
Dynamic Programming-based QBF Solving

Günther Charwat and Stefan Woltran

Institut für Informationssysteme, TU Wien, Austria
{gcharwat,woltran}@dbai.tuwien.ac.at

Abstract. Solving Quantified Boolean Formulas (QBFs) is a challenging prob-
lem due to its high complexity. Many successful methods have been proposed, in-
cluding extensions of DPLL/CDCL procedures and expansion-based approaches.
In this paper, we present a novel method that is inspired by concepts from the
field of parameterized complexity. More specifically, we develop a dynamic pro-
gramming algorithm that traverses a tree decomposition of the QBF instance.
We implemented our method using Binary Decision Diagrams as key ingredi-
ent to compactly represent the partial solutions computed during dynamic pro-
gramming. Experiments indicate that our prototype shows promising results for
instances with few quantifier alternations and where the treewidth of the propo-
sitional formula does not exceed 50. In fact, treewidth can be understood as a
measurement of structure within the formula, and to the best of our knowledge
has not been used explicitly in QBF solvers yet.

1 Introduction

Quantified Boolean Formulas (QBFs) are a powerful tool to compactly encode many
computationally hard problems, since QBF satisfiability checking (QSAT) is PSPACE-
complete. This makes QSAT amenable to several application fields where highly com-
plex tasks emerge, e.g. planning, verification, and many more. Most of today’s QBF
solvers rely on extending the DPLL/CDCL procedures (see e.g. [21]), but also al-
ternative methods based on Binary Decision Diagrams (BDDs) [23] or abstraction-
refinement [16] proved successful.

Our approach is different and has its origin in the field of parameterized complex-
ity [13]. Hereby, the computational costs for solving a particular problem is not solely
related to the size of instance, but to some structural parameter. The goal then is to
design algorithms that perform efficiently when the considered parameter is relatively
small. The parameter we base our algorithm on is the treewidth [26] of the hypergraph
obtained from the matrix of a given QBF in prenex CNF. Roughly speaking, treewidth
measures the tree-likeness of a hypergraph, thus providing a structural parameter that re-
flects the shape of the CNF. Our goal is to develop a novel dynamic programming-based
algorithm that is particularly efficient on tree-like QBF instances. For other logical prob-
lems, e.g. algorithms for SAT [28] and CSP [27], such treewidth-based algorithms have
already been presented in the literature. However, to the best of our knowledge this
method has not been applied to QSAT yet.

In a nutshell, our method is as follows. We split the QBF instance into subproblems
by constructing a so-called tree decomposition of its hypergraph representation. The



QBF is then solved by dynamic programming over the tree decomposition. In contrast
to standard methods where intermediate results are stored in tables (see e.g. [22]), we
require a more complicated data structure in order to deal with the high complexity of
QSAT. At the heart of this data structure we employ sets of BDDs. The motivation for
that is two-fold: first BDDs allow for a compact representation of solutions; second,
BDDs are canonical in the sense that equivalent formulas are represented by identical
BDDs; thus in order to keep our data structure compact, explicit tests for duplicates are
not needed. The size of each BDD is bounded by the width of the used decomposition,
and the overall number of BDDs required in each node is bounded by the width and by
the number of quantifiers in the instance. Thus, the runtime depends exponentially on
the structural parameter instead of the size of the formula.

We provide some preliminary experiments which indicate that our method already
performs well on QBFs with one quantifier alternation, while for QBFs with a higher
number of alternations our system does not reach the performance of state-of-the-art
tools yet. However, we encountered several instances that our solver was able to solve,
but where others (we compared our system with DepQBF, RAReQS, and EBDDRES)
ran into a timeout. Our method gives rise to several directions of advancements, such
as QBF-tailored tree decomposition heuristics and width-reducing preprocessing.

2 Background

Quantified Boolean Formulae. As usual, a literal is a variable or its negation. A clause
is a disjunction of literals. A Boolean formula in conjunctive normal form (CNF) is a
conjunction of clauses. Depending on the context, we will sometimes denote clauses as
sets of literals, and a formula in CNF as a set of clauses. Herein, we consider QBFs in
closed prenex CNF (PCNF) form.

Definition 1. A PCNF QBF instance is of the formQ.ψ whereQ is the quantifier prefix
and ψ is a CNF formula. The quantifier prefix Q is of the form Q1X1Q2X2 . . . QkXk

where Qi 6= Qi+1 for 1 ≤ i < k. Furthermore, every variable in ψ occurs in exactly
one set Xj for 1 ≤ j ≤ k.

The level of a variable x is specified by its appearance in Q, i.e. if x ∈ Xj then the
level of x is j. We define the depth of x as k minus its level plus one.

In the following we will frequently use the following notation: Given a QBF in-
stanceQ.ψ withQ = Q1X1 . . . QkXk and an index iwith 1 ≤ i ≤ k, quantifierQ(i) =
Qi gives the i-th quantifier. Furthermore, for a variable x, levelQ(x) returns the level
of x, and depthQ(x) returns the depth of x in Q of the instance; quantifierQ(x) =
QlevelQ (x) returns the quantifier for variable x. Finally, for a clause c ∈ ψ, we denote
by variablesψ(c) the variables occurring in c. For the ease of representation, in the
following we will omit subscript Q or ψ whenever no ambiguity arises.

Example 1. As our running example, we will consider QBFQ.ψ withQ = ∃ab ∀cd ∃ef
and ψ = (a∨ c∨ e)∧ (¬b∨ d)∧ (e∨ f)∧ (c∨¬e)∧ (¬d∨ f), which is satisfiable (for
a = >, b = ⊥). Note that this example is designed to illustrate our approach. Hence,
simplifications (e.g. pure literal elimination) are not considered.
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Fig. 1. Graph G and possible (weakly-normalized) tree decomposition T of G.

Tree Decompositions. In order to employ dynamic programming on tree decomposi-
tions (TDs) for QBF solving, we have to construct a tree decomposition from the given
QBF instance. A TD T is a mapping from a graph to a tree, where vertices of the origi-
nal graph are associated with nodes of T . Herein, we consider hypergraphs, i.e. graphs
where the edges may have multiple endpoints.

Definition 2. A tree decomposition of a hypergraph G = (V,E) is defined as a pair
T = (T, bagT ) where T = (N,F ) is a (rooted) tree with nodes N and edges F ,
and bagT : N → 2V assigns to each node a set of vertices, such that the following
conditions are met:

1. For every v ∈ V , there exists a node n ∈ N such that v ∈ bagT (n).
2. For every edge e ∈ E, there exists a node n ∈ N such that e ⊆ bagT (n).
3. For every v ∈ V , the subtree of T induced by {n ∈ N | v ∈ bagT (n)} is connected.

The width of T is maxn∈N |bagT (n)| − 1. The treewidth of a hypergraph is the
minimum width over all its tree decompositions. Constructing a tree decomposition
with minimum width is intractable [2]. However there are good heuristics available [11,
12, 8]. In this paper we will consider so-called weakly-normalized tree decompositions.
A tree decomposition can be transformed into a weakly-normalized one in linear time
without increasing the width [18].

Definition 3. A tree decomposition T = (T, bagT ) with T = (N,F ) is weakly nor-
malized if for each node n ∈ N with children n1, . . . , nm such that m ≥ 2, bagT (n) =
bagT (n1) = · · · = bagT (nm) holds.

A QBF instance Q.ψ can naturally be represented as a hypergraph G = (V,E)
where V are the variables occurring in Q.ψ and for each clause c ∈ ψ, variables(c)
forms a hyperedge in G. Note that this representation of CNF formulae is commonly
used, e.g. for tree decomposition-based SAT solving [28]. The number of nodes in the
TD is linear in the size of the QBF (i.e., its variables).

Example 2. Given formula ψ = (a∨c∨e)∧(¬b∨d)∧(e∨f)∧(c∨¬e)∧(¬d∨f) of our
running example, Figure 1 illustrates its hypergraph representation G, and T represents
a weakly-normalized tree decomposition for ψ of width 2.

Given a tree decomposition T = (T, bagT ) with T = (N,F ), for a tree de-
composition node n ∈ N we denote its set of children in T by childrenT (n). In
order to iterate over the children, we specify firstChildT (n) and nextChildT (n) as
procedures to access the children, and hasNextChildT (n) to check whether further
children exist. isLeafT (n) returns true if n has no children, nodes with one child are



called exchange nodes (tested by isExchangeT (n)), and for nodes with more than one
child, isJoinT (n) returns true. For an exchange node n with child node n′, we de-
note by introducedT (n) = bagT (n) \ bagT (n

′) the variables introduced in n; and
removedT (n) = bagT (n

′) \ bagT (n) gives the variables removed in n. Furthermore,
clauses of a QBF instance Q.ψ are related to nodes in the tree decomposition by
clausesT ,ψ(n) = {c | c ∈ ψ, variablesψ(c) ⊆ bagT (n)}. For improved readability,
we will usually omit subscript T and ψ.

Binary Decision Diagrams. A BDD is a well-studied and widely-used data structure
that represents Boolean formulae in form of a rooted directed acyclic graph [19, 1].
Inhere, we use a special type of BDDs, so-called Reduced Ordered Binary Decision Di-
agrams (ROBDDs) [9] as one key ingredient for efficiently storing information. ROB-
DDs are a refinement of BDDs which are oftentimes particularly space-efficient. Fur-
thermore, for a fixed ordering over variables occurring in the formula, they are canoni-
cal, i.e., equivalent formulae are represented by the same ROBDD. Beside standard log-
ical operators (∧,∨,¬, ...), we assume BDDs B that support existential and universal
quantification over sets of variables X , denoted by ∃XB (∀XB), as well as restriction
of a variable x to true (denoted by B[x/>]) or false (B[x/⊥]). In the following we will
specify BDDs in form of Boolean formulae.

3 Dynamic Programming for QBFs

In a nutshell, dynamic programming on tree decompositions proceeds as follows: First,
the CNF formula of the input instance, represented as hypergraph, is decomposed (using
heuristics [11, 12, 8]). Then, the obtained tree decomposition is traversed in post-order.
At each node, partial solution candidates for the problem at hand are computed. Solution
candidates are “partial” because they are restricted to the current node’s bag contents.
They are computed by taking into account the partial solution candidates of the already-
visited child nodes, together with the subgraph induced by the current node’s bag. At
the root node we obtain the solution to our problem. We will now first introduce the
data structure to be used for storing partial solution candidates, and then provide our
algorithm for dynamic programming-based QBF solving.

3.1 Data structure

As data structure we use so-called nested sets of formulae (NSFs) where the innermost
sets contain Boolean formulae, represented as BDDs. Intuitively, an NSF resembles
the structure of the QBF instance. The depth of the nesting in the NSF corresponds to
the number of quantifiers in the QBF. The nestings are used to differentiate between
variables that are at different depth in the quantifier prefix. NSFs, in relation to a QBF
instance, are defined as follows.

Definition 4. Given a QBF instance Q.ψ with k quantifiers, we have a nested set of
formulae (NSF) of depth k whose elements are inductively defined over the depth of
nestings d with 0 ≤ d ≤ k: for d = 0, the NSF is a BDD; for 1 ≤ d ≤ k, the NSF is a
set of NSFs of depth d− 1.
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Fig. 2. Example NSF N , represented as tree, and N [B/B ∧ c] applied to N .

For a QBF Q.ψ with Q = Q1X1 . . . QkXk and an NSF N of depth k, for any NSF
M appearing somewhere in N we denote by depth(M) the depth of the nesting of M ,
levelQ(M) = k−depth(M)+1 is the level ofM , and quantifierQ(M) = QlevelQ(M)

(for levelQ(M) ≤ k). Subscripts will be again omitted in the following.
Additionally, we define the procedure init(k, φ) that initializes an NSF of depth

k, such that each set contains exactly one NSF, and the innermost NSF represents φ.
For instance, init(3,>) returns {{{>}}}. Furthermore, for an NSF N we denote by
N [B/B′] the replacement of each BDD B in N by some B′.

Example 3. Suppose we have given an NSF N = {{{>,⊥}}, {{¬a ∨ b}, {⊥}, {a ∧
b}}}. For the ease of readability, we will illustrate nested sets in form of a tree where the
leaves contain the Boolean formulae represented by the BDDs, and each circle denotes
a non-leaf NSF in the nestings with its contents being the children in the tree. Figure 2
shows the tree representing NSF N together with the one resulting from N [B/B ∧ c].

NSFs are tailored towards efficient representation of partial solution candidates.
Opposed to the similar concept of quantifier trees [5], NSFs follow set semantics in
order to automatically remove (trivial) redundancies. Furthermore, the depth of nestings
is specified by the number of quantifiers, not by the variables in the instance. As we
will see, NSFs can be used to keep track of parts of the solution space, instead of
representing the whole QBF instance at once.

3.2 Dynamic programming on tree decompositions for QBF solving

Algorithm 1 illustrates the recursive procedure for the bottom-up traversal of the tree
decomposition and computing the partial solution candidates. When called with the root
node of the tree decomposition, it returns an NSF that represents the overall solution to
the problem.

Procedure compute(n) calls itself based on the child nodes of n. At each node, we
distinguish between leaf, exchange and join nodes. In leaf nodes, an NSF of depth k
(i.e., the number of quantifiers in the QBF instance) is initialized with the innermost
set containing a BDD that represents the clauses associated with the current decompo-
sition node. In an exchange node, we have to deal with removed as well as introduced
variables. First the NSF of the child node is computed. Then, removed variables are
handled by “splitting” the NSF. Procedure split(N, x) (see Algorithm 2) handles this
removal of a variable x. It is called recursively for the contents of the NSF until the level
of x is reached. Then, for each NSF at this level, the NSF is updated once by replacing
all occurrences of x in the BDDs with >, and once with ⊥. Due to the connectedness
property of the tree decomposition, we know that a removed variable will never reap-
pear somewhere upwards the tree decomposition, and therefore all clauses related to



Algorithm 1: Recursive procedure compute(n) for QBF solving
Input : A tree decomposition node n
Output: An NSF with partial solution candidates for n

1 if isLeaf (n) then
2 N := init(k, clauses(n))
3 if isExchange(n) then
4 N := compute(firstChild(n))
5 for x ∈ removed(n) do
6 N := split(N, x)
7 end
8 N := N [B/B ∧ clauses(n)]

9 if isJoin(n) then
10 N := compute(firstChild(n))
11 while hasNextChild(n) do
12 M := compute(nextChild(n))
13 N := join(N,M)

14 end
15 return N

Algorithm 2: Recursive procedure split(N, x)

Input : An NSF N and a variable x
Output: An NSF split at level(x)

if level(N) = level(x) then
return {M [B/B[x/>]],M [B/B[x/⊥]]) |M ∈ N}

else
return {split(M,x) |M ∈ N}

Algorithm 3: Recursive procedure join(N1, N2)

Input : NSFs N1 and N2 of same depth
Output: A joined NSF

if depth(N1) = 0 then
return N1 ∧N2

else
return {join(M1,M2) |M1 ∈ N1,M2 ∈ N2}

the removed variable were already considered. Thereby we are also guaranteed that the
size of each BDD is bounded by the bag’s size. After splitting, the BDDs in the NSF
are updated by adding the clauses associated with the current node via conjunction to
the BDDs in the NSF. In join nodes, NSFs computed in the child nodes are successively
combined by procedure join(N1, N2) (see Algorithm 3). Observe that the procedure
guarantees that the structure (nesting) of the NSFs to be joined is preserved. BDDs in
the NSFs are then combined via conjunction, thus already considered information (i.e.,
clauses of the sub-hypergraph induced by the subtree’s bag) of both child tree decom-
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Fig. 3. Computed NSFs for our running example.

position nodes is combined. Note that this procedure does not take the quantifiers of the
QBF instance into account. They will be evaluated on the NSF of the root node.

Example 4. Figure 3 shows the NSFs computed at the tree decomposition nodes of our
running example. In n1, an NSF of depth 3 is initialized with (¬b ∨ d), i.e., the clause
associated with this tree decomposition node. In n2 variable b is removed. Hence the
NSF is split at level(b) = 1, once by setting b to true (left NSF branch), yielding
formula d and once by false (right branch), yielding >. Furthermore, current clause
(¬d∨ f) is added to these BDDs via conjunction. Similarly, the right branch of the tree
decomposition (nodes n3–n5) is computed. In n6, the NSFs are joined. For instance, the
leftmost branches in n2 and n5 are joined by conjunction of d ∧ f and ⊥, yielding⊥.

3.3 Obtaining the solution

At the root node r of the tree decomposition, we can decide the problem since the whole
input instance was taken into account. We apply quantifier elimination by evaluating the
NSF as shown in Algorithm 4, which is similar to the approach described in [24]. Pro-
cedure evaluateQ(r,N) recursively combines the elements of the NSF by disjunction

Algorithm 4: Recursive procedure evaluateQ(n,N)

Input : A tree decomposition node n and an NSF N
Output: A BDD B of N , obtained by evaluating the quantifiers

if depth(N) = 0 then
B := N

else
X := {x | x ∈ bag(n) and level(x) = level(N)}
if quantifier(N) = ∃ then

B := ∃X
∨

M∈N evaluateQ(n,M)
else if quantifier(N) = ∀ then

B := ∀X
∧

M∈N evaluateQ(n,M)
return B
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Fig. 4. Results for evaluateQ(n6, N) executed on the NSF of root node n6.

(for existential quantifiers) or conjunction (for universal quantifiers), starting at the in-
nermost NSFs. Furthermore, variables contained in the current bag are abstracted away
from the merged BDD according to the quantifier. Thus, this procedure finally returns
a single BDD B without variables. There, if B ≡ ⊥, the QBF instance is unsatisfiable,
otherwise it is satisfiable.

Example 5. Figure 4 shows the NSF N in root node n6 of our running example, and
the BDDs obtained recursively (bottom-up) when applying evaluateQ(r,N). Note that
bag(n6) = {d, f} with level(d) = 2 and level(f) = 3, which are additionally taken
into account when evaluating the quantifiers. The procedure returns > for our running
example, hence the QBF is satisfiable.

We omit a formal proof of the correctness of the proposed algorithm; instead we give
an informal discussion about its runtime. Given a QBF Q.ψ with Q = Q1X1 . . . QkXk

and a tree decomposition for ψ of width w, the algorithm determines the truth ofQ.ψ in

time O(22.
.2

w+1

· |ψ|), where the height of the tower of exponents in 22
..
2w+1

is k + 1,
since the size of each BDD is at most 2w+1 and we have k quantifiers1. Furthermore,
|ψ| denotes the size of ψ. We recall that the number of nodes of a tree decomposition
is linear in the size of ψ. Moreover, any BDD involved in the algorithm is given over
at most w variables and NSFs are just built upon such BDDs. Thus all operations on
NSFs are also bound by w. Recall that due to the canonical form of BDDs, there are no
duplicates at any level of an NSF, thus yielding this runtime.

3.4 Algorithm Optimizations

Although our algorithm runs in polynomial time for bounded treewidth of the QBF
instance (for a fixed number of quantifiers), refinements are necessary in order to make
it useful in practice. Herein, we discuss several optimizations for our algorithm.

Intermediate unsatisfiability checks. One optimization is to check for unsatisfiability
of the QBF instance during the bottom-up traversal of the tree decomposition. We can
directly reuse procedure evaluateQ(n,N ). Whenever it returns ⊥, the QBF is unsatis-
fiable, and we can immediately abort our main procedure compute(n). However, if it
returns >, the QBF might still be unsatisfiable due to clauses that are encountered later
during the traversal.

1 It is known that QSAT can be solved in FPT time when treewidth and number of quantifiers
are bounded, which follows, for instance, from [10]. However, the QSAT problem is not fixed-
parameter tractable w.r.t. parameter treewidth [3], unless the number of quantifiers is also
bound or, more generally, the dependencies between variables are restricted (see [14]).



Algorithm 5: Recursive procedure removeRedundant(N)

Input : An NSF N
Output: An NSF without supersets

if depth(N) > 1 then
for M ∈ N do

M := removeRedundant(M)
end
for M1,M2 ∈ N and M1 6= M2 do

if M1 ⊂M2 then
N := N \ {M2}

end
else

// N contains a set of BDDs
for M1,M2 ∈ N and M1 6= M2 do

if quantifier(N) = ∃ and M1 ∨M2 = M1 then
N := N \ {M2}

if quantifier(N) = ∀ and M1 ∧M2 = M1 then
N := N \ {M2}

end
return N

Evaluate innermost quantifier. For any NSF N at depth one, the quantifier can be eval-
uated immediately: A single BDD is constructed by disjunction (for existential quan-
tification) or conjunction (for universal quantification) of the BDDs contained in N .
Thereby, the overall size can be reduced, since usually the single BDD stores models
more efficiently than several BDDs. Furthermore, redundant models (i.e., models that
are stored in several BDDs) are now only kept once, and for universal quantification
additionally only models appearing in all BDDs are stored in the newly created BDD.

Remove redundant NSFs. Redundant NSFs can be removed by checking for subsets
w.r.t. models represented by the BDDs (similar to subsumption checking [7]), and sub-
sets w.r.t. nested sets. Procedure removeRedundant(N) (see Algorithm 5) gives the
pseudo-code for removing unnecessary elements.

Balance NSF and BDD size. By delaying the split of removed variables (and storing
them in a cache), the size of the NSF can be kept small. However, this usually increases
the size of the BDDs (since the variables are not abstracted away). Note that a join node
can drastically increase the size of an NSF, which has to be considered already below
that tree decomposition node, when vertices are removed.

Example 6. Figure 5 shows the NSFs computed at the tree decomposition nodes of our
running example. Compared to Figure 3, here our algorithm optimizations were taken
into account. For instance, due to immediate evaluation of the innermost quantifier, the
sets at level three only contain one BDD. Another example would be the NSF in n4,
where in the left branch the NSF containing BDD (e ∨ f) (cf. Figure 3) is removed
since its models are a superset of ⊥.
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4 Preliminary Experimental Analysis

We implemented our approach in a system called dynQBF. Internally an improved ver-
sion of HTDECOMP [12] for obtaining the tree decompositions (using the minimum
fill heuristic) and CUDD [29] for BDD management (using heuristic lazy sifting for
dynamic variable reordering) are used. Additionally, we implemented a variant called
BDD (naive), where the formula is not decomposed, but instead given to a single BDD
at once. This gives a hint of whether the overhead for constructing and traversing the
decomposition pay off. We compare the total runtime to DepQBF [20] (v. 5.0) and
RAReQS [16] (v. 1.1), which succeeded in the latest QBF competition [15]. Addition-
ally, we consider the BDD-based system EBDDRES [17] (v. 1.2), which originally was
designed as a SAT solver that provides resolution proofs. Unfortunately, we could not
include the BDD-based QBF solvers QBFBDD [4] and eBDD-QBF [23], as well as
the quantifier-tree based tool sKizzo [6], since, to the best of our knowledge, they are
not publicly available. Tests were performed on a single core of an Intel Xeon E5-2637
processor with 3.5GHz running Debian 8.3. Each run was limited to a runtime of 10
minutes (TO) and 16 GB of memory (MO).

2-QBF Instances. We used 200 publicly available 2-QBF (i.e., QBFs with a ∀∃ quan-
tifier prefix) competition instances2. Table 1 reports the number of solved instances.
DepQBF solved the most instances, closely followed by dynQBF, and BDD (naive).
EBDDRES is only available as 32-bit library, hence it is limited to roughly 4GB of
memory, which explains the high number of memouts. However, this system also re-
quires more time for solved instances compared to the better-performing systems. In-
terestingly, there are several instances that are uniquely solved by one of the compared
systems. This indicates that the solvers work particularly well for different types of in-
stances. dynQBF seems to handle satisfiable instances better than DepQBF, but unsat-
isfiability is oftentimes not detected within the time limit. One reason could be that the
intermediate unsatisfiability checks of dynQBF are less powerful than conflict-driven

2 Available at http://www.qbflib.org/TS2010/2QBF.tar.gz.



Table 1. 2-QBF: System comparison

System Solved SAT UNSAT Timeout Memout Uniquely solved
DepQBF 109 51 58 91 0 43
dynQBF 108 85 23 92 0 26
BDD (naive) 41 40 1 159 0 0
EBDDRES 34 34 0 0 166 2
RAReQS 32 24 8 168 0 5

Table 2. QBF Gallery 2014: System comparison

System Solved SAT UNSAT Timeout Memout Uniquely solved
DepQBF 103 48 55 169 4 42
RAReQS 83 36 47 193 0 22
dynQBF 21 6 15 250 5 8
EBDDRES 7 5 2 4 265 2
BDD (naive) 3 1 2 273 0 0

clause learning in DepQBF. Furthermore, the decomposition width of the instances is
important: All instances were decomposed within the time limit. For instances with a
(heuristically obtained) tree decomposition of width up to 50, dynQBF solved 54 out
of 55 instances, while DepQBF only solved 28 of these instances. This result is in line
with design of our algorithm, which directly tries to exploit this structural parameter.

QBF Gallery 2014. Here we considered the 276 instances3 of the latest QBF competi-
tion [15]. Table 2 shows the overall number of solved instances. Here, dynQBF is not
yet competitive, with only 21 solved instances. We were not able to decompose 27 out
of 276 instances within the time limit. On average, tree decompositions for instances
solved by dynQBF have a width of 55. These instances contain (on average) 3 quan-
tifiers and 4711 atoms and 16409 clauses. Furthermore, the data set contains a single
class of instances with only 2 quantifiers and an average width of 80, named “stmt*”.
dynQBF uniquely solved 7 out of 12 of these instances, which again indicates that our
approach is well-suited for instances of this form.

5 Discussion

Overall, while our early prototypical implementation is already quite promising for
2-QBF instances, future research will focus on how to handle more quantifier alterna-
tions. From the experimental evaluation we see that further unsatisfiability checking
strategies should be investigated. Most importantly, note that our system currently does
not implement any preprocessing at all. Besides standard approaches for variable and
clause elimination, width-reducing preprocessing seems to be worth investigating. Ad-
ditionally, problem-tailored tree decompositions can be developed, where, for instance,
clauses that are likely to be responsible for unsatisfiability of the instance appear to-
gether near the leaf nodes. Furthermore, we believe that variables with a high level
should be assigned to bags near the decomposition leaves.

3 Available at http://qbf.satisfiability.org/gallery/eval2012r2.tgz.



Besides deciding QSAT, enumerating solutions (in case the outermost quantifier
is existential) is also supported by our approach. Here, we do not split and abstract
away variables contained in the outermost quantifier block. Note, however, that the
BDD’s size is then no longer bounded by the width of the decomposition, but addition-
ally by the number of variables in the first quantifier block. At root node r, procedure
evaluateQ(r ,N ) is adapted to keep all variables of the first quantifier block. The re-
sulting NSF then contains exactly one BDD representing the solutions.

Our algorithm can also be used for prenex DNF QBF solving, where the input is
provided in disjunctive normal form (DNF). Here, the hypergraph is constructed by con-
sidering the terms in the DNF, and dual to introduced clauses for CNF-based solving,
introduced terms are added to the BDDs by disjunction. Similar to the evaluateQ(n,N)
procedure, we check for satisfiability of the DNF QBF during the bottom-up traversal.

Since BDDs support arbitrary Boolean formulae, they are well suited for non-CNF
instances. Additionally, our data structure can be extended to reflect the structure of
a non-prenex QBF, which takes the nestings of quantifiers in the QBF into account.
Here, an NSF no longer contains NSFs of same depth, but the depth is determined by
the different nestings of quantifiers in the QBF. Here, the hypergraph is constructed
by considering the outermost subformulae that are connected via conjunction (or dis-
junction). As long as the QBF consists of reasonably many such subformulae, our tree
decomposition-based approach could pay off, without introducing much overhead com-
pared to solving the respective PCNF QBF instance. Additionally, we note that such
non-prenex non-CNF QBFs potentially reflect the structure of the original problem,
which can get lost during the translation to the prenex CNF format.

6 Conclusion

In this work, we have presented the first QBF solver that relies on the method of de-
composition and dynamic programming, thus taking structural properties of the instance
explicitly into account. Initial experiments showed the potential of this method for ∀∃-
QBFs, revealing that this method appears to be well suited for particular classes of
QBFs that are hard to solve for other systems. This is in line with observations for
SAT solving, where resolution-based solving can outperform search (DPLL-like) solv-
ing for instances of small width [25]. However, for formulas with more alternations and
higher width, further improvements are necessary to be competitive with state-of-the-
art solvers. One explanation for the rather poor performance of our method on more
involved formulas is that we have not considered any analysis of quantifier dependen-
cies in our algorithm yet. Thus, incorporating information about such dependencies to
reduce the size of our data structures is on top of our agenda for future work. On the
other hand, since our method is in principle not restricted to normal forms, we also
plan to extend our prototype to work with non-prenex non-CNF formulas. Finally, we
still need a better understanding of the interplay between different variable orderings in
the BDDs and the shape of the used decomposition. Since good variable orderings are
crucial to keep the size of the BDDs low, we expect that such insights can also lead to
significant improvements on certain instances.
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