
QBF Encoding of Generalized Tic-Tac-Toe

Diptarama, Ryo Yoshinaka, Ayumi Shinohara

Graduate School of Information Sciences, Tohoku University, Japan
{diptarama@shino.,ry@,ayumi@}ecei.tohoku.ac.jp

Abstract. Harary’s generalized Tic-Tac-Toe is an achievement game for
polyominoes, where two players alternately put a stone on a grid board,
and the player who first achieves a given polyomino wins the game. It is
known whether the first player has a winning strategy in the generalized
Tic-Tac-Toe for almost all polyominoes except the one called Snaky.
GTTT(p, q) is an extension of the generalized Tic-Tac-Toe, where the
first player places q stones in the first move and then the players place
q stones in each turn. In this paper, in order to attack GTTT(p, q) by
QBF solvers, we propose a QBF encoding for GTTT(p, q). Our encoding
is based on Gent and Rowley’s encoding for Connect-4. We modify three
parts of the encoding: initial condition, move rule and winning condition
of the game. The experimental results show that some QBF solvers can
be used to solve GTTT(p, q) on 4× 4 or smaller boards.

1 Introduction

In recent years it has been getting a more common approach to use SAT solvers
to tackle some sort of hard problems for which no polynomial-time algorithm is
known. Those problems include cryptanalysis [22, 26] and mathematical prob-
lems such as the Erdős discrepancy conjecture [17]. Still there are even harder
problems in the real world to which SAT solvers cannot apply. The successful de-
velopment of solvers for the QBF satisfiability problem (QBF solvers) [11, 14, 21]
such as DepQBF [19, 18], RAReQS [25] and GhostQ [16] allows us to use them
to attack PSPACE problems. Typical PSPACE problems are to decide whether
a player has a winning strategy in two-player perfect information games. Par-
ticular instances of these games can be solved by reducing the game rules and a
game position into a QBF and giving it to a QBF solver.

A trivial example of a two-player perfect information game is Tic-Tac-Toe
(TTT), where two players alternately put a stone on a cell in the 3×3 board and
the player who occupies three consecutive cells constituting a line will win. A
generalization of TTT is known as mnk-Game, where players aim at achieving
a line of length k on the m × n-board. While the original TTT can be solved
easily, it is known that to decide the winner of mn5-Game for a given position is
PSPACE-complete [23]. Even when the game position of an instance is restricted
to be blank, it has been open if the first player has a winning strategy in mn5-
Game except for limited values of m and n [28].

Harary’s generalized Tic-Tac-Toe (HTTT) is another variant [8]. The goal
of HTTT is to achieve a given polyomino, i.e., a group of cells connected to

Fig. 1. Position example of Harary’s generalized Tic-Tac-Toe on 4× 4 board.

each other with edges, rather than a line. Fig. 1 gives an example of a game
position of HTTT. The first and second players’ stones are colored black and
white, respectively, and the first player has won the game, because the four black
stones numbered 1, 2, 4 and 5 form the target shape shown in the bottom left
corner. Note that any rotation of the target polyomino and its reflection are
admitted. HTTT has already been solved for all polyominoes on an arbitrary
size board except cases of Snaky (Fig. 2) [8, 9]. Snaky is the name of a polyomino
consisting of 6 cells. When the target is Snaky and the board dimension is 8× 8
or smaller, it is known that no player has a winning strategy [7]. However, it is
open for bigger boards. On the other hand, if the first player gets one additional
stone at the initial position, he/she can certainly win [7, 10].

Diptarama et al. [4, 5] have proposed a further generalization, which we de-
note by GTTT(p, q), where the first player puts q stones at the first turn and
then the two play p stones at each of their turns afterwards. Hence, GTTT(1, 1)
is HTTT and GTTT(1, 2) corresponds the situation where the first player has a
handicap stone at the beginning of a game. They showed that the first player
will win in GTTT(2, 2) and the second player will win in GTTT(2, 1). Diptarama
et al. [3] reported that in some cases QBF solvers can solve GTTT(p, q) that
encoded by a tool called Toss [15, 27] faster than the proof number search [1].
Therefore, the QBF approach seems to be hopeful to tackle GTTT(p, q), includ-
ing HTTT for Snaky. In order to evaluate the potential of the QBF approach
against GTTT(p, q), we propose a QBF encoding of GTTT(p, q) and apply QBF
solvers to it in this paper. Our QBF encoding is based on Gent and Rowley’s
encoding for the game called Connect-4. We modify their encoding for the initial
position, players’ move, and winning condition. We submitted 180 instances from
GTTT(p, q) as benchmarks to QBFEVAL’16. This paper shows and analyses ex-
perimental results on those instances, where only instances with small board
and target shape were solved. It still remains open whether the first player has
a winning strategy in HTTT for Snaky on the 9 × 9 board. The instances are
available at www.shino.ecei.tohoku.ac.jp/~diptarama/gttt_qbf.html.

Fig. 2. List of 1–6 cell polyominoes. The first player can win HTTT for polyominoes
colored blue, while no one can win for polyominoes with crossed cells and all of poly-
ominoes with at least 7 cells.

2 QBF encoding

In this section, we will describe how to encode GTTT(p, q) into a QBF which
holds true if and only if the first player has a winning strategy. It is easy to
modify our formula for checking whether the second player can win. We modify
the QBF encoding of the Connect-4 game proposed by Gent and Rowley [6], and
define a new encoding for GTTT(p, q). First, we describe notation that used in
variables and clauses. Next, we describe variables and quantifiers that are used in
the GTTT(p, q) encoding. Last, we show clauses that are used in the GTTT(p, q)
encoding. Throughout this paper we call the first player Black and the second
player White.

2.1 Notation

Let W and H be the width and height of the game board, respectively. The
maximum number Z of turns of the game in GTTT(p, q) is bounded by Z =
⌊(WH − q)/p⌋+1, because the first player places q stones at the first move and
then both players place p stones respectively.

Next, similarly to the Connect-4 encoding, we define illegal moves in the
game as cheats. We classify illegal moves into 4 categories; (1) the player places
more stones than the number of stones that the player should place in one move,
(2) the player places less stones than the number of stones that the player should

Fig. 3. Tippy as a target shape S = {s1, s2, s3, s4}, where s1 =
((0, 0), (1, 0), (1, 1), (2, 1)), s2 = ((0, 1), (1, 0), (1, 1), (2, 0)), s3 =
((0, 0), (0, 1), (1, 1), (1, 2)), and s4 = ((0, 1), (0, 2), (1, 0), (1, 1)).

put in one move, (3) the player places a stone on an occupied cell, and (4) the
first player puts his/her first stone outside a specific area. The fourth kind of
a cheat is not regarded illegal in a usual game play, but in our encoding, we
force the first stone to be put in a special area to reduce the number of moves
to be considered by breaking symmetries. The number of cheats in category a
is denoted by Ca for a ∈ {1, 2, 3, 4}. Then, C1 =

(

WH
p+1

)

at the first turn and

C1 =
(

WH
q+1

)

otherwise. C2 =
(

WH
p−1

)

at the first turn and C2 =
(

WH
q−1

)

otherwise.
Moreover, C3 = WH and C4 = 1.

Last, the target shapes that both players try to achieve in a game are defined
as follows. We represent a polyomino’s shape as a tuple of relative coordinates of
the cells s = ((sx1 , sy1), (sx2 , sy2), . . . , (sxk , syk)), where mini s

xi = mini s
yi = 0

and k is the number of cells of the polyomino. We define |s|W = maxi s
xi + 1

and |s|H = maxi s
yi +1, which denote the width and height of the target shape,

respectively. Since all of the 90, 180, 270 degree rotations and their reflections
of a polyomino are admitted as a target, the target shapes of GTTT(p, q) are
represented as a set S = {s1, s2, . . . , s|S|}, where |S| ≤ 8. If the polyomino is
symmetric, |S| can be smaller than 8. For example, Fig. 3 shows the target
shapes when the target polyomino is Tippy (see Fig. 2).

2.2 Variables and Quantifiers

By using the above parameters, we define variables used in the QBF encoding of
GTTT(p, q) as follows. The range of each of the parameters below is as follows:
1 ≤ x ≤ W , 1 ≤ y ≤ H, 1 ≤ a ≤ 4, 1 ≤ c ≤ Ca, and 1 ≤ s ≤ |S|. Moreover,
1 ≤ z ≤ Z + 1 for gameoverz and occupiedz,x,y, and 1 ≤ z ≤ Z for the rest.

1. blackwin, whitewin, and draw : true iff Black wins, White wins, or draws,
respectively.

2. blackwinz and whitewinz: true iff Black or White wins at turn z, respectively.
3. gameoverz: true iff game is over at turn z.
4. occupiedz,x,y: true iff the cell at coordinates (x, y) is occupied by either a

black or white stone before move z has been made.
5. blackz,x,y and whitez,x,y: true iff there is a black or white stone on the cell

at coordinates (x, y) after move z has been made, respectively.

6. blackcheatsz,a,c and whitecheatsz,a,c: true iff Black or White respectively does
an illegal move numbered c in category a at turn z.

7. blackcheatz and whitecheatz: true iff Black or White respectively does any
of illegal moves at turn z.

8. blackshapez,i,x,y and whiteshapez,i,x,y: true iff Black or White respectively
achieves a target shape si on coordinates (x, y) as origin at turn z.

9. blackmovez,x,y and whitemovez,x,y: true iff Black or White respectively places
a stone on a cell at coordinates (x, y) at turn z.

Quantifiers in QBF encoding of GTTT(p, q) are defined for each turn.

∃.(blackwin,whitewin, draw , gameover1, occupied1,1,1, . . . , occupied1,W,H)

∃.(blackmove1,1,1, blackmove1,1,2, . . . , blackmove1,W,H)

∃.(gameover2, occupied2,x,y, black1,x,y,white1,x,y, blackcheat1,whitecheat1, . . .)

∀.(whitemove2,1,1,whitemove2,1,2, . . . ,whitemove2,W,H)

∃.(gameover3, occupied3,x,y, black2,x,y,white2,x,y, blackcheat2,whitecheat2, . . .)

...

∃.(blackmoveZ,1,1, blackmoveZ,1,2, . . . , blackmoveZ,W,H)

∃.(gameoverZ+1, occupiedZ+1,x,y, blackZ,x,y,whiteZ,x,y, . . .)

First we introduce variables blackwin, whitewin, draw , gameover1, and occupied1,x,y

with the existential quantifier, which will be forced to be 1, 0, 0, 0, and 0, re-
spectively, in the body CNF. Then for each turn z with 1 ≤ z ≤ Z, we place
“move” variables blackmovez,i,j and whitemovez,i,j with ∃ for blackmovez,i,j and
∀ for whitemovez,i,j . After those move variables, we use ∃ for “state” vari-
ables gameoverz+1, occupiedz+1, blackwinz, whitewinz, blackz,x,y, whitez,x,y,
blackcheatsz,a,c, whitecheatsz,a,c, blackcheatz, whitecheatz, blackshapez,s,x,y and
whiteshapez,s,x,y. These variables are used to express the board state after each
player has ended his turn.

Note that if we want to determine whether White wins or not, we switch
quantifiers for the move variables; ∀ for blackmovez,i,j and ∃ for whitemovez,i,j .

2.3 Clauses

We now describe the body CNF used in our GTTT(p, q) encoding. Some of
the formulas presented below are not conjunctions of clauses, which is only for
readability. Converting them into a CNF is easy and does not increase the size
of the formula significantly.

There are mainly three differences from the encoding of Connect-4.

(1) All cells are empty at the initial condition in GTTT(p, q).
(2) A move in GTTT(p, q) is defined as placing stones on any empty cell on the

board, instead of dropping stones in any column.
(3) The winning condition in GTTT(p, q) is to achieve any of 0, 90, 180, 270

degrees rotation or reflection of the given polyomino.

We also implement the winning condition for torus board as an extension of the
game in our encoding.

The encoding for GTTT(p, q) is the conjunction of the formulas described
below. First, we will describe the clauses that are different from the encoding of
Connect-4. Note that we only show clauses for Black, because ones for White
can be obtained symmetrically.

Initial Condition There is no stone on any cell at the initial condition.

W
∧

x=1

H
∧

y=1

(¬occupied1,x,y)

Move rule There are two modifications for the move rule in GTTT(p, q) encod-
ing. First, the clauses for the move rule are modified from dropping the stone to
the board, into placing the stone on the board. Second, we extend cheat clauses
so that the player can place more than one stone for one move in GTTT(p, q).
We also add cheat rules when a player places a stone on an occupied cell.

1. The move in GTTT(p, q) is defined as placing a stone on an empty cell of
the board. Therefore, if a cell is empty then a black stone will be on the cell
iff Black places a stone on the cell.

⌈Z
2 ⌉
∧

z=1

W
∧

x=1

H
∧

y=1

(gameover2z−1 ∨ (¬occupied2z−1,x,y =⇒

(blackmove2z−1,x,y ⇐⇒ black2z−1,x,y)))

2. If a cell is empty then a black stone cannot appear on that cell at the White
turn.

⌊Z
2 ⌋
∧

z=1

W
∧

x=1

H
∧

y=1

(gameover2z ∨ (¬occupied2z,x,y =⇒ ¬black2z,x,y))

3. Let B be the set of all cells in the board, and
(

B
v

)

be the set of all v-
combinations of B. Let nz be the number of stones that Black can place at
turn z. Then Mz =

(

B
nz+1

)

is the collection of nz + 1 cells that are filled
by black stones when Black places nz + 1 stones at turn z. Let f : Mz →
{1, . . . , |Mz|} be an injection which maps each m ∈ Mz to an unique id f(m)
of the move rule in category 1.

⌈Z
2 ⌉
∧

z=1

∧

m∈Mz

(gameover2z−1 ∨ (
∧

b∈m

blackmove2z−1,bx,by

⇐⇒ blackcheats2z−1,1,f(m)))

4. M ′
z =

(

B
WH−(nz−1)

)

is the collection of WH−(nz−1) cells that are not filled

by black stones when Black places nz − 1 stones at turn Z. Let g : M ′
z →

{1, . . . , |M ′
z|} be an injection which maps each m ∈ M ′

z to an unique id g(m)
of the move rule in category 2.

⌈Z
2 ⌉
∧

z=1

∧

m∈M ′

z

(gameover2z−1 ∨ (
∧

b∈m

¬blackmove2z−1,bx,by

⇐⇒ blackcheats2z−1,1,g(m)))

5. Black does illegal moves of category 3 iff Black places a stone on an occupied
cell, where the function h(x, y) = W ·(y−1)+x maps each coordinates (x, y)
to an unique id of the move rule in category 3.

⌈Z
2 ⌉
∧

z=1

W
∧

x=1

H
∧

y=1

(gameover2z−1 ∨ ((occupied2z−1,x,y ∧ blackmove2z−1,x,y)

⇐⇒ blackcheats2z−1,3,h(x,y)))

6. Black has cheated iff he did one of the illegal moves.

(gameover2z−1 ∨ ((

4
∨

a=1

Ca
∨

c=1

blackcheats2z−1,a,c) ⇐⇒ blackcheat2z−1))

Winning condition For a given polyomino, we calculate all rotations and re-
flections of the polyomino and then use them as target shapes for winning condi-
tion. Not only a polyomino, but any shape can also be used in this encoding, such
as straight line in connect(m,n, k, p, q) [29] or wild polyomino [24]. Furthermore,
we also implement winning condition for torus board in our encoding.

1. Black achieves a target shape iff there are black stones on the board that
form the target shape.

Z
∧

z=1

|S|
∧

i=1

W−|si|W+1
∧

x=1

H−|si|H+1
∧

y=1

(gameoverz ∨ ((

k
∧

j=1

black
z,x+s

xj

i
,y+s

yj

i

)

⇐⇒ blackshapez,i,x,y))

For torus board, let mod(u, v) = ((u− 1) mod v) + 1. We connect leftmost
cells with rightmost cells and top cells with bottom cells when we check
whether or not a target shape is achieved by Black.

Z
∧

z=1

|S|
∧

i=1

W
∧

x=1

H
∧

y=1

(gameoverz ∨ ((
k
∧

j=1

black
z,mod(x+s

xj

i
,W),mod(y+s

yj

i
,H)

)

⇐⇒ blackshapez,i,x,y))

2. If Black has not cheated, then Black wins the game at turn z iff he achieves
a target shape or White cheats. We use 1 ≤ x ≤ W , 1 ≤ y ≤ H for torus
board.

Z
∧

z=1

(gameoverz ∨ (¬blackcheatsz =⇒

((

S
∨

i=1

W−|si|W+1
∨

x=1

H−|si|H+1
∨

y=1

blackshapez,i,x,y ∨ whitecheatsz) ⇐⇒ blackwinz)))

3. Black cannot win if he has cheated, and he cannot cheat at White turn.

Z
∧

z=1

(gameoverz ∨ (blackcheatsz =⇒ ¬blackwinz)) ∧

⌊Z
2 ⌋
∧

z=1

(¬blackcheats2z)

4. Black wins if he wins the game at any turn.

(
Z
∨

z=1

(¬gameoverz ∧ blackwinz) ⇐⇒ blackwin)

Symmetry breaking We use three types of clauses for symmetry breaking,
depending on the type of the board. The first clauses are symmetry breaking for
the general board, the second clauses for square board (W = H), and the third
clauses for torus board.

1. On general board, Black must place his first stone on the top left side rect-
angle of the board.

(gameover1 ∨ (

⌈W
2 ⌉
∧

x=1

⌈H
2 ⌉
∧

y=1

¬blackmove1,x,y ⇐⇒ blackcheat1,4,1))

On square board, Black must place his first stone on the top left side triangle
of the board.

(gameover1 ∨ (

⌈W
2 ⌉
∧

x=1

⌈H
2 ⌉
∧

y=x

¬blackmove1,x,y ⇐⇒ blackcheat1,4,1))

On torus board, Black must place his first stone on the center of the board.

(gameover1 ∨ (¬blackmove1,⌈W
2 ⌉,⌈

H
2 ⌉

⇐⇒ blackcheat1,4,1))

Next, we will describe the clauses of the GTTT(p, q) encoding that are the
same as the Connect-4 encoding.

Board management Wemanage the cells of the board by the following clauses.

1. Any cell of the board cannot be occupied by both black stone and white
stone simultaneously.

Z
∧

z=1

W
∧

x=1

H
∧

y=1

(gameoverz ∨ ¬blackz,x,y ∨ ¬whitez,x,y)

2. Any cell of the board is occupied if either a black stone or a white stone is
placed at the previous turn.

Z
∧

z=1

W
∧

x=1

H
∧

y=1

(gameoverz ∨ ((blackz,x,y ∨ whitez,x,y) ⇐⇒ occupiedz+1,x,y))

3. If a cell is occupied by a black stone, then the cell is also occupied by black
stone at the next turn.

Z−1
∧

z=1

W
∧

x=1

H
∧

y=1

(gameoverz ∨ (blackz,x,y =⇒ blackz+1,x,y))

Others

1. For any turn z, if the game has been already over, then the game is also over
at the next turn. Also if the game is not over, then the game is over at next
turn iff Black or White wins at this turn.

Z−1
∧

z=1

(gameoverz =⇒ gameoverz+1)

∧

Z−1
∧

z=1

(¬gameoverz =⇒ ((blackwinz ∨ whitewinz) ⇐⇒ gameoverz+1))

2. Black cannot win after the game has over.

Z−1
∧

z=1

(gameoverz =⇒ ¬blackwinz)

3. We set blackwin as a clause if we want to check whether Black can win the
game or not. Exactly one of blackwin, whitewin, and draw must be true.
The game finishes draw iff the game is not over at turn Z + 1.

(blackwin)

∧(¬gameover1)

∧(blackwin ∨ whitewin ∨ draw)

∧(¬blackwin ∨ ¬whitewin) ∧ (¬blackwin ∨ ¬draw) ∧ (¬whitewin ∨ ¬draw)

∧(¬gameoverZ+1 ⇐⇒ draw)

Table 1. The statistics of the instances in GTTT(p, q): average number of variables
(vars*), average number of clauses (clauses*), the number of quantifier alternations
(alt), and average numbers of existentials (∃*) and universals (∀*).

Board size p q vars* clauses* alt. ∃* ∀*

3× 3
1 1 1591 4694 8 1547 40
2 1 1339 4028 4 1316 23
2 2 1164 3507 3 1146 18

4× 4
1 1 6748 18478 15 6620 128
2 1 9753 27254 7 9689 64
2 2 10663 29828 7 10599 64

Table 2. Number of solved instances by each solver within 10 seconds on 3× 3 board
and 1000 seconds on 4× 4 board.

Board size Result
Without bloqqer With bloqqer

depqbf ghostq rareqs mpidepqbf depqbf ghostq rareqs mpidepqbf

3× 3
SAT 24 24 18 22 24 23 24 17

UNSAT 60 60 39 58 60 60 60 52
Total 84 84 57 80 84 83 84 79

4× 4
SAT 28 23 2 13 28 15 11 29

UNSAT 53 43 5 14 50 28 24 57
Total 81 66 7 27 78 43 35 86

3 Experiments

We conducted experiments by solving GTTT(p, q) by using QBF solvers. We
generated 84 (= 3 × 7 × 2 × 2) instances from GTTT(p, q) on 3 × 3 board,
which is the combination of the following parameters. The values of p and q
for 1 ≤ q ≤ p ≤ 2, 7 polyominoes of 2–4 cells aside Skinny (see Fig. 2), 2
types of board; regular and torus board, and instances for Black and White. We
also generated 96 (= 3 × 8 × 2 × 2) instances from GTTT(p, q) on 4 × 4, with
the same parameters as the 3 × 3 board, but we used all 2–4 cell polyominoes
including Skinny. Table 1 shows some statistics of the instances that are used in
the experiments.

We used a computer with Intel Xeon CPU E5-2609 8 cores 2.40GHz, 256GB
memory, and Debian Wheezy OS as experimental environment. We used De-
pQBF [18], RAReQS [12], GhostQ [16], and MPIDepQBF [13] as solvers and
bloqqer [2] for preprocessing. We use 8 cores when running the MPIDepQBF.

Fig. 4 and Fig. 5 show the running time of each solver on solving the instances
of GTTT(p, q) on 3× 3 and 4× 4 boards, respectively. Notice that the point on
10 seconds on Fig. 4 (resp. 1000 seconds on Fig. 5) means that the solver solves
the instances in 10 (resp. 1000) seconds or more. From Fig. 4 we can see that
DepQBF solves the instances of GTTT(p, q) on 3×3 board faster than the other
solvers. We can also see that preprocessing is not effective for DepQBF and

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80

R
u
n
ti
m

e
 (

se
c)

Number of solved instances
depqbf

ghostq

rareqs

mpidepqbf

bloqqer-depqbf

bloqqer-ghostq

bloqqer-rareqs

bloqqer-mpidepqbf

Fig. 4. Running time of QBF solvers on QBF instances of GTTT(p, q) on 3× 3 board.

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90

R
u
n
ti
m

e
 (

se
c)

Number of solved instances
depqbf

ghostq

rareqs

mpidepqbf

bloqqer-depqbf

bloqqer-ghostq

bloqqer-rareqs

bloqqer-mpidepqbf

Fig. 5. Running time of QBF solvers on QBF instances of GTTT(p, q) on 4× 4 board.

GhostQ from this result. On the other hand, from Fig. 5, MPIDepQBF with
preprocessing is the fastest solver on solving the instances of GTTT(p, q) on
4 × 4 board. The preprocessing by using bloqqer is effective on DepQBF and
MPIDepQBF in this case. The detailed number of instances and its result (SAT
or UNSAT) are shown in Table. 2.

From these experimental results, we can conclude that the QBF solvers can
solve most instances of GTTT(p, q) on 3 × 3 and 4 × 4 within 1000 seconds.
Different to the results in [11, 21], DepQBF and MPIDepQBF can solve most
of the instances faster than other solvers. This indicates that the QBF solv-
ing algorithm of DepQBF is more suitable to solve GTTT(p, q) encoding than

other solvers. We can also see that parallelization is more effective when solv-
ing GTTT(p, q) encoding on 4× 4 board. However, a better encoding and faster
solver are needed in order to solve the instances of GTTT(p, q) on larger board
and polyomino in less than 1000 seconds. Therefore, improving the encoding and
the solvers are needed in order to solve Snaky on HTTT by using QBF solver.

4 Conclusion

We have proposed a QBF encoding of an extension GTTT(p, q) of Harary’s gen-
eralized Tic-Tac-Toe. However, by our encoding, existing QBF solvers could not
solve the open problem on HTTT, whether the first player has a winning strat-
egy to achieve a Snaky on the 9 × 9 board, that has 616578 variables, 1557653
clauses, and 80 quantifier alternations in its instance, which are much bigger
than the instances on 4 × 4 board. Our encoding technique is rather naive and
easily understandable, so there remains a lot of room to improve. For example,
our encoding contains many redundant clauses. Some of them would help QBF
solvers search, but we did not examine which of them have a real positive effect.
Moreover, although our encoding did not consider an incremental QBF solv-
ing [20], the encoding might be solved in incremental way because we can use
the knowledge from the result on solving an instance of smaller board to solve
an instance of larger board. Therefore, the encoding optimization for incremen-
tal QBF solving can be considered as a future work. We hope our experimental
results and analysis help to improve QBF solvers and the open problem will be
solved by a QBF approach by an even more elaborated QBF solver with a more
sophisticated encoding in the future.

Acknowledgment

This work is supported by Tohoku University Divison For Interdisciplinary Ad-
vance Research and Education. We thank Charles Jordan for his advises on
writing this paper.

References

1. Allis, L., van der Meulen, M., van den Herik, H.J.: Proof-number search. Artificial
Intelligence 66(1) (1994) 91–124

2. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: CADE’11.
(2011) 101–115

3. Diptarama, Ishiguro, Y., Narisawa, K., Shinohara, A., Jordan, C.: Solving gen-
eralized tic-tac-toe by using QBF solver. In: Proceedings of Game Programming
Workshop 2015. Volume 2015. (oct 2015) 154–161 (In Japanese).

4. Diptarama, Narisawa, K., Shinohara, A.: Extension of generalized tic-tac-toe: p
stones for one move. IPSJ Journal 55(11) (nov 2014) 2344–2352 (In Japanese).

5. Diptarama, Narisawa, K., Shinohara, A.: Drawing strategies for generalized tic-
tac-toe (p, q). AIP Conference Proceedings 1705 (2016)

6. Gent, I.P., Rowley, A.: Encoding connect-4 using quantified boolean formulae. 2nd
Intl. Work. Modelling and Reform. CSP (2003) 78–93

7. Halupczok, I., Schlage-Puchta, J.C.: Achieving snaky. Electronic Journal of Com-
binatorial Number Theory 7 (2007) G02

8. Harary, F.: Achievement and avoidance games for graphs. Ann. Discrete Math 13

(1982) 111–120
9. Harary, F.: Achieving the skinny animal. Eureka 42 (1982) 8–14

10. Ito, H., Miyagawa, H.: Snaky is a winner with one handicap. In: Proceedings of
8th Hellenic European Conference on Computer Mathematics and its Applications
(HERCMA 2007). (2007) 25–26

11. Janota, M., Jordan, C., Klieber, W., Lonsing, F., Seidl, M., Van Gelder, A.: The
QBFGallery 2014: The QBF competition at the FLoC olympic games. Journal on
Satisfiability, Boolean Modeling and Computation 9 (2016) 187–206

12. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with coun-
terexample guided refinement. In: SAT’12. (2012) 114–128

13. Jordan, C., Kaiser, L., Lonsing, F., Seidl, M.: MPIDepQBF: Towards parallel qbf
solving without knowledge sharing. In: Theory and Applications of Satisfiability
Testing–SAT 2014. Springer (2014) 430–437

14. Jordan, C., Seidl, M.: QBF gallery 2014 (2014)
15. Kaiser, L., Stafiniak, L.: Playing structure rewriting games. In: AGI’10. (2010)
16. Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF solver

with game-state learning. In: Theory and Applications of Satisfiability Testing–
SAT 2010. Springer (2010) 128–142

17. Konev, B., Lisitsa, A.: A SAT attack on the Erdős discrepancy conjecture. In:
Theory and Applications of Satisfiability Testing–SAT 2014. Springer (2014) 219–
226

18. Lonsing, F., Bacchus, F., Biere, A., Egly, U., Seidl, M.: Enhancing search-based
QBF solving by dynamic blocked clause elimination. In: Logic for Programming,
Artificial Intelligence, and Reasoning, Springer (2015) 418–433

19. Lonsing, F., Biere, A.: DepQBF: A dependency-aware QBF solver. Journal on
Satisfiability, Boolean Modeling and Computation 7 (2010) 71–76

20. Lonsing, F., Egly, U.: Incremental QBF solving. In: Principles and Practice of
Constraint Programming-CP 2014. Springer (2014) 514–530

21. Lonsing, F., Seidl, M., Van Gelder, A.: The QBF gallery: Behind the scenes. arXiv
preprint arXiv:1508.01045 (2015)

22. Mironov, I., Zhang, L.: Applications of SAT solvers to cryptanalysis of hash func-
tions. In: Theory and Applications of Satisfiability Testing-SAT 2006. Springer
(2006) 102–115

23. Reisch, S.: Gobang ist PSPACE-vollständig. Acta Inf. 13 (1980) 59–66
24. Sieben, N.: Wild polyomino weak (1, 2)-achievement games. Geombinatorics 13(4)

(2004) 180–185
25. Sieben, N.: Polyominoes with minimum site-perimeter and full set achievement

games. European Journal of Combinatorics 29(1) (2008) 108–117
26. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic

problems. In: Theory and Applications of Satisfiability Testing-SAT 2009. Springer
(2009) 244–257

27. Toss Team: Toss http://toss.sourceforge.net/.
28. Uiterwijk, J.W.H.M., van den Herik, H.J.: The advantage of the initiative. Inf.

Sci. 122(1) (2000) 43–58
29. Wu, I.C., Huang, D.Y.: A new family of k-in-a-row games. In: Proceedings of

Advances in Computer Games. (2006) 180–194

