
Effective NL Paraphrasing of Ontologies on the
Semantic Web

Daniel Hewlett1, Aditya Kalyanpur2, Vladimir Kolovski2,
Christian Halaschek-Wiener2

1hewlett@umd.edu 2{aditya, kolovski, halasche} @cs.umd.edu

Dept. of Computer Science,
University of Maryland,
College Park MD 20742

Abstract. In this paper, we present an algorithm that provides natural
language (NL) paraphrases for OWL Ontologies on the Semantic Web.
Our goal is to ensure both fluency (readability) and accuracy of the out-
put, in terms of preserving the meaning conveyed by its description logic
formalism. The approach described is a generic domain-independent one,
and is completely automated. We describe details about the algorithm
and follow it up with a subjective evaluation (pilot study) of our ap-
proach using real world ontologies comparing it with current tools that
provide similar functionality.

1 Motivation and Goals

With the advent of OWL, and its subset OWL-DL, semantic web content
is backed by a precisely-defined Description Logic (DL). This property
means that the meaning of semantic web content will always be clear and
potentially useful to an intelligent agent, or reasoner-equipped software
application. However, concept definitions (OWL Classes) are specified
in the language of logic, requiring humans to understand this logical
language in order to decipher the meaning of concepts. For end users of
semantic web enabled applications, this may pose a usability problem
in many important circumstances, effectively creating a barrier for entry
into the semantic web.
To remove this barrier, we have designed and implemented a procedure
for generating near-Natural Language (NL) paraphrases (in English) of
OWL concept definitions that preserve the semantics of the DL descrip-
tion. These paraphrases can be presented to the user either in addition to
or instead of the logical class definitions. By presenting the class names
and English definitions, designers can keep users in an environment of
entirely natural language-based interaction, while not losing the semantic
rigor and precision that OWL provides.
For a procedure such as ours to be widely useful, it has to be not only
robust but also domain-independent, able to work with a large number
of the concepts and ontologies available. A domain-independent solution
is desirable because it can immediately make use of the numerous OWL



2

ontologies that already exist, modeling everything from clinical and en-
vironmental information (e.g., NCI and JPL) to personal interests and
relationships (e.g., FOAF). A domain-specific procedure, however, will
need to be re-tuned to each domain or ontology, greatly increasing the
amount of work on the part of ontology designers. Also, distributing
and integrating the extra domain-specific information required by such
programs would add a layer of data not included in standard OWL.
Our approach fulfills all of these criteria. First, because we use only
the names of properties and classes, which are already present in the
OWL ontology, we do not require extensions to the ontology or additional
information sources. This makes our approach valid for any ontology
where the classes and properties are named appropriately. Also, the most
sophisticated NL processing tool our approach utilizes is a part-of-speech
(POS) tagger, which is a fast and simple application. Slightly better
results could possibly be generated using a richer set of NL abilities,
such as conjugation of verb forms, grammaticality judgments, parsing,
etc., but such an application would be much less efficient.

2 Related Work: Current State of the Art

As discussed earlier, our aim is to devise an algorithm for generating NL
explanations of a conceptual term defined in OWL. We intend to build
upon and extend the results of previous efforts in this area, which are
briefly discussed here.
An excellent example of the instructional use of NL paraphrases for un-
derstanding OWL Concepts is described in [5]. We take inspiration from
this work and attempt to automatically generate NL paraphrases such
as the ones illustrated in their paper. Also note that at the time of
writing this paper, the authors know of no implementation that has
achieved this. The Class Description Display plugin (http://www.co-
ode.org/downloads/cdc/) mentioned in their paper works with the Pro-
tege OWL plugin and provides simple quasi-NL descriptions that resem-
ble OWL Abstract Syntax (http://www.w3.org/TR/owl-semantics/). We
note that, in general, the OWL AS while a step above RDF/XML in
terms of readability is still very complex for novice end users (for an
small example of this, see Figure 1).
In [2], a technique for mapping elementary semantic expressions to corre-
sponding NL representations is presented. In their approach, the authors
apply multiple sequence alignment techniques to a semantic expression
along with corresponding alternative verbalizations. This then produces
a more expressive and accurate single dictionary entry. Our approach
differs in that we do not assume the verbalizations. We are actually gen-
erating the verbalizations algorithmically from the semantic expression
itself.
In [3], a subset of English is introduced called Attempto Controlled Eng-
lish. ACE is translated unambiguously into first-order logic and thus can
be used as a formal notation. Even though ACE seems to be a NL, it
is actually a formal language with the semantics of First Order Logic
(FOL). In comparison, our tool converts OWL classes, which are based



3

on a decidable subset of FOL called Description Logics, into a NL de-
scription.
[6] describes an XML-based NL generation for RDF and DAML+OIL,
which are two representation languages that are less expressive than
OWL. In this work, a pipeline of XSLT transformations implements the
sequence of processing stages in the orthodox pipeline architecture for
NL generation. The generator uses predefined XSLT text plan templates
for specific ontologies, following a domain-specific approach of shallow
generation. However, it remains to be seen whether this approach works
efficiently for more complex OWL ontologies.

3 Design

Our approach takes advantage of the standard naming conventions asso-
ciated with OWL classes and properties, and uses the semantics of Eng-
lish constructions to convey clearly the semantic constraints imposed by
OWL concept definitions. The first step in the design is to generate a tree
corresponding to the relations between the class and other entities. While
we decided to use the visitor design pattern for our implementation, we
chose to build this parse tree rather than directly render NL information
inside each visitor node (method). Creating this tree gives us additional
flexibility in our approach since we are free to alter it (post-process) in
any way deemed necessary (for an example, see Figure 1).

Fig. 1. NL Parse Tree for OWL Class MaleStudentWith3Daughters

3.1 Properties

Properties relate one OWL individual to another. A survey of property
names from several major ontologies reveals that, while properties could
theoretically be named with any arbitrary words, their names can almost
always be parsed into one of a small number of simple phrase structures.
The table below lists these phrase structure categories, together with



4

representative property names, and the expanded NL forms generated
from each propery name.

1. (has) NP
– Examples: email, hasColor
– Expansions: X has a color Y
– Alternate (if Y is an AdjP): X has Y color

2. V
– Example: knows
– Expansion: X knows Y

3. (is) NP P
– Examples: brotherOf, isBrotherOf
– Expansion: X is a brother of Y

4. (is) VP P
– Examples: producedBy, isMadeFrom
– Expansions: X is produced by Y, X is made from Y

5. VP NP
– Example: producesWine
– Expansion: X produces a wine Y
– Alternate (if Y is an AdjP): X produces a Y wine

6. is NP
– Example: isMetal
– Expansion: X is a metal
– Alternate (boolean value is false): X is not a metal

7. (is) AdjP
– Example: isHardWorking
– Expansion: X is hard working
– Alternate (boolean value is false): X is not hard working

Using a part-of-speech (POS) tagger, the program can automatically de-
tect which of the above categories the property belongs to, and generate
the corresponding grammatical NL paraphrase.
Unfortunately, ambiguities may arise when the set of tags is returned,
because lexical items in English do not always have a unique categoriza-
tion. For instance, ’stop’ can be both a verb and a noun, and there may
not be enough contextual information in the property name to determine
its part of speech. While not all ambiguities can be resolved, there are
some general heuristics that can be used. The most common ambiguous
tag, for example, arose from words such as ’likes’, which is both the 3rd
person present tense of the verb ’to like’ (’John likes Mary’) and also the
plural of the noun ’like’ (’ all of his likes and dislikes’). In these cases, we
resolve the ambiguity by giving priority to the verbal form, since none
of the ontologies studied ever used a plural noun as a property name.

3.2 Classes

An OWL class represents a set or collection of individuals. OWL classes
may have restrictions on the relations their members may participate in,
and what the targets of these relations may be. Also, OWL classes stand
in relations to one another, such as subsumption, equivalency, and dis-
jointness. To describe an OWL class, our approach presents the necessary



5

and sufficient conditions to be a member of the class. For example, for the
class Student v ∃enrolledIn.Course, an individual must stand in the
enrolledIn relation to some member of the class Course. We paraphrase
this condition as follows:

A Student is enrolled in a Course.

When a domain is specified for a property, we can use this to provide
extra information in the paraphrase. The following is the same example
as above, but with the domain of enrolledIn specified as Person. Since
members of the class Student must now also belong to the class Person,
the following is a valid NL paraphrase:

A Student is a Person that is enrolled in a Course.

This method works exactly the same for the hasValue construct. There
is no ambiguity, however, because the objects of the hasValue restriction
are always individuals, so they will not be prefixed with ’a’.

To capture the semantics of an owl:allValues restriction, we use a con-
ditional construction. AllValues does not imply the existence of any ac-
tual relationships, but rather puts conditions on any relationships that
might exist. Here we use POS recognition to generate a grammatically
acceptable conditional sentence. If the property name does not contain
an NP, the conditional sentence is generated as follows:

If a Giraffe eats something, then that thing is a Leaf.

In this sentence, the indefinite NP’s ’something’ and ’thing’ are used to
represent the target of the relation ’eats’, since no information is given in
the property name about the target. However, many properties contain
an NP target in their names, which can be used to replace the indefinite
NP’s:

If a BlandFishCourse has a drink, then that drink has Delicate

flavor.

Note that the approach is relatively straightforward for constructs such
as owl:intersectionOf (using and), owl:unionOf or owl:oneOf (using
either...or), and for cardinality restrictions, using phrases such as at least
m (≥ m), at most n (≤ n) and between m and n (≥ m,≤ n)

3.3 Procedure

After generating the parse tree, there are several steps in generating the
NL output. The first is a pre-processing step where the tree is modified to
eliminate nodes containing Thing. This is necessary because the original
concept definitions contain many implicit references to Thing, such as
in nested restrictions. In most cases, these can be replaced either by
merging with a sister node containing a named class, or by promoting a
class that the Thing node is related to by an ’is-a’ relation. Both of these
operations result in a tree that is logically equivalent to the original tree,
but contains less redundancy, and fewer nodes in general, resulting in a
simpler NL output.

Next, a recursive visitor begins at the root node (the concept to be de-
fined), processes it, and then visits each of its successors. The processing
of a node begins by removing all immediate all-values relations. These
relations (restrictions in the logic) are handled separately because they



6

require a special sentence structure, meaning they always require a sep-
arate sentence or bullet. Next, the links out of the node are examined
to see if any of them can be combined and handled as a single larger
link. One example of this is min-cardinality and max-cardinality, which
are combined using the ’between’ keyword. After this step, the remain-
ing relations can (generally) be handled within the same sentence, so the
visitor can traverse them without extra processing. It will print the name
of the current node, and then follow all the relations from the current
node to its successors. The property names are expanded when the tree
is constructed, so they can be treated opaquely for the remainder of the
procedure.

3.4 NL Fluency and Readability

In general, we aimed to generate full sentences of English whenever possi-
ble. However, after evaluating our initial prototype designs it was realized
that rendering complex concepts entirely in NL results in very complex,
difficult to understand sentences. This complexity arises from the combi-
nation of multiple types of restrictions. For example, the sentence below
(part of the definition of ’Anjou’ in the wine ontology) is a grammatical
and understandable sentence of English:
An Anjou is a Wine that has Delicate flavor, Off Dry sugar, Rose

color and Light body.

We found that, in some cases, using a bulleted, nested list format for
such complex sets of conditions was much clearer. For example, part of
the definition of ’Beaujolais’ from the wine ontology is given below:
A Beaujolais is a Wine that:

-- is made from at most 1 grape, which is Gamay Grape

-- has Delicate flavor

-- has Dry sugar

-- has Red color

-- has Light body

More complicated generation methods exist that would likely improve the
quality of text output, however many of these require knowledge of the
ontology domain (or some other knowledge, such as commonsense world
knowledge) that we deliberately did not build into the system, to make
it completely generic and efficient. The way we have constructed our
bulleting system, for example, does not require the use of pronouns, so
the capability to determine which pronouns to use (he/she/it/they/etc.)
is not needed. This capability could be designed, but it would almost
certainly rely on some domain knowledge.

4 User Evaluation

We performed a pilot user survey to evaluate the output of our pro-
gram. The goal was to gauge how subjects considered the output of our
program relative to that of Protege1 (3.1 with OWL plugin build 284)

1 http://protege.stanford.edu



7

and OntoExpl2. We chose the latter two because they have generic NL
generation systems for OWL. Ten subjects were chosen in all, who were
individuals that did not have a background in the semantic web, nor a
familiarity with the description logic underlying OWL. The procedure
was as follows:

We gathered a small set (5) of classes from ontologies publicly available
on the web: Wine3, mad cow4, and Pizza5. We chose a set of classes that
both represent commonplace concepts and cover most of the construc-
tors available in OWL-DL. Since none of the concepts used required ex-
pert knowledge, users would be able to recognize whether the definitions
seemed correct. We presented each subject with three NL definitions of
the same concept, and asked them to choose the NL description they
preferred based on correctness of the definition, readability, and clarity.

It was necessary to present the user with only one set of descriptions (i.e.,
a single trial per user), because each of the programs has a distinct and
recognizable style of output, which would allow the user to potentially
recognize their favorite algorithm from the previous trial, and simply
choose it again, defeating the purpose of multiple trials. All definitions
were copied into a standard text format, and presented separately from
any of the tools (which were never seen by subjects) to prevent any such
recognition.

In this small pilot study, all the users chose the output of our program
over that of the other two. In informal interviews, users were impressed
by the combination of the fluency (readability) of our output and the
clarity with which the logical meaning behind the class definition was
presented. Though this study is not extensive enough to be conclusive,
it indicates that the approach we have pursued can be effective and
appealing to users.

5 Open Issues

1. A key issue for our NL generation is the trade-off between readability
and accuracy. To maintain a high level of accuracy, one could gener-
ate NL sentences of entity definitions following the model-theoretic
semantics of OWL, such as representing C v ∃R.D as ‘For each in-
stance x of class C, there exists a relation R(x,y) such that y is an
instance of class D’. However in such cases, overall readability of the
sentence is greatly hampered. The choice of preserving readability
vs. accuracy depends largely on end-user background/expertise and
the application context.

2. Currently, the only support in OWL for providing NL paraphrases of
entity definitions is via the annotation properties such as rdfs:label
and rdfs:comment. Certain NL-specific tags could be added to OWL

2 http://www.cs.concordia.ca/ying lu/
3 http://www.w3.org/2001/sw/WebOnt/guide-src/wine
4 http://www.cs.man.ac.uk/h̃orrocks/OWL/Ontologies/mad cows.owl
5 http://www.co-ode.org/ontologies/pizza/pizza 20041007.owl



8

(or special-purpose annotation properties be used) in order to con-
struct NL paraphrases from definitions more easily without intro-
ducing too much overhead for the ontology author. For example, if
authors could specify which POS the entity ID belongs to (noun,
verb, adjective) or an ordering format for the NL clause (in terms of
POS or otherwise), auto-generation of phrases could be done more
easily.

3. The presence of hyperlinks in the NL paraphrases can be immensely
useful for navigating inter-related class definitions. However, given
that entity names (IDs) get split across the NL sentence, positioning
hyperlinks in the sentence is not easy. In such cases, tool-tips can
be used to provide correlation between hyperlinks and the original
entity references.

4. Another issue worth exploring is leveraging the power of DL rea-
soners in NL generation. For example, to make the sentence clearer,
we are using the domain of the property as the subject in our gen-
erated phrases. Using techniques like this we managed to greatly
improve the readability and to present much clearer meaning in our
NL description. Additionally, an OWL-DL reasoner might infer new
information about the class in question which will make the NL de-
scription even more informative.

5. Our approach takes advantage of the specific structure of construc-
tions in English, such as the implication for all-values, as well as
word orders specific to English. Thus, new systems would have to be
built to support other languages. Perhaps more serious, our system
relies on conventions for naming classes and properties that may not
be found in all languages (for example, not all languages use a verb
like ’has’ to indicate possession or attribute specification). Thus, any
parameterization of this system will need to be very sophisticated to
accommodate the scope of natural languages.

6 Applications

1. Semantic Annotation: Recently, numerous tools for semantically an-
notating text, images, video etc have been developed [1]. Most of
these tools use ontologies for driving the annotation process, allow-
ing users to link their data with entities in the ontology. In order
to support accurate and speedy annotation, NL description of the
classes can be provided in order to explain the meaning of the con-
cept and to point out its correct usage.

2. Web-Service Advertising : OWL-S based semantic web-services ad-
vertise themselves as instances of the service-profile. Rendering NL
paraphrases of these service-profile instances can make web-service
descriptions more accessible to end-users.

3. Web-Policy (/Rules) Description: In [4], the authors showed that
Web-Service policies can be represented in OWL (using syntactic-
sugar rules). However translating the WS-Policy operators (wsp:All,
wsp:ExactlyOne) in OWL produced some non-trivial, complex class
expressions. Policy developers new to OWL might find it difficult to



9

specify constraints and capabilities of their web services when work-
ing with these class expressions. NL paraphrases of the policies will
make their meaning more accessible, thereby reducing the possiblity
of error, without losing the intended semantics.

7 Conclusion and Future Work

We have presented an algorithm that generates concise, accurate NL
paraphrases for OWL Concepts based on a variety of NLP techniques
and implemented it in an ontology engineering toolkit, SWOOP. We have
conducted a promising preliminary user evaluation, and plan to conduct
formal user studies to fully evaluate the contribution of our work.

References

1. Photostuff image annotation tool. http://www.mindswap.org/2003/PhotoStuff/.
2. I. Androutsopoulos, S. Kallonis, and V. Karkaletsis. Exploiting OWL

ontologies in the multilingual generation of object descriptions Pro-
ceedings of the 10th European Workshop on Natural Language Gen-
eration (ENLG 2005), 2005.

3. R. Barzilay and L. Lee. Bootstrapping lexical choice via multiple-
sequence alignment. Proceedings of EMNLP, 2002.

4. K. Bontcheva and Y. Wilks. Automatic report generation from on-
tologies: The MIAKT approach. NLDB 2004.

5. N. Fuchs, U. Schwertel, and S. Torge. Controlled natural language
can replace first-order logic. 14th IEEE International Conference on
Automated Software Engineering, Cocoa Beach, Florida, Oct.

6. V. Kolovski, B. Parsia, Y. Katz, and J. Hendler. Representing web
service policies in owl-dl. In ISWC, 2005.

7. A. Rector, N. Drummond, M. Horridge, J. Rogers, H. Knublauch,
R. Stevens, H. Wang, and C. Wroe. Owl pizzas: Common errors &
common patterns from practical experience of teaching owl-dl. In
European Knowledge Acquisition Workshop (EKAW), 2004.

8. G. Wilcock. Talking owls: Towards an ontology verbalizer. Proceed-
ings of the 2nd International Semantic Web Conference (ISWC), Oct.
2003.


