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Abstract
Early diagnosis of Mild Cognitive Impairment
(MCI) is currently a challenge. Currently, MCI is
diagnosed using specific clinical diagnostic criteria
and neuropsychological examinations. As such we
propose an automated diagnostic technique using
a variant of deep neural networks language mod-
els (DNNLM) on the verbal utterances of MCI pa-
tients. Motivated by the success of DNNLM on
natural language tasks, we propose a combination
of deep neural network and deep language models
(D2NNLM) to predict MCI. Results on the Demen-
tiaBank language transcript clinical dataset show
that D2NNLM sufficiently learned several linguis-
tic biomarkers in the form of higher order n-grams
and skip-grams to distinguish the MCI group from
the healthy group with reasonable accuracy, which
could help clinical diagnosis even in the absence of
sufficient training data.

1 Introduction
Early diagnosis of Mild Cognitive Impairment (MCI) is cur-
rently a challenge [Abbott, 2011]. More importantly, MCI
has been typically diagnosed through extensive neuropsycho-
logical examinations using a series of cognitive tests contain-
ing a set of questions and images [Mitolo et al., 2015]. For
example, the Mini-Mental State Examination (MMSE) and
the Montreal Cognitive Assessment (MoCA) screening tools
are composed of a series of questions and cognitive tests that
assess different cognitive abilities. The challenge with these
cognitive tests is that the accuracy depends on the clinician’s
level of experience and their ability to diagnose different sub-
types of the disease [Damian et al., 2011]. Often, researchers
and clinicians need to combine other cognitive tests with the
MMSE [Mitchell, 2009], and in most cases wait for a rea-
sonably long interval to ascertain diagnosis [Pozueta et al.,
2011]. More recently, research has also shown that the re-
liability of the MMSE as a tool for diagnosing MCI could
be limited [Kim and Caine, 2014]. The National Institute on
Aging and the Alzheimer’s Association has also called for
several other clinical criteria that could be used to effectively
diagnose MCI and other similar disease in a non-invasive way
[Albert et al., 2011].

As opposed to the ad hoc use of neuropsychological ex-
aminations, linguistic ability captured from verbal utterances
could be a good indication of MCI and other related diseases
[Tillas, 2015]. The premise is that, MCI is characterized by
the deterioration of nerve cells that control cognitive, speech
and language processes, which consequentially translates to
how patients compose verbal utterances. According to [Ball
et al., 2009], syntactic processing in acquired language disor-
ders such as Aphasia in adults, has shown promising findings,
encouraging further study on identifying effective syntactic
techniques. Similarly, [Locke, 1997] emphasized the signifi-
cance of lexical-semantic components of a language, part of
which is observable during utterance acquisition at a younger
age. That work further highlighted that as the lexical capac-
ity increases, syntactic processing becomes automated, hence
leading to lexical and syntactic changes in language.

As such, we are motivated by the effectiveness of deep neu-
ral networks language models (DNNLM) in modeling acous-
tic signals for natural language tasks. In particular, we are in-
spired by [Schwenk, 2007], which shows that a feed-forward
neural network language model can be trained with low error
rate and perplexity. Even with just 1 hidden layer, the perfor-
mance of the NNLM was better than the conventional 4-gram
language model. The DNNLM improved on the NNLM with
lower error rate and perplexity.

Thus, we explore deep-deep neural networks language
models (D2NNLM) to learn the linguistic changes that dis-
tinguish the language of patients with MCI from the healthy
controls. The ordinary DNNLM uses lower order n-gram
N dimensional sparse vectors as discrete feature representa-
tions to learn the neural network with multiple hidden layers
(DNN). In this paper, we maintain the same DNN architec-
ture and increase the depth of the language models by intro-
ducing higher order n-gram and skip-gram N dimensional
sparse vectors as discrete inputs to the DNN rather than sin-
gle word N dimensional sparse vectors. In other words, we
create n-gram and skip-gram vocabulary spaces from which
we formed the N dimensional sparse vectors. The premise is
that clinical datasets are usually sparse and it is the same for
the DementiaBank1 dataset used in this paper. Thus, using
lower order n-gram dimensional sparse vectors alone could
limit the vocabulary space and subsume the essential linguis-

1http://talkbank.org/DementiaBank/



tic changes and biomarkers, which could potentially distin-
guish patients with MCI from the healthy controls. On the
other hand, n-grams and skip-grams have been shown to be
good class predictors in several language modeling tasks on
sparse data [Sidorov et al., 2014]. In addition, the DNN has
been effective in learning discriminating features from sparse
feature representations [Li et al., 2015]. To the best of our
knowledge, little work has considered deep neural network
and deep language models for predicting MCI on sparse clin-
ical language datasets.

The rest of this paper is organized as follows. Section 2
discusses related work. Section 3 describes the formal archi-
tecture of the DNNLM. We explain our D2NNLM in Section
4. Section 5 presents our experimental results. Finally, Sec-
tion 7 concludes the paper.

2 Related Work
In [Roark et al., 2011], the efficacy of using complex syntac-
tic features to classify MCI was demonstrated. In that work,
spoken language characteristics were used to discriminate be-
tween 37 patients with MCI and 37 in the healthy elderly
group using 7 significant pause and syntactic linguistic anno-
tations as features to train Support Vector Machines (SVM).
That technique achieved 86.1% Area Under the ROC Curve
(AUC). On the contrary, we use language models, which are
more representative of the language space of both the disease
and healthy groups without using any handcrafted features.

More recently, [Prud’hommeaux and Roark, 2015] pro-
posed a ‘graph-based content word summary score’ and
‘graph-based content word word-level score’ to predict
Alzheimer’s disease (AD), which is often preceded by MCI.
Using SVM on the same DementiaBank, that work achieved
82.3% AUC. However, the graph based techniques require
separately built alignment models with sufficiently large
datasets.

This paper has two main contributions. (1) We introduce
deep language models in the form of higher order n-grams
and skip-grams N dimensional sparse vectors as discrete in-
puts to the DNN, hence we derived D2NNLM. (2) We show
that D2NNLM predicts MCI with less percentage error, per-
plexity, and predictive accuracy compared to other baselines
especially on sparse clinical language datasets.

3 Deep Neural Network Language Models
The DNNLM architecture has more than one hidden layer
with nonlinear activations [Arisoy et al., 2012], and it is built
on top of the original feed-forward NNLM architecture [Ben-
gio et al., 2003]. Unlike the DNNLM, NNLM has only two
hidden layers. The first hidden layer has a linear activation
and often referred to as the projection layer. The second
hidden layer uses a nonlinear activation, hence making the
NNLM a single hidden layer neural network [Bengio et al.,
2003].

In this paper, we follow the notations used in [Schwenk,
2007] and [Arisoy et al., 2012] to describe the components
of the DNNLM architecture. Given a vocabulary space, each
word in the vocabulary is denoted by a N dimensional sparse
vector. In each vector, the index of that particular word is

stored with 1 while other indices in the vector are stored with
0s. As inputs to the neural network, the discrete feature repre-
sentations are concatenated to contain the n-1 previous words
in the vocabulary space, which serves as the memory to the
previous words history. Given that N is the vocabulary size
and P is the size of the projection layer, linear projections of
all the concatenated words are used to create the first hidden
layer of the network from every ith row of the N x P dimen-
sional projection matrix. This is followed by the hidden layer
H with hyperbolic tangent non-linear activation functions as
follows:

dj = tanh

(n−1)×P∑
l=1

Mjlcl + bj

 ∀j = 1, ...,H (1)

where H is the number of hidden layers, the weights be-
tween the projection layer and the subsequent hidden layers
are denoted with Mjl, and the biases of the hidden layers are
represented with bj .

Note that since the DNNLM follows the NNLM architec-
ture, other hidden layers with the same hyperbolic tangent
non-linear activation functions are added to make the network
deeper. The output layer uses a softmax function to simul-
taneously compute the language model probability of each
word i giving its history, hj , thus P (wj = i|hj). We present
the details of the output layer and the language model proba-
bility as follows:

oi =

H∑
j=1

Vijdj + ki∀i = 1, ..., N (2)

pi = P (wj = i|hj) =
exp(oi)∑N
l=1 exp(ol)

∀i = 1, ..., N (3)

where Vij denotes the weights between the hidden layers
and the output layer, ki represents the biases of the output
layer, and the pi computes the language model probability
for every ith output neuron.

4 Deep-Deep Neural Network Language
Models

Our D2NNLM uses the same architecture with DNNLM
comprising of multiple hyperbolic tangent non-linear activa-
tion functions. On top of that, we make the vocabulary space
deeper by including additional n-gram and skip-gram vocab-
ulary spaces to the ordinary n-gram vocabulary space used in
the original DNNLM. Figure 1 shows the architecture of the
the D2NNLM.

With regard to predicting language utterances with MCI,
it is of paramount importance to our D2NNLM that the lan-
guage is modeled with a vocabulary space of substantial depth
due to the non-trivial nature of the problem [Roark et al.,
2011; Fraser et al., 2014]. According to the study conducted
by [Roark et al., 2011], many of the handcrafted language
and speech measures that have been used in distinguishing
patients with MCI from their respective healthy controls – in-
cluding some statistically significant measures – have shown
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Figure 1: Deep-Deep Neural Network Language Models

the means and the standard deviations to be very close be-
tween the MCI and healthy control groups. Thus, it is prob-
able that very little linguistic deficits will characterize either
group. Even with DNNLM, which is based on simple n-gram
language models with embedded words as a continuous fea-
ture space, it is still challenging to generalize over unseen
data due to data sparseness problem [Arisoy et al., 2012]. As
such, an alternate technique could be found in using a stacked
mixture of language models for embedding the vocabulary in
a much deeper continuous space [Sarikaya et al., 2009]. As
shown in Figure 1, we stacked higher order n-gram and skip-
gram language models to create deep language models for
deep neural network. We refer to such models as Deep-Deep
Neural Network Language Models and our preliminary ex-
periments show that deeper language models potentially im-
prove the performance of deep neural network for predicting
MCI. We will describe the generation of the n-gram and skip-
gram vocabulary spaces in the following sections.

Similar to DNNLM, the computational complexity of
D2NNLM is characterized by the output layer’s H ×N ma-
trix multiplications. As such, we follow [Sarikaya et al.,
2009] and performed Singular Value Decomposition (SVD)
to produce a reduced-rank approximation of the n-gram and
skip-gram vocabulary spaces before mapping the vocabular-
ies into the continuous feature space. This is then followed
by the stacking together (or concatenation) of the projected
vocabulary history vectors. The undecomposed feature space
typically has a large but sparse matrix containing few 1s and
a lot of 0s. As such, SVD becomes a straightforward op-
tion to produce a compact approximation of the original fea-
ture space with optimal least-square as it sufficiently models
the frequently occurring 0s, which are often not informative
[Sarikaya et al., 2009]. Thus, only the low dimensional vo-
cabulary is used to learn the output targets. Note that the
DNNLM assigns the probability mass to the output targets. A
background language model was used to perform smoothing
as done in [Schwenk, 2007]. We trained the neural network
using the standard back-propagation algorithm to minimize
the error function Er as follows:

Er =

N∑
i=1

ti log pi + ε

∑
jl

M2
jl +

∑
ij

V 2
ij

 ∀j = 1, ...,H

(4)
where ti is the target vector, parameter ε is determined em-

pirically using the validation set. Note that the first half of the
equation computes the cross entropy between the output and
the target probability masses, and the second half computes
the regularization term, which avoids overfitting the training
data.

4.1 n-gram vocabulary space
The use of word n-gram is popular in NLP especially for de-
veloping language models that are able to characterize the
lexical usage of grammar in a dataset. A word n-gram is the
sequence of words identified as an independent representation
of a part of the grammar in an utterance or a sentence. ‘n’ in
this case, represents the number of words in the sequence.
For instance, when n is 1, it is called a ‘unigram’, which has
only one word. Similarly, a ‘bigram’ and a ‘trigram’ have n
equal to 2 and 3 respectively, and it is not uncommon to use
higher order n-grams (i.e. n ≥ 3) in learning tasks [Le et
al., 2011]. In this paper, our n-gram vocabulary space con-
sist of 6-grams (n-gram=6) features only, which are generated
from the transcripts of both the MCI and the healthy control
groups. We believe that the 6-grams features could subsume
other lower order n-grams such as unigrams, bigrams, and tri-
grams [Sarikaya et al., 2009]. We put emphasis on higher or-
der n-grams because they are known to have performed with
reasonable accuracy in other NLP and ML tasks [Chen and
Chu, 2010].

4.2 skip-gram vocabulary space
Skip-grams are commonly used in statistical language mod-
elling problems such as speech processing. Unlike the ordi-
nary n-grams, word tokens are skipped intermittently while
creating the n-grams. For instance, in the sentence “take
the Cookie Jar”, there are three conventional bigrams: “take
the”, “the Cookie”, and “Cookie Jar”. With skip-gram,
one might skip one word intermittently for creating addi-
tional bigrams, which include “take Cookie”, and “the jar”.
We believe such skip-grams could capture unique linguistic
biomarkers in verbal utterances of patients with MCI. Thus,
as described [Orimaye et al., 2015], we used a compound of
skip-grams to create our skip-gram vocabulary space. For
each sentence S = {w1...wm} in a verbal dialogue, we de-
fine k-skip-n-grams as a set of n-gram tokens Tngram =
{wa, ..., wa+n−k, ..., wa+n, ..., wm−n, ..., w(m−n)+n−k, ...,
wm}, where n is the specified n-gram (e.g. 2 for bigram and
3 for trigram), m is the number of word tokens in S, k is
the number of word skip between n-grams given that k < m,
and a = {1, ...,m − n}. Thus for the sentence “take the
Cookie Jar from the cabinet”, 1-skip-2-grams will give {‘take
Cookie’, ‘the Jar’, ‘Cookie from’, ‘Jar the’, ‘from cabinet’}
and 1-skip-3-grams will produce {‘take Cookie Jar’, ‘take
the Jar’, ‘the Jar from’, ‘the Cookie from’, ‘Cookie Jar the’,
‘Cookie from the’, ‘Jar the cabinet’, ‘Jar from cabinet’}. In



Vocabulary MCI Control
6-gram 1100 1163
1-skip-trigram 2877 3011
total 3977 4174

Table 1: n-gram and skip-gram vocabularies from the MCI
and Control groups.

our experiments, we used only 1-skip-3-grams as some of its
skip-grams often subsume 1-skip-2-grams.

5 Experiment and Results
5.1 Dataset and Baselines
We performed experiments on existing DementiaBank clin-
ical dataset. The dataset was created during a longitudinal
study conducted by the University of Pittsburgh School of
Medicine on Alzheimer’s disease (AD) and related Dementia,
which was funded by the National Institute of Aging2. The
dataset contains transcripts of verbal interviews with healthy
controls and patients that were diagnosed with AD and MCI,
including those with related dementia. Interviews were con-
ducted in the English language and were based on the descrip-
tion of the Cookie-Theft picture component, which is part of
the Boston Diagnostic Aphasia Examination. During the in-
terview, patients were given the picture and were told to dis-
cuss everything they could see happening in the picture. The
patients’ verbal utterances were recorded and then transcribed
into a transcription format with the equivalent text. For our
experiments, we selected all the available 19 transcripts of
MCI and an equivalent 19 transcripts of healthy controls.

Because many existing research works on MCI have
mostly used different handcrafted features from self-collected
datasets [Roark et al., 2011], it is challenging to compare
the D2NNLM with those works because we could not test
D2NNLM on their datasets due to ethics constraints. Never-
theless, we compared our model to the DNNLM and NNLM
as baselines on the same DementiaBank dataset. Our goal
is to show the efficacy of the deep language model and deep
neural network technique to the MCI prediction problem.

5.2 D2NN Language Models Settings
We generated the vocabulary for the D2NNLM from all the
38 transcript files containing 210 sentences for MCI and 236
sentences for healthy controls. Table 1 shows the details
of the 6-gram and 1-skip-3-grams vocabularies, which were
generated from the dataset. The D2NNLM training data con-
sist of 50% of the MCI and the control groups’ transcript files,
while the test and validation sets consist of 25% of the tran-
script files, respectively.

The 50% training data for the MCI group has 104 sen-
tences, 663 6-grams, and 1659 1-skip-trigrams. On the
other hand, the training data for the Control group has 131
sentences, 700 6-grams, and 1793 1-skip-trigrams. Having
stacked the discrete continuous vocabulary spaces together,
we performed SVD and used the decomposed left-singular
matrix from the SVD to map the vocabulary histories into a

2http://www.nia.nih.gov/

lower dimensional continuous parameter space for the neu-
ral network. The language model smoothing for words out-
side the output vocabulary was performed as described in
[Schwenk, 2007]. The D2NNLM was trained with three hid-
den layers excluding the projection layer. In order to avoid
the risk of reconstructing the identity function [Larochelle et
al., 2009], we performed a grid search and set the sizes of the
hidden layers to 70% of the input neurons as the number of
hidden units. Because the D2NNLM performs a classifica-
tion task by discriminating between the MCI and the Control
classes, we performed finetuning in the form of backpropaga-
tion instead of pretraining [Hinton et al., 2012]. For the clas-
sification task, the network parameters are used to estimate
the likelihood that a vocabulary feature sequence belongs to
either the MCI or Control classes. While our training tech-
nique is mostly similar to DNNLM [Arisoy et al., 2012], we
set the initial learning rate to 0.01, momentum to 0.1, and the
weight decay to 0.01, respectively. Finally, we trained the
network to convergence.

We estimated the percentage Mean Square Error (MSE)
using Pybrain’s implementation of the neural network and
validates on a held-out test set. The percentage error is
used often to evaluate neural network models [Arisoy et al.,
2012]. We also estimated the language model perplexity of
the D2NNLM in comparison to DNNLM and NNLM. In
language modeling, perplexity measures how well a model
predicts given examples using an information theoretic ap-
proach. A better model minimizes the perplexity. We com-
pute the perplexity as 2B(q) as follows:

B(q) = − 1

N

N∑
i=1

log2q(xi) (5)

Perplexity = 2B(q) (6)

where B(q) estimates the ability of the model to predict
significant portion of the test samples.

5.3 Result Analysis
As shown in Table 2, we performed experiments by
comparing the percentage error and perplexity between
the D2NNLM, DNNLM, and NNLM. We compared the
D2NNLM with DNNLM and NNLM because both models
consolidate neural network with language models. Note that
previous work have shown that NNLM and DNNLM outper-
form the conventional 4-gram language models [Schwenk,
2007; Arisoy et al., 2012]. Similarly, in [Schwenk, 2007],
NNLM outperformed the 4-gram back-off model even when
the modified Kneser-Ney smoothing is used. While it
makes sense to compare the D2NNLM with the Hierarchical
Pitman-Yor language models (HPYLM) [Huang and Renals,
2007] and the sequence memoizer [Wood et al., 2011], nei-
ther the original NNLM nor DNNLM has made such compar-
ison even with very large datasets. Given the relatively small
size of the MCI clinical data (i.e. 19 MCI and 19 Control),
the parameters for the Pitman-Yor process (prior distribution)
could be complex to optimize for the optimal performance of
both HPYLM and sequence memoizer, which are Bayesian



Models (%) Error Perplexity
D2NNLM
(ngram=6, skip-gram=1-skip-trigram) 12.5 1.6
DNNLM (ngram=4) 62.5 3.1
NNLM (ngram=4) 37.5 2.6

Table 2: Percentage error and perplexity on held-out test set

models. Nevertheless, we consider this as part of our plan for
future work on a large clinical dataset.

As discussed in Section 3, the three models have differ-
ent architectures but used the same learning settings. For
the 3 models, we used 70% of the input neurons as the num-
ber of hidden units for the hidden layers. The D2NNLM (3
hidden-layers) takes a stacked combination of 6-grams and 1-
skip-trigram as inputs, while DNNLM (3 hidden layers) and
NNLM (1 hidden layer) take only 4-grams as performed in
[Arisoy et al., 2012].

In Table 2, we see that the D2NNLM has a better percent-
age error of 12.5% and a much lesser perplexity of 1.6, which
is comparably better than the DNNLM and NNLM. Interest-
ingly, the single hidden layer NNLM showed a better per-
centage error and perplexity than the DNNLM with 3 hidden
layers. One possible explanation for this behavior is that the
higher number of hidden layers in the DNNLM does not nec-
essarily correspond to improved performance especially on
small datasets [Arisoy et al., 2012]. On the other hand, in-
creasing the feature dimension could lead to improved perfor-
mance [Bengio et al., 2003], which is why we introduced the
D2NNLM with a much deeper language model vocabulary
space by stacking together higher order n-gram and skip-
gram features. We also observed that D2NNLM needed much
longer training iterations (943 epochs) to converge. This is
understandable considering the fact that the number of train-
ing sample is only 9 per category.

Figure 2 shows a comparison between the perplexities of
the three models while varying the number of hidden units at
their respective hidden layer(s). Note that all the three mod-
els used the same number of hidden units at each step. We
see that the D2NNLM consistently shows lower perplexity
with respect to the increasing number of hidden units and sta-
bilizes at 70% of the input neurons, which is why we chose
70% of the input neurons as the number of hidden units in the
previous experiment.

In Table 3, we show the improvements on the DNNLM and
NNLM by using a much deeper language model vocabulary
space instead of the 4-gram language model used in [Arisoy
et al., 2012](see Table 2). We see that both the percentage er-
ror and perplexity reduced considerably by using an increased
feature dimension with 6-grams and 1-skip-trigrams. For
DNNLM, a deeper vocabulary space reduced the percentage
error by 60% and perplexity by 42%. Similarly for NNLM,
the percentage error was reduced by 33% and perplexity by
27%. This further confirms the hypothesis that increased fea-
ture dimension could lead to improved network performance
[Bengio et al., 2003].

We also performed experiments to investigate the contribu-
tions of three different hidden layers (H = 2, 3, and 4) to both
D2NNLM and DNNLM. Recall that NNLM is a single-layer
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Models (%) Error Perplexity
DNNLM
(ngram=6, skip-gram=1-skip-trigram) 25 1.8
NNLM
(ngram=6, skip-gram=1-skip-trigram) 25 1.9

Table 3: Improvements on DNNLM and NNLM as a result of
deeper vocabulary space

network, hence we cannot increase its hidden layer because
doing so will make it a DNNLM. In addition, we included a
third D2NNLM-6-grams without skip-gram features because
we wanted to observe the impact of the skip-gram vocabulary
space. Figure 3 shows the perplexity plot against different
hidden layers of the models. We see that the D2NNLM has
a much lower perplexity plot between 2 and 3 hidden layers
compared to D2NNLM and D2NNLM-6-grams, albeit with
an increased perplexity at the fourth hidden layer. We ob-
served the optimal number of hidden layers to be 3 on the
MCI dataset. DNNLM has a marginally better perplexity with
2 hidden layers but performed poorly with increased perplex-
ity at the third and fourth layers. We observed the absence of
the skip-gram vocabulary space to have substantial effect on
the D2NNLM-6-grams with increased perplexity above the
full D2NNLM. We believe that a combination of higher order
n-grams and skip-grams with a maximum of 3 hidden layers
led to an improved classification on the MCI dataset.

To put the performance of D2NNLM in clinical perspec-
tive, we achieved 87.5% accuracy on the held-out test set by
computing the ratio of the correctly predicted samples to the
total number of test samples. The performance is substantial
considering the small size of the data set. Moreover, both
DNNLM and NNLM gave comparatively lower accuracy of
62.5% on the test set, respectively. In comparison to the re-
sults in [Roark et al., 2011], the D2NNLM is in a better po-
sition with better predictive accuracy because of its low error
rate. Although other evaluations could be performed to sub-
stantiate the efficacy of our model in real clinical scenarios,
nevertheless, we believe that our experimental results suffi-
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ciently show the potential of the deep-deep neural network
language models for predicting MCI on very sparse clinical
dataset.

6 Discussion and Limitations

The use of higher order n-gram and skip-gram features in
this study is limited to the description of the Cookie-Theft
picture in the DementiaBank clinical dataset. This is under-
standable since the objects within the picture dictate the spe-
cific n-gram and skip-gram features in the language space of
the MCI and control individuals. Unless a picture with sim-
ilar objects in the Cookie-Theft picture is used for collecting
the speech transcript, the use of any other picture with differ-
ent objects is likely to generate a different set of n-gram and
skip-gram features.

We believe that D2NNLM could be effective for predict-
ing other language and cognitive impairment related diseases
such as Aphasia, Autism spectrum disorder, and Parkinson’s
disease. For example, linguistic defects could be more pro-
nounced in Aphasia patients because Aphasia mainly affects
language. Thus, if D2NNLM can be sensitive to predict MCI,
it could as well predict other pronounced language impair-
ments.

Also, our current work has not optimized D2NNLM to per-
form as a general language model. We focus on MCI, and the
possibility of predicting MCI on very sparse clinical dataset.
Nevertheless, we believe that future work could validate the
D2NNLM on other natural language problems such as senti-
ment analysis.

Finally, although the dataset used in this study is small,
we have used the DementiaBank dataset, which is the largest
and publicly available clinical dataset on MCI to date. Most
clinical datasets on MCI are self-collected over a short period
of time and are mostly not publicly available largely due to
ethical constraints. We are currently conducting a longitudi-
nal study to collect large speech samples from several MCI
patients across two continents.

7 Conclusion and Future work
In this paper, we proposed the combination of deep neural
network and deep language models to predict MCI from clini-
cal language dataset. We learned deep language models using
higher order n-gram and skip-gram vocabulary spaces. Ex-
perimental results show that the model predicts MCI with less
percentage error and language model perplexity. In the fu-
ture, we will consider D2NNLM on other language impaired
related diseases such as Aphasia and Parkinson’s disease. We
will also conduct further evaluations that could put our model
to use on large speech samples in actual clinical scenarios.
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Jérôme Louradour, and Pascal Lamblin. Exploring strate-
gies for training deep neural networks. The Journal of Ma-
chine Learning Research, 10:1–40, 2009.

[Le et al., 2011] Xuan Le, Ian Lancashire, Graeme Hirst, and
Regina Jokel. Longitudinal detection of dementia through
lexical and syntactic changes in writing: a case study of
three british novelists. Literary and Linguistic Computing,
page fqr013, 2011.

[Li et al., 2015] Yifeng Li, Chih-Yu Chen, and Wyeth W
Wasserman. Deep feature selection: Theory and ap-
plication to identify enhancers and promoters. In Re-
search in Computational Molecular Biology, pages 205–
217. Springer, 2015.

[Locke, 1997] John L Locke. A theory of neurolinguistic de-
velopment. Brain and Language, 58(2):265–326, 1997.

[Mitchell, 2009] Alex J Mitchell. A meta-analysis of the ac-
curacy of the mini-mental state examination in the detec-
tion of dementia and mild cognitive impairment. Journal
of Psychiatric Research, 43(4):411–431, 2009.

[Mitolo et al., 2015] Micaela Mitolo, Simona Gardini,
Paolo Caffarra, Lucia Ronconi, Annalena Venneri, and
Francesca Pazzaglia. Relationship between spatial ability,
visuospatial working memory and self-assessed spatial
orientation ability: a study in older adults. Cognitive
Processing, 16(2):165–176, 2015.

[Orimaye et al., 2015] Sylvester Olubolu Orimaye, Kah Yee
Tai, Jojo Sze-Meng Wong, and Chee Piau Wong. Learn-
ing linguistic biomarkers for predicting mild cognitive im-
pairment using compound skip-grams. arXiv preprint
arXiv:1511.02436, 2015.

[Pozueta et al., 2011] Ana Pozueta, Eloy Rodrı́guez-
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