
Engineering Process Transformation
to Manage (In)consistency

István Dávid
University of Antwerp & Flanders’ Make, Belgium

istvan.david@uantwerpen.be

Joachim Denil
University of Antwerp & Flanders’ Make, Belgium

joachim.denil@uantwerpen.be
Klaas Gadeyne

Flanders’ Make, Leuven, Belgium
klaas.gadeyne@flandersmake.be

Hans Vangheluwe
University of Antwerp & Flanders’ Make, Belgium

McGill University, Montréal, Canada
hans.vangheluwe@uantwerpen.be

ABSTRACT
Inconsistencies pose a severe issue to overcome in collabo-
rative modeling scenarios, especially in settings with differ-
ent domains involved. This is due to the significantly dif-
ferent formalisms employed that have overlapping semantic
domains. A pertinent example are today’s mechatronic and
Cyber-Physical Systems.

In this paper, we propose an approach for managing in-
consistencies based on explicitly modeled linguistic and on-
tological properties. We argue that to fully understand the
reasons of their occurrence and impact on the overall de-
sign, inconsistencies should be investigated in the context of
the process they emerge in. For this purpose, we propose
a language for modeling processes in conjunction with the
properties of the engineered system. Characteristics of in-
consistencies are identified in terms of process models and
properties. A method for optimal selection of management
techniques is provided. We demonstrate our ideas on a case
study of a real mechatronic system.

Keywords
inconsistency management, model-based design, cyber-
physical systems, design space exploration

1. INTRODUCTION
Collaborative modeling scenarios are vulnerable to model

inconsistencies. This is a consequence of the multiple views
on the same virtual product that give rise to outdated and
incorrect data. The problem is exacerbated when different
engineering domains are involved, as different engineering
domains use significantly different formalisms and paradigms
to model specific parts of the system.

Overlaps in the semantic domain of models have been
identified as the primary reason of model inconsistencies by
many authors [27, 21, 33]. For example, the safety property
of a mechatronic product translates to different concepts in
terms of its mechanical, electric and control simulation mod-
els, and consequently, these concepts will overlap through
the property of safety.

A significant amount of research has been dedicated to
solving semantic inconsistencies on the syntactic level (for
example [2, 6]). These approaches, however, are prone to
lose vital information during the approximation and ab-
straction steps taken while translating semantic properties

to linguistic structures and parameters. We argue that rea-
soning over explicitly modeled semantic properties suits the
problem of tackling inconsistencies better, as demonstrated
by Herzig et al [20] and Vanherpen et al [32].

Finkelstein [16] hints that instead of just removing incon-
sistencies, one should manage them. This entails reasoning
about the causes and sources of inconsistencies, their evolu-
tion, interaction and impact on the overall design. We argue
that this can be best achieved by investigating inconsisten-
cies in the context of (i) the design process of the virtual
product, (ii) the modeling languages and transformations
used in the process, and (iii) the ontological and linguistic
properties of the virtual product that are manipulated dur-
ing the design. Explicit modeling of these concerns, along
with the interactions between them, especially between the
design activities and properties, enables better understand-
ing of how inconsistencies arise and ultimately, how they
should be managed, i.e. prevented, or detected and subse-
quently resolved.

In this paper we present an approach for inconsistency
management in the context of engineering processes. Po-
tential sources of inconsistencies are identified by consid-
ering characteristics of the process model. Management of
inconsistencies is achieved by selecting the appropriate tech-
niques from a catalogue of management patterns and apply-
ing them on the unmanaged process to achieve a managed
one. Typical patterns include re-ordering activities of a pro-
cess, ensuring property checks around inconsistency-prone
regions and using design contracts [30]. Since the same type
of inconsistency may be managed via different management
patterns, the selection of the most appropriate one should
happen through quantified cost measures. This problem is
translated to a constraint solving and optimization problem
which finds the best process alternative while managing ev-
ery potential source of inconsistencies. The concept is shown
in Figure 1.

Figure 1: Conceptual overview of the approach.

There are two typical use cases of our approach: (i) opti-
mizing existing design processes by first augmenting them
with language and property information and then solving
the constraint satisfaction and optimization problem; and
(ii) generating new processes from language and property
information. Both cases are realistic in complex engineer-
ing scenarios and their occurrence typically depends on the
CMMI [9] level the engineering unit is situated on.

Contributions. The main contribution of this paper is an
approach for managing inconsistencies in complex engineer-
ing processes, that includes

A a formalism (i.e. a language and its semantics) for
modeling processes in relation with the properties of
the engineered system;

B a method for detecting inconsistencies and identify-
ing the most appropriate resolution technique based
on quantified cost measures;

C a prototype tool supporting our approach; and

D a case study of a real mechatronic system.

The rest of the paper is organized as follows. In Section 2,
we present a motivating case study of an automated guided
vehicle. In Section 3 a formalism for modeling processes
with properties is presented. In Section 4 we characterize
inconsistencies in terms of the previously presented formal-
ism, identify typical inconsistency patterns, provide an ini-
tial catalog for managing them and a method for selecting
the most appropriate inconsistency management technique
for single inconsistencies by multi-objective design space ex-
ploration (DSE). Section 5 discusses the prototype tooling
supporting our approach. Finally, related approaches are
reviewed in Section 7, and Section 8 concludes our paper.

2. CASE STUDY
We use a case study of the design of an automated guided

vehicle (AGV) to motivate our work. The AGV is designed
to transport payload on a specific trajectory between a set
of locations. The drivetrain is fully electrical, using a bat-
tery for energy storage and two electric motors driving two
wheels. Being a complex mechatronic system, the require-
ments of the AGV are specified by stakeholders of the differ-
ent involved domains, such as (i) mechanical requirements:
sufficient room on the vehicle to place payload; (ii) con-
trol requirements: following the defined trajectory with a
given maximal tracking error; (iii) electrical requirements:
autonomous behavior, defined as the number of times that
it needs to be able to perform the movement before needing
to recharge; (iv) product quality requirements: the previous
requirements should be achieved at a minimal cost.

Figure 2 shows the conceptual geometric design of the
AGV. The design team chose a circular platform, with two
omniwheels in addition to the two driven wheels.
The design process needs to determine the sizing of the dif-
ferent components (motors, battery, platform) and tune the
controller. This process is decomposed into multiple depen-
dent design steps, such as motor selection, battery selec-
tion, platform-, controller-, and drivetrain design. The pro-
cess requires an interplay between different domain-specific
engineering tools, such as CAD tools for platform design,

Figure 2: Front and top view of the conceptual design.

Simulink and Virtual.Lab Motion for multi-body simula-
tions employed during controller design, AMESim for multi-
physical simulations during drivetrain desing. Motor and
battery selection activities use databases maintained in Ex-
cel files. Since these tools work with different modeling for-
malisms, reasoning over the consistency of the system as a
whole properties poses a complex problem to overcome. By
explicitly modeling linguistic and ontological properties and
associating them with the engineering activities, patterns of
inconsistencies can be identified and handled.

Running example
As a running example, we use a segment of the process in the
case study shown in Figure 3. The example highlights how
inconsistencies can occur due to properties of the system
that interact with activities of an engineering process.

Figure 3: Running example.

Initially, components of the system, such as the battery,
are selected based on approximations and domain exper-
tise. The mass of the initially selected battery is considered
during the Mechanical design phase to identify the mass
constraints on other parts of the system. After the mechan-
ical design phase, the electrical model is designed in details.
This includes identifying the required capacity of the bat-
tery by Simulating the electrical model, in order to fulfill the
autonomy requirement.

Inconsistencies may arise when the Battery capacity prop-
erty is changed, because the Battery mass property depends
on it: batteries with bigger capacity are typically heavier.
As the capacity is changed, the mass becomes inconsistent
with the capacity. Should the inconsistency get unnoticed,
the engineered system will fail to meet the requirements.

There are two important specificities to this example that
motivate our work.

First, inconsistencies occur due to the lack of explicitly
modeled information about how activities access system prop-
erties. The key in identifying the above inconsistency is the
explicit modeling of the nature of interaction between activ-

ities and properties, such as reading or modifying a property.
We refer to this information as intents of activities over (a
set of) properties.

Second, state-of-the-art techniques typically reason about
inconsistencies in terms of linguistic model elements. The
dependency between the two properties is, however, not per-
sisted in any of the engineering models as it is an inter-
domain relationship. To tackle this problem, we allow mod-
eling ontological properties as well, and linking them to ac-
tivities by intents.

3. A FORMALISM FOR MODELING PRO-
CESSES WITH SYSTEM PROPERTIES

To model engineering processes with sufficient semantics
for managing inconsistencies, we propose a formalism that
augments the process with the syntactic and semantic prop-
erties that depict specificities of the engineered system.

We build our formalism on the Ftg+Pm [25] formalism,
which enables the usage of process models (“Pm”) in con-
junction with the model of languages and transformations
(the formalism-transformation graph -“Ftg”) used through-
out the process. As shown in Figure 4, languages and trans-
formations serve as a type system to the processes: objects
of the process are instances of languages of the Ftg; and
activities of the process realize transformations. Section 3.1
provides a brief overview on Ftg+Pm .

Figure 4: Relationships between processes, languages and
properties.

We extend the above formalism by allowing explicit model-
ing of properties in context of processes and languages. We
assume activities of an engineering process have a mean-
ingful purpose of enhancing the system. This purpose is ex-
pressed as the intent of an activity with respect to a property
or a set of properties. Furthermore, we extend the process
model by enabling specification of costs of single activities.
Modeling costs enables reasoning over the managed process
candidates (as shown in Figure 1).

The type system plays an important role in the analy-
sis of complex process models. Typing process objects by
languages and linking activities to transformations enables
reasoning about the MDE aspects of an engineering process
with models and model transformations as first class arti-
facts. Additionally, in deployed and enacted process mod-
els, the language model serves as a basis for conformance
and validity checks. For the sake of conciseness, we refer to
the various elements of our formalism with slightly different
terminology. In our terms, a process model PM consists of

• a set of processes P (equivalent to the Pm part of an
Ftg+Pm) that take

• a language model LANG as a type model (equivalent
to the FTG part of an Ftg+Pm), and relate to

• a property model PROP .

In the following, we elaborate on the specific parts of this
process model. First, we briefly present the foundations of
the Ftg+Pm formalism for typed processes; then we extend
processes with costs; finally we discuss the property model
in details.

3.1 Typed processes based on the FTG+PM
By the process p ∈ P , we mean a 4-tuple (A,∆c, O,∆o)
consisting of

• a set of activities (A);

• a set of directed control relations between activities
(δc ∈ ∆c : A 7→ A);

• a set of objects (O);

• a set of directed data flow relations between activities
and objects (δo ∈ ∆o : A 7→ O);

The control flow is a transitive relation, i.e. ∀a1, a2, a3 ∈
A : δc(a1, a2) ∧ δc(a2, a3) ⇒ δc(a1, a3), and the following
notation is used a3 ∈ ∆+

c (a1).
The language model consists of modeling languages and

transformations, formally: LANG = (L, T), and serves as
a type system to processes, where languages type process
objects and transformations serve as specifications to activ-
ities. In the case study, for example, the models of the me-
chanical design activity are typed by a CAD language, while
the activity itself realizes the transformation(s) required to
achieve the engineering goals during the mechanical design,
such as dimensioning the platform of the AGV, and obtain-
ing and executing a finite element simulation model. That
is, modelMech ∈ O, and typeOf(modelMech) = CAD, where
CAD ∈ L; additionally, typeOf(aMechDesign) ∈ T .

3.2 Costs
We extend the definition of activities by their costs. For the
sake of simplicity, we focus on costs constituting ratio scales,
i.e. for the cost c of activity a ∈ A the following holds:

c(a) : a 7→ R+.

Costs serve as a basis for quantifying the differences be-
tween various process alternatives. In our current work, we
approximate costs by the transition time required for single
activities. Non-linear processes, i.e. the ones with directed
loops, are typical in engineering scenarios. In these cases,
the cost of a process is a non-deterministic value that can
be obtained by appropriate simulations.

3.3 The property model
By a property model PROP we mean a tuple (Π, R) con-
sisting of

• the set of linguistic and semantic properties Π; and

• the set of influence relationships R between properties.

Properties of the running example in Figure 3 are the
Battery mass and Battery capacity, while the dependency
between those is a relationship with a direction and a level
of precision. In the following, we first elaborate on proper-
ties (Section 3.3.1) and the influence relationships between
them (Section 3.3.2); then we relate properties to processes
by formalizing intents (Section 3.3.3); and finally, we provide
a typing strategy for properties in terms of the Ftg+Pm for-
malism (Section 3.3.4).

3.3.1 Properties
Properties capture qualitative and quantitative characteris-
tics of the modeled system. While linguistic properties rep-
resent values of various types, ontological properties capture
system characteristics in terms of satisfaction constraints.
The way properties are checked, also depends on their types.
Checking a linguistic property means evaluating if the actual
value of the property is within a range of acceptance crite-
ria; checking an ontological property, on the other hand,
means evaluating if the property is satisfied or not. While
the former check is typically achieved by well-defined opera-
tors over the algebraic structures of the type of the property
(e.g. arithmetic operators over number values), the latter
type of checks typically involves simulations or model check-
ing tasks.

For example, the battery mass property of the case study
is a linguistic one (persisted in the CAD model), while safety
and autonomy properties are semantic and can be checked
by simulations or model checking techniques.

Explicitly modeling properties and their relationships en-
ables (i) reasoning over these specificities, and (ii) fosters
communication of tacit knowledge, which is especially im-
portant in the early phases of a multidisciplinary design pro-
cess [32]. In our approach, ontological and linguistic prop-
erties are treated uniformly.

3.3.2 Influence relationships
Relationships between two properties are present if a change
in one property potentially influences the other. In the case
study, properties Battery capacity and Current drawn could
be considered two properties with a relationship in between
(Figure 5): a change in the Battery capacity will have an
impact to the Current drawn and vica versa.

Figure 5: Influence relationship between properties.

A relationship r is formally defined as r ∈ R = (Πj
i ⊆

Π,Πn
m ⊆ Π, λ), i.e.

• a set of influencer (input) properties Πj
i = {πi..πj},

• a set of influencee (output) properties Πn
m = {πm..πn},

• a level of precision λ ∈ {L1,L2,L3}.

The three levels of precision are defined in our previous work
[10] and are as follows.

• L1: the fact of influence is known, its extent is not;

• L2: sensitivity information between two values is
known;

• L3: the relationship can be expressed using an exact
mathematical relationship.

Figure 5 shows a pair of properties that mutually influence
each other, albeit on different levels of precision. A change in
the Current drawn has an L3 influence on the Battery capac-
ity as follows: BatteryCapacity ≥

∫
CurrentDrawn(t)dt.

The relationship in the other direction, however, cannot be
determined in such details and thus, only constitutes an L1

relationship. In the running example, the relationship be-
tween the Battery mass and Battery capacity constitutes an
L2 relationship: increasing the capacity requires increasing
the battery mass, although the exact relation cannot be pro-
vided as batteries come in various architectures.

Acausal influence relationships
Acausality provides compactness in terms of the notation of
relationships: it enables modeling of N-ary relationships in
a more convenient and readable fashion. Figure 6a shows
an N-ary influence relationship, depicting a simple law of
physics: BatteryMass + MotorMass = TotalMass. By
assigning value to two of the three properties, the third can
be automatically calculated. The same information can be
captured in an acuasal way as presented in Figure 6b.

(a) Causal notation of an N-ary relationship.

(b) Acausal notation of the same N-ary relationship.

Figure 6: Causal and acausal notation of a relationship.

In our approach, we allow using acausal relationships, but
translate them to the causal equivalent form when carrying
out analyses. Formally, given an acausal influence relation-
ship r of level λ over a set of properties Π′, the causality
assignment maps r = (∅,Π′, λ) onto a set of relationships
R′ = 〈(Π′′,Π′′′, λ)〉, such that Π′ = Π′′⋃Π′′′.

The causal equivalent can be unambiguously determined
only in symmetric N-ary relationships, meaning any M num-
ber of the N properties determine the remaining N−M , e.g.
the one in Figure 6. In this case the causal equivalent will
consisist of

(
N
M

)
causal relationships.

Change scope of properties
By a change scope of a property π we mean a subset of prop-
erties χπ ⊆ Π potentially affected by a change in π. Given
two properties π1 and π2 directly linked by a relationship
r(Πj

i ,Π
n
m, λ), the change set is defined as follows.

π2 ∈ χ(π1)⇔ (π1 ∈ Πj
i ∧ π2 ∈ Πn

m)

That is, property π2 is in the change scope of property π1 iff
π1 is an input property and π2 is an output property of an
influence relationship. In the running example, the Battery
mass property is in the change scope of Battery capacity.

The change scope is a reflexive and transitive relation, i.e.

∀π ∈ Π : π ∈ χ(π),

∀π1, π2, π3 ∈ Π : π2 ∈ χ(π1) ∧ π3 ∈ χ(π2)⇒ π3 ∈ χ(π1),

respectively. We use the following notation for the transitive
closure of the change scope: π3 ∈ χ+(π1).

3.3.3 Intents
Intents capture the motivation of an activity with respect
to a property or a relationship of properties, such as reading
and modifying a property. An intent i ∈ I is defined by the
tuple (a, s, tI), where

• a ∈ A is an activity;

• s ∈ Π
⋃
R is the subject of intent, i.e. a property or a

relationship;

• tI ∈ TI is the type of intent.

We define four elementary intents for our approach: TI =
{read,modify, check, contract}, the first two being the typ-
ically occurring intents in standard engineering activities,
while the latter two are specific to activities related to in-
consistency management.

As discussed in Section 2, the main rationale behind ex-
plicitly modeling intents is that they carry valuable infor-
mation regarding inconsistencies in processes, which enables
reasoning about the origin and the potential management of
inconsistencies. The inconsistency in the running example is
possible to detect because of the exactly modeled pair of the
read-modify intents on properties that influence each other
and activities that are control-dependent. In Section 4 we
formally characterize inconsistencies in terms of processes,
properties and intents.

3.3.4 Typing of the property model
Intents relate properties to processes. In order to handle
property models in a type-safe manner, however, properties
and relationships have to be related to the type system de-
fined by the language model as well.

We handle elements of the property model as special pro-
cess objects that activities interact with. That is, following
the definition of processes in Section 3.1:

∀p ∈ P ∀s ∈ Π
⋃
R : s ∈ O(p),

∀p ∈ P ∀i ∈ I : i ∈ ∆o(p).

Consequently, both properties and relationships are typed
by appropriate languages, e.g. OWL languages [4], for mod-
eling properties, or graphs, algebra and Forrester system dy-
namics [17] for modeling relationships.
Intents are typed by an intent language TI , i.e.

∀ TI = {i1..in} : TI ∈ LANG.

This means the language of intents in our approach can
be aligned with the application domain of the problem at
hand. The intents used throughout this paper are rather
general and capture only access-change information over sys-
tem properties.

4. MANAGING INCONSISTENCIES
After presenting the process modeling formalism for rea-

soning over inconsistencies in Section 3, we give a formal
characterization of unmanaged cases that may lead to in-
consistencies. We associate inconsistencies with changes in
properties that are shared among multiple activities. Rea-
soning over such cases is enabled by explicitly modeled in-
tents of the activities over the properties. To manage incon-
sistencies, we augment the original process with appropriate
management patterns.

4.1 Formal characterization of unmanaged in-
consistencies

In the following, we identify cases when inconsistencies may
occur. We formalize this information in terms of pairs of ac-
tivities, the related properties and intents. Generally, incon-
sistencies are introduced when an activity modifies a prop-
erty that is accessed by another activity. A more formal
definition can be given by distinguishing between activities
situated in a sequential order and in parallel branches of a
process. By sequential and parallel activities we mean

∀a1, a2 ∈ A : seq(a1, a2)⇔ a2 ∈ ∆+
c (a1);

∀a1, a2 ∈ A : par(a1, a2)⇔ a2 6∈ ∆+
c (a1) ∧ a1 6∈ ∆+

c (a2),

respectively. That is, two activities are said to be sequential
iff one activity is transitively reachable from the other via
the control flow of the process. If no such relation exists (in
any direction), the activities are said to be parallel.

4.1.1 Sequential case
Given a pair of activities a1, a2 ∈ A : seq(a1, a2), property
π is said to be exposed to a potential inconsistency due to
insufficient inconsistency management in the following case.

∃(π′ ∈ Π, i1, i2 ∈ I) : i1(a1, π, t1) ∧ i2(a2, π
′, t2) ∧

π ∈ χ+(π′) ∧ t1 = read ∧ t2 = modify ⇒ ∃ ic(π) ∈ IC,

where IC denotes the set of unmanaged inconsistencies.
That is, property π is exposed to a potential inconsistency
if activity a1 first accesses it with a read intent and subse-
quently activity a2 modifies property π′, while property π
is in the change scope of π′. The relation does not hold the
other way around, i.e. by first modifying and subsequently
reading a property does not lead to inconsistencies.

As a consequence of the reflexivity of the change scope, the
above definition applies on cases where the same property is
being read and modified as well.

4.1.2 Parallel case
Given a pair of activities a1, a2 ∈ A : par(a1, a2), property
π is said to be exposed to a potential inconsistency in the
following case.

∃(π′ ∈ Π, i1, i2 ∈ I) : i1(a1, π, t1) ∧ i2(a2, π
′, t2) ∧

π ∈ χ+(π′) ∧ t2 = modify ⇒ ∃ ic(π) ∈ IC.

The definition is different from the one in the sequential
case in not being specific about the type of intent i1. This
is because of the inconclusive ordering of a1 and a2 due to
their parallel relation. Since the two activities may access
the related properties in any order, the cases of potential
inconsistencies cannot be narrowed to a specific ordering of
read-modify intent pairs. That is, inconsistencies may arise
if any of the two activities reads property π, while the other
one modifies π′.

4.2 Patterns of inconsistency management
We use four typical inconsistency management patterns in
our approach. This catalogue of patterns is, however, exten-
sible in the prototype tooling.

4.2.1 Reordering and sequencing
Reordering and sequencing aim to modify the control flow
in order to avoid inconsistencies.

Given a sequential case, i.e. a1, a2 ∈ A : seq(a1, a2) ⇒
π ∈ IC, the reordering strategy would swap a1 and a2, i.e.
seq(a1, a2)→ seq(a2, a1), to utilize that the appropriate or-
der of read-modify intents does not lead to inconsistencies,
as shown in Section 4.1.1.

In parallel cases, i.e. a1, a2 ∈ A : par(a1, a2) ⇒ π ∈ IC,
the sequencing strategy would try every possible order of the
activities and eventually select the one that leads to the most
optimal process, i.e. par(a1, a2)→ seq(a1, a2) ∨ seq(a2, a1).

Reordering and sequencing are easy-to-apply and inexpen-
sive patterns as they do not require introducing additional
management activities. Both patterns work well in simple
cases; in more complex processes, however, both patterns
tend to introduce other inconsistencies.

4.2.2 Property check
Property checking is used to ensure no inconsistencies are
introduced on specific sections of the process. A special
activity acheck is added to the process that accesses the un-
managed properties with a check intent. If the result of the
check is satisfactory, the process continues with the subse-
quent activities; in the case of a failed check, however, the
process would fall back to the latest point where the incon-
sistency is not yet present and facilitate a re-iteration loop.

The property check pattern is a typically expensive man-
agement pattern as it introduces directed loops in the design
processes and therefore, makes processes inherently non-
deterministic.

4.2.3 Contracts
In a contract-based approach [32], the stakeholders would
agree on acceptance criteria of specific properties before ex-
ecuting specific design activities. A special activity acontract
is added to the process to represent the contract negotia-
tion phase. The activity accesses the unmanaged properties
with a contract intent. The contract is respected during the
activities, thus providing means to avoid inconsistencies.

4.2.4 Assumptions
A less rigorous approach to contracts is also possible by mak-
ing an educated guess about the shared properties. In the
parallel case: a1, a2 ∈ A : par(a1, a2) ⇒ π ∈ IC, one of
the parallel activities makes assumptions about the proper-
ties that will be modified by the other activity. However,
these assumptions need to be checked once the process re-
joins both branches. The benefit of the pattern is that only
one of the branches has to be re-executed if the assumption
proves to be invalid, i.e. an inconsistency may occur.

4.3 Process optimization
Since multiple management patterns can be applied for the
same type of inconsistency with varying benefits, we formal-
ize the process rewriting problem as a constraint solving and
optimization problem as follows.

minimize
p

cost(p)

subject to |IC| = 0,

v(p) = 1.

where v(p) : p ∈ P 7→ B is the indicator function of the va-
lidity (i.e. well-formedness) of a process p. We also demand
a fully managed process (|IC| = 0). We solve the problem

by model transformation based multi-objective design space
exploration (DSE) as shown in Figure 7.

Figure 7: Detailed overview of the DSE approach.

The exploration mechanism takes the original unmanaged
process and the property model as an input and produces an
optimal managed process as a series of model transformations
applied on the original process. (The property model is left
intact as it reflects domain knowledge and as such, typically
should not be changed because of a single process.) The
exploration process is guided by mandatory constraints and
optimality objectives.

4.3.1 Transformation rules
The purpose of using model transformations is twofold. We
use them to augment the process with inconsistency man-
agement techniques, but also for rewriting the process into a
better performing process. An example for the latter one is
parallelizing as many activities as possible. Of course, this
will affect the applicable inconsistency management tech-
niques, and therefore, the execution and evaluation of these
transformations must be achieved in a coupled way.

Management transformations
Transformation rules aiming to augment the process with
inconsistency management techniques, are derived from the
inconsistency patterns (Section 4.1) and management pat-
terns (Section 4.2). A transformation rule is defined as

∃ ic ∈ IC : ic(ω ⊆ PM) ∧
@ m ∈M : m(ic(ω ⊆ PM))

→ apply(m′(ic(ω ⊆ PM))), m′ ∈M.

That is, if an inconsistency pattern ic is detected on a sub-
set ω of the process model PM , and there is no correspond-
ing management pattern m detected for the same subset of
elements, then an appropriate management pattern m′ is
applied to the inconsistency.

General transformations
The overall goal of our approach is to find better processes,
with respect to a goal function, that create correct prod-
ucts. Apart from the transformations specific to inconsis-
tency management, therefore, we also use transformations
that manipulate the structure of processes, such as adding
and removing control flow between activities, arranging ac-
tivities into sequences or parallel branches, etc. There is
no restriction on how far the exploration strategy can go
in restructuring the process, as it is determined in the ex-
ploration phase by considering that every inconsistency has
to be managed. By making certain activities parallel, more
linguistic and semantic overlap exists at the same instant in

the process and thus making the process more vulnerable to
inconsistencies.

Note that certain applications of this pattern are not us-
able. For example, the parallelization of a design activity
cannot be parallelized with the subsequent simulation of the
created model.

4.3.2 Constraints and objectives
Constraints and objectives are used to guide the exploration
process and evaluate the solution candidates. As defined
previously, we constrain the set of solutions to processes
that are valid and have no unmanaged inconsistencies.

As the objective function, the cost of the process is used.
Since the cost of non-linear processes (i.e. the ones featuring
directed cyclic graphs) is not deterministic, simulations of
various kinds can be used to obtain the cost, such as event
queueing networks or discrete event simulations.

5. PROTOTYPE TOOL SUPPORT
We support our approach with a prototype tool that al-

lows (i) modeling processes with the aspects and semantics
presented in Section 3; and (ii) augmenting processes with
inconsistency management patterns, while identifying the
optimal managed process.1

5.1 Process modeling
As a first step, the initial process has to be modeled along
with the languages and properties. Our tool provides a
graphical modeling environment for this purpose, implemented
using the Sirius framework [13]. Figure 8 presents an excerpt
from the process model of the case study, relevant for the
running example discussed in Section 2.

Figure 8: Excerpt from the process model of the case study.

The Mechanical design activity is modeled as a manual one,
executed by the mechanical engineer. During the activity,
the Battery mass property is accessed with a read intent.
The cost of the activity reflects the approximate time re-
quired for executing it, i.e. 1.0 hour. Later in the process,
the Simulate electrical model automated activity modifies
the Battery capacity property which influences the Battery
mass, as a consequence of the latter one being in the change
scope of the former one. It is the explicit modeling of intents
what enables identifying the potential inconsistency.

5.2 Management of inconsistencies
In the next phase the design space exploration is executed
which includes
1The tool is available under the EPL licence at https://
github.com/david-istvan/icm. The detailed case study is
available at https://github.com/david-istvan/agv.

• matching the process model against the patterns of the
inconsistency catalogue;

• applying patterns of the inconsistency management
catalogue on the process; and

• selecting the best fitting management pattern based
on cost simulations.

Figure 9: Conceptual overview of the core of the prototype.

For design space exploration, the VIATRA-DSE framework
[1] is used. The inconsistency and management catalogues,
as well as cost models are fully extensible, i.e. new incon-
sistency and management patterns can be formalized by the
appropriate graph query and transformation languages, and
costs can be evaluated using other approaches than the ones
presented here.

5.2.1 Inconsistency catalogue
Patterns of inconsistencies are captured by graph queries
over the input model. In our prototype tool, we use the
VIATRA Query Language (formerly EMF-IncQuery) [31]
for this purpose. Listing 1 presents the inconsistency pattern
matched on the running example.

The pattern reflects the left-hand side (LHS) of the gen-
eral transformation rule in Section 4.3.1. In Line 7, proper-
ties p1 ∈ R+(p2) and activities a2 ∈ ∆c(a1) accessing the
two properties with the respective read and modify intents
are identified. Subsequently, in Lines 8-9, the number of ap-
plied inconsistency management patterns is determined. In
case there is no management pattern applied (Line 10), the
pattern is matched and the match set requires an inconsis-
tency management pattern to be applied.

1 pattern unmanagedReadModify(
2 a1:Activity , p1:Property , a2:Activity , p2:Property)
3 {
4 find readModifySharedProperty(a1, p1, a2, p2);
5 checks == count find checkProperty(a2, _, p2);
6 contracts == count find contract(_, a1, p1);
7 check(checks+contracts ==0);
8 }

Listing 1: The read-modify inconsistency pattern.

5.2.2 Management catalogue
Management patterns are captured as model transforma-
tions over the model. In accordance with Section 4.3.1,
the LHS of the transformation rules consist of the previ-
ously defined inconsistency patterns; while the right-hand
side (RHS) defines how the specific inconsistency should be
handled by using one of the management patterns described
in Section 4.2. Allowed LHS-RHS combinations are speci-
fied in terms of VIATRA Model Transformations [5], that
enable directly reusing the previously defined graph queries
as the LHS.

https://github.com/david-istvan/icm
https://github.com/david-istvan/icm
https://github.com/david-istvan/agv

5.2.3 Cost simulations
As discussed in Section 3.2, cost of a process is not determin-
istic in most cases. We support our approach by two types of
cost simulations in the prototype tooling. In fixed iteration
simulations, the loops of the design process are identified
and simulated with a fixed amount of iterations resulting in
a process cost as follows

∀p ∈ P : c(p) =

i=|A(p)|∑
1

c(ai)n(ai).

Loops are detected by a graph pattern matcher. If a loop is
detected between two activities, the costs of activities in the
loop are weighted by the number of iterations N and added
to the sum cost. The parameter is to be set by a domain
expert. In our experiments, we used 3–5 iterations as the
typical values.

In event queueing network (EQN) based stochastic simu-
lations [18], the decision of re-iterating over a loop is sim-
ulated with sampling from a probabilistic distribution. We
carried out our early experiments using the SimEvents tool-
box [26]. While stochastic simulations offer more precise
results in terms of simulating the costs, they are also more
demanding in terms of computation power and time.

5.3 Results of the case study
After exploring the space of alternative solutions and rank-

ing them based on costs, the managed process is obtained.
Figure 10 presents a managed alternative to the running
example in Figure 8. As an allow-and-resolve type incon-
sistency technique, property checking is executed after the
location of the potential inconsistency. The manual Check-
BatteryMass activity accesses the potentially inconsistent
property Battery mass with a check intent. Subsequently, a
decision node is added to the control flow to enable a back-
ward loop in case the check fails (NO) and to proceed if the
check succeeds (OK). The pattern also introduces a loop
that enables arbitrary re-iterations, which is the main con-
tributor to the increased process cost. As opposed to this,
an alternative reusing the technique of contract based design
would not require such loops, but the management activity
itself would be more elaborate as the contract negotiation
phase requires stakeholders from multiple domains.

The real challenge of applying inconsistency management
patterns in an orchestrated way, so that their application
does not give rise to new unmanaged inconsistencies, is tack-
led by using a heuristic or exhaustive search through the
state space. Applying our approach to the whole process of
the case study resulted in a fully managed process with rea-
sonable increase in costs. In our simulations, we measured
up to 10% cost reduction while fully managing the process
with two types of inconsistencies.

6. DISCUSSION
The results described in this paper serve as the founda-

tions to a comprehensive inconsistency management frame-
work. The approach, in its current form tackles two impor-
tant problems in engineering practice. First, as presented in
the previous sections, combining the notion of processes with
inconsistencies sheds light on complex cases of inconsisten-
cies that are otherwise not detectable nor manageable. Sec-
ond, our approach enables expressing tacit domain knowl-
edge explicitly and thus making it reusable across different

Figure 10: Managed alternative of the process in Figure 8.

processes (projects), at least partially, which is a typical con-
cern in companies on CMMI levels 3 and above. [9] In order
to enhance the reusing of domain knowledge, techniques of
ontological reasoning will be investigated.

In the following, we discuss the required extensions to the
current work in order to develop an inconsistency manage-
ment framework.

6.1 Complex cost models and resources
As the primary research direction, we will extend the for-

malism in Section 3 with more complex cost models and the
notion of resources. In our current approach, cost is a one-
dimensional performance metric of the process, estimated
from the development time. In real settings, however, differ-
ent types of costs may be used to capture the performance of
the process and thus providing a basis for optimization, e.g.
queueing time, delay or processing volume [22]. By incorpo-
rating the notion of resources, the optimization problem will
get extended by job scheduling aspects [3]. Resources pose
additional constraints on process re-engineering in terms of
the feasibility of the process.

6.2 Advanced solution techniques
The multi-objective nature of our DSE approach (Sec-

tion 4.3) scales well with introducing additional dimensions
to the underlying formalism discussed above. A known limi-
tation of DSE based approaches is, however, the potentially
missed global optimum of the input problem. We plan to
address this limitation by translating the inconsistency man-
agement problem to more complex solution methods, such
as heuristic algorithms [23] and genetic algorithms [34] that
have been successfully applied in resource constrained pro-
cess optimization.

6.3 Tooling aspects
The current version of the prototype tool supports the

modeling phase of process engineering, but to achieve a com-
prehensive inconsistency management framework, the exe-
cution phase (i.e. the design phase of the virtual product)
has to be supported as well. For this purpose, the process
model will be enacted by using model transformations to
provide the operational semantics. The explicitly modeled

formalisms/tools enable automated support for tool inter-
operability, with the potentially reusing integration frame-
works such as OSLC [29].

7. RELATED WORK
Inconsistency management is a well-studied topic in the

domains of software engineering, mechatronic design and
cyber-physical systems, due to the typically multi-view and
often multi-paradigm approach to system design. Persson
et al [27] identify consistency between the various views of
cyber-physical system design as one of the main challenges in
design of such complex systems. This is due to relations be-
tween views, with respect to their semantic relations, process
and operations which often overlap. Our technique embraces
these ideas and addresses the problem of inconsistencies by
explicitly modeling semantic properties and relating them
to engineering processes.

Other approaches also acknowledge the role of semantic
techniques in inconsistency management, and try to relate
semantic concepts to the linguistic concepts of modeling.
Hehenberger et al [19] organize structural design elements
and their relations into a domain ontology to identify incon-
sistencies. A limited set of semantic properties are expressed
with linguistic concepts which enables reasoning over seman-
tic overlaps to a sufficient extent. Similarly, Chechik et al [8]
introduce the notion of approximate properties: linguistic
properties expressed as graph patterns which are accurate
enough to appropriately approximate a semantic property.
Approximate properties suitable to implement smart lock-
ing mechanisms in collaborative model-based design as they
introduce a trade-off between the computational resources
to obtain or check a property, and the accuracy of the re-
sults. As opposed to these, our approach makes semantic
properties first-class artifacts and relates them to processes,
instead of linguistic model elements, which enables manage-
ment of a richer class of inconsistencies.

Ontologies have been used for inconsistency management
by Kovalenko et al [24] to support automated detection of
defects between domain-specific models. Similarly, Feld-
mann et al [15] use the OWL language in conjunction with
a SysML-based approach to formally represent the design
of a production system and evaluate the compatibility of
domain-specific models in a collaborative setting. These
approaches are complementary to ours: incorporating rela-
tionships between ontological properties for reasoning over
inconsistencies is a planned extension to our work.

As opposed to the above techniques, inconsistency man-
agement in collaborative modeling is more frequently ad-
dressed on the linguistic level. Qamar et al [28] approach
inconsistency management by making inter- and intra-model
dependencies explicit. Dependencies are direct results of se-
mantic overlaps and are used to notify stakeholders about
possible inconsistencies when dependent properties change.
Our approach introduces an indirection between models and
properties by relating them to specific activities that dur-
ing working over models also access properties with specific
intents. Blanc et al [7] approach the detection of inconsis-
tencies from a model operation based point of view, where
models are stored as sequences of change events and in-
consistencies are expressed in terms of CRUD operations.
Our approach generalizes this approach by introducing in-
tents that are analogous with model operations, but they
express change operations in terms of activities and proper-

ties. Egyed et al [14] investigates the impact of single incon-
sistencies on the whole system by introducing the notion of
change impact based scopes. Scopes are used to carry out
resolution steps on the required regions of the models and
thus enhancing the efficiency of the inconsistency manage-
ment framework. We carry out a similar scope detection and
management on the property model of our approach. Spe-
cific technical challenges of collaborative modeling have been
addressed by state-of-the-art techniques, such [11] for com-
paring and merging models and EMFStore [12] for model
persistence. These techniques can serve as an implementa-
tional basis for improving our tool.

8. CONCLUSIONS
In this paper we presented an approach for managing in-

consistencies in complex engineering settings from a process-
oriented view. A modeling formalism has been provided to
reason about how inconsistencies arise in processes and how
they impact the overall design. For this purpose, the no-
tion of intents has been defined as the explicitly modeled
relationship between activities of processes and properties
of the engineered system. We support the automated pro-
cess of inconsistency management by a prototype tool built
on Eclipse technologies. Finally, the approach has been eval-
uated over a case study of a real mechatronic system using
our prototype tool.

Acknowledgments
The authors wish to thank András Szabolcs Nagy for his
dedicated help with the VIATRA-DSE engine; Tamás Sz-
abó for his critical and constructive comments; and Kristof
Berx for his insights on the case study. This work has been
partially carried out within the framework of the Flanders
Make project MBSE4Mechatronics (grant nr. 130013) of the
agency for Innovation by Science and Technology in Flan-
ders (IWT-Vlaanderen).

9. REFERENCES
[1] H. Abdeen, D. Varró, H. Sahraoui, A. S. Nagy,

C. Debreceni, Á. Hegedüs, and Á. Horváth.
Multi-objective optimization in rule-based design
space exploration. In Proceedings of the 29th
ACM/IEEE Int. Conf. on Automated software
engineering, pages 289–300. ACM, 2014.

[2] C. Adourian and H. Vangheluwe. Consistency Between
Geometric and Dynamic Views of a Mechanical
System. In Proc. of the 2007 Summer Computer
Simulation Conf., SCSC ’07, pages 31:1–31:6, San
Diego, 2007. Society for Computer Simulation Int.

[3] C. Artigues, S. Demassey, and E. Neron.
Resource-Constrained Project Scheduling: Models,
Algorithms, Extensions and Applications. ISTE, 2007.

[4] S. Bechhofer. OWL: Web ontology language. In
Encyclopedia of Database Systems, pages 2008–2009.
Springer, 2009.

[5] G. Bergmann, I. Dávid, Á. Hegedüs, Á. Horváth,
I. Ráth, Z. Ujhelyi, and D. Varró. VIATRA 3: A
Reactive Model Transformation Platform. In Theory
and Practice of Model Transformations, pages
101–110. Springer, 2015.

[6] A. Bhave, B. Krogh, D. Garlan, and B. Schmerl.
Multi-domain modeling of cyber-physical systems
using architectural views. AVICPS 2010, page 43.

[7] X. Blanc, I. Mounier, A. Mougenot, and T. Mens.
Detecting model inconsistency through
operation-based model construction. In Software
Engineering, 2008. ICSE ’08. ACM/IEEE 30th Int.
Conf. on, pages 511–520, May 2008.

[8] M. Chechik, F. Dalpiaz, C. Debreceni, J. Horkoff,
I. Ráth, R. Salay, and D. Varró. Property-Based
Methods for Collaborative Model Development. In
Proc. of 3rd Int. Workshop on The Globalization of
Modeling Languages (GEMOC 2015), 2015.

[9] CMMI Product Team. CMMI for Development,
Version 1.3, Tech. Rep. CMU/SEI-2010-TR-033, 2010.

[10] I. Dávid, J. Denil, and H. Vangheluwe. Towards
inconsistency management by process-oriented
dependency modeling. In Proc. of 9th Int. Workshop
on Multi-Paradigm Modeling, pages 32–41, 2015.

[11] C. Debreceni, I. Ráth, D. Varró, X. De Carlos,
X. Mendialdua, and S. Trujillo. Automated Model
Merge by Design Space Exploration. In 19th Int.
Conf. on Fundamental Approaches to Software
Engineering, 2016.

[12] Eclipse Foundation. EMFStore Website.
http://eclipse.org/emfstore/. Acc: 2016-07-19.

[13] Eclipse Foundation. Sirius Website.
https://eclipse.org/sirius/. Accessed: 2016-07-19.

[14] A. Egyed. Automatically detecting and tracking
inconsistencies in software design models. Software
Engineering, IEEE Trans. on, 37(2):188–204, 2011.

[15] S. Feldmann, K. Kernschmidt, and B. Vogel-Heuser.
Combining a SysML-based Modeling Approach and
Semantic Technologies for Analyzing Change
Influences in Manufacturing Plant Models. Procedia
{CIRP}, 17:451 – 456, 2014.

[16] A. Finkelstein. A foolish consistency: Technical
challenges in consistency management. In Database
and Expert Systems Applications, volume 1873 of
LNCS, pages 1–5. Springer, 2000.

[17] J. W. Forrester. Principles of Systems. Productivity
Press, 1968.

[18] D. Gross, J. Shortle, J. Thompson, and C. Harris.
Fundamentals of Queueing Theory. Wiley, 2011.

[19] P. Hehenberger, A. Egyed, and K. Zeman. Consistency
Checking of Mechatronic Design Models. In 30th
Computers and Information in Engineering Conf.,
volume 3, pages 1141–1148. ASME, 2010.

[20] S. J. Herzig and C. J. Paredis. Bayesian Reasoning
Over Models. In 11th Workshop on Model Driven
Engineering, Verification and Validation MoDeVVa
2014, pages 69–78, 2014.

[21] S. J. Herzig, A. Qamar, and C. J. Paredis. An
approach to identifying inconsistencies in model-based
systems engineering. Procedia Computer Science,
28:354–362, 2014.

[22] Improvement Skills Consulting Ltd. Measuring
Process Performance. https://ianjseath.files.wordpress.
com/2009/04/measuring-processes.pdf, 2008. Acc.:
2016-07-19.

[23] R. Kolisch and S. Hartmann. Heuristic Algorithms for

the Resource-Constrained Project Scheduling Problem:
Classification and Computational Analysis, pages
147–178. Springer US, Boston, MA, 1999.

[24] O. Kovalenko, E. Serral, M. Sabou, F. J. Ekaputra,
D. Winkler, and S. Biffl. Automating Cross-
Disciplinary Defect Detection in Multi-Disciplinary
Engineering Environments. In Knowledge Engineering
and Knowledge Management, pages 238–249. Springer,
2014.

[25] L. Lúcio, S. Mustafiz, J. Denil, H. Vangheluwe, and
M. Jukss. FTG+PM: An Integrated Framework for
Investigating Model Transformation Chains. In SDL
2013: Model-Driven Dependability Engineering,
volume 7916 of LNCS, pages 182–202. Springer, 2013.

[26] MathWorks Inc. SimEvents Website. mathworks.com/
products/simevents. Acc.: 2016-07-19.

[27] M. Persson, M. Törngren, A. Qamar, J. Westman,
M. Biehl, S. Tripakis, H. Vangheluwe, and J. Denil. A
Characterization of Integrated Multi-View Modeling
in the Context of Embedded and Cyber-Physical
Systems. In EMSOFT, pages 1–10. IEEE, 2013.

[28] A. Qamar, C. J. Paredis, J. Wikander, and C. During.
Dependency modeling and model management in
mechatronic design. Journal of Computing and Inf.
Science in Engineering, 12(4):041009, 2012.

[29] M. Saadatmand and A. Bucaioni. OSLC Tool
Integration and Systems Engineering – The
Relationship between the Two Worlds. 2014 40th
EUROMICRO Conference on Software Engineering
and Advanced Applications, pages 93–101, Aug. 2014.

[30] A. Sangiovanni-Vincentelli, W. Damm, and
R. Passerone. Taming Dr. Frankenstein:
Contract-Based Design for Cyber-Physical Systems.
European Journal of Control, 18(3):217 – 238, 2012.

[31] Z. Ujhelyi, G. Bergmann, Á. Hegedüs, Á. Horváth,
B. Izsó, I. Ráth, Z. Szatmári, and D. Varró.
EMF-IncQuery: An integrated development
environment for live model queries. Science of
Computer Programming, 98, Part 1:80 – 99, 2015.

[32] K. Vanherpen, J. Denil, I. Dávid, P. De Meulenaere,
P. Mosterman, M. Törngren, A. Qamar, and
H. Vangheluwe. Ontological Reasoning for Consistency
in the Design of Cyber-Physical Systems. In CPSWeek
workshop proceedings, 2016.

[33] R. Wagner, H. Giese, and U. Nickel. A plug-in for
flexible and incremental consistency management.
Proc. of the Int. Conf. on the UML, page 93, 2003.

[34] M. B. Wall. A Genetic Algorithm for
Resource-constrained Scheduling. PhD thesis,
Cambridge, MA, USA, 1996. AAI0598050.

http://eclipse.org/emfstore/
https://eclipse.org/sirius/
https://ianjseath.files.wordpress.com/2009/04/measuring-processes.pdf
https://ianjseath.files.wordpress.com/2009/04/measuring-processes.pdf

	Introduction
	Case study
	A formalism for modeling processes with system properties
	Typed processes based on the FTG+PM
	Costs
	The property model
	Properties
	Influence relationships
	Intents
	Typing of the property model

	Managing inconsistencies
	Formal characterization of unmanaged inconsistencies
	Sequential case
	Parallel case

	Patterns of inconsistency management
	Reordering and sequencing
	Property check
	Contracts
	Assumptions

	Process optimization
	Transformation rules
	Constraints and objectives

	Prototype tool support
	Process modeling
	Management of inconsistencies
	Inconsistency catalogue
	Management catalogue
	Cost simulations

	Results of the case study

	Discussion
	Complex cost models and resources
	Advanced solution techniques
	Tooling aspects

	Related work
	Conclusions
	References

