypervideo
player is used in, another hypervideo control approach may
also be helpful. In case of a physiotherapy or fitness training,
for example, it is helpful to show main video contents on
a bigger screen. A solution to enable an easier control of
the hypervideo in this specific case may be a second screen

application that splits contents from control elements [13].
Both approaches should be compared for their suitability in
these scenarios.

REFERENCES
1. Apple Inc. 2016a. Use Siri on your iPhone, iPad, or iPod

touch. (2016). Website
https://support.apple.com/en-us/HT204389 (accessed
April 20, 2016).

2. Apple Inc. 2016b. Use your voice to enter text on your
Mac. (2016). Website
https://support.apple.com/en-us/HT202584 (accessed
May 27, 2016).

3. Carnegie Mellon University. 2016. CMU Sphinx - OPEN
SOURCE SPEECH RECOGNITION TOOLKIT. (2016).
Website http://cmusphinx.sourceforge.net/ (accessed
April 20, 2016).

4. GitHub, Inc. 2016a. annyang - Speech recognition for
your site. (2016). Website
https://github.com/TalAter/annyang (accessed April 20,
2016).

5. GitHub, Inc. 2016b. Emscripten: An LLVM-to-JavaScript
Compiler. (2016). Website
https://github.com/kripken/emscripten (accessed April
20, 2016).

6. GitHub, Inc. 2016c. Google Speech API v2. (2016).
Website
https://github.com/gillesdemey/google-speech-v2

(accessed May 27, 2016).

7. GitHub, Inc. 2016d. Pocketsphinx.js - Speech
Recognition in JavaScript. (2016). Website
https://github.com/syl22-00/pocketsphinx.js/blob/

master/README.md (accessed April 20, 2016).

8. Google. 2016a. android.speech. (2016). Website
https://developer.android.com/reference/android/

speech/package-summary.html (accessed April 20, 2016).

9. Google. 2016b. Meet the Google app. (2016). Website
http://www.google.com/search/about/ (accessed April 20,
2016).

10. Google. 2016c. utter! Voice Commands BETA! (2016).
Website https://play.google.com/store/apps/details?id=
com.brandall.nutter (accessed April 20, 2016).

11. IBM. 2016. Speech to Text. (2016). Website http://www.
ibm.com/smarterplanet/us/en/ibmwatson/developercloud/

speech-to-text.html$#$how-it-is-used-block (accessed
May 27, 2016).

12. Kaldi. 2016. Kaldi. (2016). Website
http://kaldi-asr.org/ (accessed May 27, 2016).

13. Britta Meixner, Christian Handschigl, Stefan John, and
Michael Granitzer. 2016. From Single Screen to Dual
Screen - a Design Study for a User-Controlled
Hypervideo-Based Physiotherapy Training. In
Proceedings of WSICC 2016.

14. Britta Meixner, Stefan John, and Christian Handschigl.
2015. SIVA Suite: Framework for Hypervideo Creation,
Playback and Management. In Proceedings of the 23rd
ACM International Conference on Multimedia (MM ’15).
ACM, New York, NY, USA, 713–716. DOI:
http://dx.doi.org/10.1145/2733373.2807413

15. Britta Meixner, Katrin Tonndorf, Stefan John, Christian
Handschigl, Kai Hofmann, and Michael Granitzer. 2014.
A Multimedia Help System for a Medical Scenario in a
Rehabilitation Clinic. In Proceedings of the 14th
International Conference on Knowledge Technologies
and Data-driven Business (i-KNOW ’14). ACM, New
York, NY, USA, Article 25, 8 pages. DOI:
http://dx.doi.org/10.1145/2637748.2638429

16. Microsoft. 2016. Get Started with Windows 10 - What is
Cortana? (2016). Website http://windows.microsoft.com/
en-us/windows-10/getstarted-what-is-cortana (accessed
April 20, 2016).

17. Mozilla Developer Network. 2016. Web Speech API.
(2016). Website https://developer.mozilla.org/en-US/
docs/Web/API/Web_Speech_API (accessed April 20, 2016).

18. Politepix. 2016. OpenEars - iPhone Voice Recognition
and Text-To-Speech. (2016). Website
http://www.politepix.com/openears/ (accessed May 27,
2016).

19. Speechmatics. 2016. speech made simple. (2016).
Website https://speechmatics.com/ (accessed May 27,
2016).

20. TomTom International BV. 2016. Why TomTom devices
are the easiest. (2016). Website
http://www.tomtom.com/whytomtom/subject.php?subject=4

(accessed April 20, 2016).
21. Vocapia Research SAS. 2016. Speech to Text API.

(2016). Website
http://www.vocapia.com/speech-to-text-api.html

(accessed May 27, 2016).
22. VoxForge. 2016. VoxForge - Downloads - German.

(2016). Website http://www.voxforge.org/de/Downloads
(accessed April 20, 2016).

23. W3C. 2012. Web Speech API Specification (19 October
2012). (2012). Website https://dvcs.w3.org/hg/
speech-api/raw-file/tip/speechapi.html (accessed June
09, 2016).

24. W3C. 2016. Web Audio API - W3C Editor’s Draft 15
April 2016. (2016). Website
https://webaudio.github.io/web-audio-api/ (accessed
April 19, 2016).

25. WEBRESOURCESDEPOT. 2016. Speech Recognition
With JavaScript - annyang. (2016). Website
http://webresourcesdepot.com/

speech-recognition-with-javascript-annyang/ (accessed
April 20, 2016).

26. Wit.ai, Inc. 2016. wit.ai - Natural Language for
Developers. (2016). Website https://wit.ai/ (accessed
May 27, 2016).

https://support.apple.com/en-us/HT204389
https://support.apple.com/en-us/HT202584
http://cmusphinx.sourceforge.net/
https://github.com/TalAter/annyang
https://github.com/kripken/emscripten
https://github.com/gillesdemey/google-speech-v2
https://github.com/syl22-00/pocketsphinx.js/blob/master/README.md
https://github.com/syl22-00/pocketsphinx.js/blob/master/README.md
https://developer.android.com/reference/android/speech/package-summary.html
https://developer.android.com/reference/android/speech/package-summary.html
http://www.google.com/search/about/
https://play.google.com/store/apps/details?id=com.brandall.nutter
https://play.google.com/store/apps/details?id=com.brandall.nutter
http://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/speech-to-text.html$#$how-it-is-used-block
http://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/speech-to-text.html$#$how-it-is-used-block
http://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/speech-to-text.html$#$how-it-is-used-block
http://kaldi-asr.org/
http://dx.doi.org/10.1145/2733373.2807413
http://dx.doi.org/10.1145/2637748.2638429
http://windows.microsoft.com/en-us/windows-10/getstarted-what-is-cortana
http://windows.microsoft.com/en-us/windows-10/getstarted-what-is-cortana
https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API
http://www.politepix.com/openears/
https://speechmatics.com/
http://www.tomtom.com/whytomtom/subject.php?subject=4
http://www.vocapia.com/speech-to-text-api.html
http://www.voxforge.org/de/Downloads
https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html
https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html
https://webaudio.github.io/web-audio-api/
http://webresourcesdepot.com/speech-recognition-with-javascript-annyang/
http://webresourcesdepot.com/speech-recognition-with-javascript-annyang/
https://wit.ai/

	Introduction
	Speech Recognition Frameworks
	Web Audio API and PocketSphinx.js
	Web Speech API and annyang

	Implementation
	annyang
	PocketSphinx.js
	Test System

	Study/Method
	Procedure/Data Collection
	Participants

	Analysis and Results
	Recognition of Words
	Practical Comparison

	Conclusion
	References

