
Improved Protocols for Luminous
Asynchronous Robots?

Mattia D’Emidio1, Gabriele Di Stefano2, Daniele Frigioni2, Alfredo Navarra3

1 Gran Sasso Science Institute (GSSI)
Viale Francesco Crispi 7, I–67100, L’Aquila, Italy.

mattia.demidio@gssi.infn.it
2 Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica,
Università degli Studi dell’Aquila, Via Vetoio, I–67100 L’Aquila, Italy.

{gabriele.distefano,daniele.frigioni}@univaq.it
3 Dipartimento di Matematica e Informatica, University of Perugia,

Via Vanvitelli 1, I–06123, Perugia, Italy.
alfredo.navarra@unipg.it

Abstract. The distributed setting of computational mobile entities,
called robots, that have to perform tasks without global coordination
has been extensively studied in the literature. A well-known scenario
is that in which robots operate in Look-Compute-Move (LCM) cycles.
LCM cycles might be subject to different temporal constraints dictated
by the considered schedule. The classic models for the activation and
synchronization of mobile robots are the well-known fully-synchronous,
semi-synchronous, and asynchronous models.
In this paper, we concentrate on the weakest asynchronous model, and
propose improved and general protocols to solve tasks when the robots
are endowed with lights, i.e. they are luminous.

1 Introduction

The distributed setting of computational mobile robots that have to perform tasks
without global coordination has been extensively studied in the literature. A well-
known scenario is that in which robots operate in Look-Compute-Move (LCM)
cycles (see [1,2,11,12] and references therein). During each cycle, a robot acquires
? The work has been partially supported by the European project “Geospatial based
Environment for Optimisation Systems Addressing Fire Emergencies” (GEO-SAFE),
contract no. H2020-691161, and by the Italian project “RISE: un nuovo framework
distribuito per data collection, monitoraggio e comunicazioni in contesti di emergency
response”, Fondazione Cassa Risparmio Perugia, code 2016.0104.021.

Copyright c© by the paper’s authors. Copying permitted for private and academic pur-
poses.
V. Biló, A. Caruso (Eds.): ICTCS 2016, Proceedings of the 17th Italian Conference on
Theoretical Computer Science, 73100 Lecce, Italy, September 7–9 2016, pp. 136–148
published in CEUR Workshop Proceedins Vol-1720 at http://ceur-ws.org/Vol-1720

http://ceur-ws.org/Vol-1720

Improved Protocols for Luminous Asynchronous Robots 137

a snapshot of the surrounding environment (Look phase), then executes an appro-
priate algorithm by using the obtained snapshot as input (Compute phase), and
finally moves toward a desired destination, if any (Move phase). Look-Compute-
Move cycles might be subject to different temporal constraints dictated by the
considered schedule. The classic models for the activation and synchronization of
mobile robots are the well-known fully-synchronous (fsync), semi-synchronous
(ssync), and asynchronous (async) models (see, e.g., [3,5,8]).

– Fully-synchronous (fsync): The activation phase (i.e. the execution of
an LCM cycle) of all robots can be logically divided into global rounds. In
each round all the robots are activated, obtain the same snapshot of the
environment, compute and perform their move. Notice that, this assumption
is computationally equivalent to a fully synchronized system in which robots
are activated simultaneously and all operations happen instantaneously.

– Semi-synchronous (ssync): It coincides with the fsync model, with
the only difference that not all robots are necessarily activated in each round.

– Asynchronous (async): The robots are activated independently, and the
duration of each Compute, Move and inactivity phase is finite but unpre-
dictable. As a result, robots do not have a common notion of time. Moreover,
they can be seen while moving, and computations can be made based on
obsolete information about positions.

Recently, a new model has been introduced by Das et al. in [4], extending
the classic ones. In detail, given a modelM ∈ {fsync, ssync, async}, the
authors define modelMc, where each robot operating inM is equipped with a
light that is visible to itself and to the other robots during the Look phase. The
light associated with a robot can generate c different colors (for some constant
integer c > 0), and can be updated by a robot during its Compute phase. The
light is assumed to be persistent, i.e. despite robots can be oblivious, their lights
are not automatically reset at the end of a LCM-cycle. Light-enhanced robots,
introduced for the first time in [9,13], are usually referred as luminous robots
(see, e.g., [10]). Note that, depending on the considered scenario, a robot might
have visibility of the lights of either all other robots or just of a subset of them.

A first comprehensive evaluation of the computational power of robots oper-
ating in the LCM model and moving within the Euclidean plane, under different
levels of synchronization, has been proposed in [4]. In detail, the authors provide
a series of results that prove relations between classic models and variations of
them, including the possibility that robots are luminous.

In [6] a characterization of the computational power of robots moving on
graphs has been proposed. In particular, the authors first show relations among
the three classic activation and synchronization models; second, they compare
the models where robots are endowed with lights against the models without
lights; third, they highlight the relations among the different models concerning
luminous robots; finally, they provide a detailed comparison of the proposed
results with the case of robots moving in the Euclidean plane.

138 Mattia D’Emidio, Gabriele Di Stefano, Daniele Frigioni, Alfredo Navarra

1.1 Our Contribution

In this paper, we extend the work done in [6] and [7] as follows. First, we propose
a reviewed and improved version of the proof given in [7] to show that fsync is
not more powerful than asyncO(1). To this aim, we introduce a new algorithm
which uses less colors to solve the same problem considered in the proof, thus
showing it is solvable in async3 rather than in async4. Second, we generalize
the newly introduced algorithm into a general algorithmic framework that for
any k > 2 allows (any number of) robots operating in asynck to address all
tasks within class of basic formation problems having k states (BFPk from now
on). In such problems, described for the first time in [6], the focus is on allowing
robots to achieve specific sequences of k placements regardless of the movements
they perform to reach each disposal. Robots might move on graphs or on the
Euclidean plane. Finally, we show, by means of a specific distributed task, that
there is a non-trivial subset of problems in BFPk for which using robots in
async3 instead of asynck suffice to reach the corresponding goal.

1.2 Structure of the Paper

The paper is organized as follows. In Section 2, we provide the necessary notation
for the considered problems. In Section 3, we give the improved version of the
algorithm given in [7], while in Section 4 we introduce its generalization. In
Section 5, we discuss on how async3 robots can be used to solve all tasks
within a non-trivial subset of BFPk. Finally, Section 6 concludes the paper.

2 Preliminaries

We consider a system composed of mobile entities, called robots, that operate in
LCM-cycles. In particular, each robot is modeled as an independent computa-
tional unit, capable of performing local computations. The robots are placed in
a spatial environment which is assumed to be either the Euclidean plane or an
undirected graph G = (V,E), i.e. robots are placed on the nodes of the graph.
Each robot has its own local perception of the surrounding environment, which
means it can detect all other robots either as points in the plane with respect to
its own coordinate system or perceiving a graph isomorphic to G and understand
whether a node is occupied by a robot or not. Each robot is equipped with sensing
capabilities that return a snapshot of the relative positions of all other robots
with respect to its location.

In the remaining of the paper, we assume that robots are anonymous and
identical, i.e. they are indistinguishable by their appearance, and execute the same
algorithm. Unless differently specified, robots are assumed to be oblivious, i.e. they
have no memory. Moreover, we consider robots acting without a central control,
i.e. they are assumed to be autonomous and not able to directly communicate
information (e.g. by a wireless interface) with other robots, i.e. they are silent.
Each robot is endowed with motor capabilities and can freely move. However,

Improved Protocols for Luminous Asynchronous Robots 139

when moving on graphs, the movement along one edge is considered instantaneous,
so that each time a robot perceives the snapshot of the current configuration, it
sees all other robots always on the nodes of the graph. We will specify different
assumptions if required by the context.

At any point in time, a robot is either active or inactive. All robots are
initially inactive, i.e. they are idle. When active, a robot executes an LCM-cycle
by performing the following three operations in sequence, each of them associated
with a different state:

– Look: The robot observes the environment. The result of this phase is a
snapshot of the positions of all robots with respect to its own perception.

– Compute: The robot executes its own algorithm, using the data sensed in
the Look phase as input. The result of this phase is a target node among the
neighbors of the node in which the robot currently resides (at most one edge
per cycle can be traversed by a robot).

– Move: The robot moves toward the computed target. If the target is the
current position, then the robot stays still, i.e. it performs what is called a
null movement.

The amount of time to complete a full LCM-cycle is assumed to be finite but
unpredictable.

3 Algorithm 3-ForthBack

In this section, we propose a reviewed and improved version of the proof given
in [7] to show that fsync is not more powerful than asyncO(1). To this aim,
we make use of the following task for the proof.

Forth and Back (FB)

Input: Two anonymous robots placed at two distinct internal nodes of a
path P at some distance d (in terms of number of edges).

Solution: A distributed algorithm that ensures the two robots to alternate
their distance between d and d+ 2.

In [6] it has been already shown that the FB problem cannot be solved in
fsync. They also show that FB can be solved in asyncO(1), by an algorithm
(namely ForthBack) which requires each robot to be equipped with a light
that can assume four colors. Here, we propose an enhanced algorithm, named
Algorithm 3-ForthBack (see Algorithm 1), which is able to solve the problem
even if the robots are endowed with a light that can generate only three colors.

The new strategy has its own practical interest since it improves over the
algorithm given in [6]. In particular, it reduces the number of colors needed
for solving the problem, which can be easily imagined as a proxy for the use
of power/communication resources. In addition, the intuition behind its design
opens new perspectives for devising general strategies dedicated to robots oper-
ating in asynck. We will discuss in the next sections on such aspect. In details,

140 Mattia D’Emidio, Gabriele Di Stefano, Daniele Frigioni, Alfredo Navarra

Rstart G

Y

R ∨ G
Y

G ∨ Y

R

Y ∨ R

G

Fig. 1. Finite state machine associated to algorithm 3-ForthBack.

we will show that the technique underlying Algorithm 3-ForthBack can
be generalized into an algorithmic framework that allows asynck robots to
address a class of problems of significant interest.

We now proceed with the description of the new algorithm. The three colors
used by Algorithm 3-ForthBack are Red (R), Green (G), and Yellow
(Y), with the following meanings:

– Red indicates that the robot is ready to move for the next step and the
previous distance must be increased;

– Green indicates that the robot is ready to move for the next step and the
previous distance must be decreased;

– Yellow indicates that the robot has moved to decrease the previous dis-
tance and it is ready for the next step.

In what follows, we denote by L[r] the light associated with a given robot
r. At the beginning, both robots start with the lights set to Red. As we will
see, Algorithm 3-ForthBack ensures that, whenever one of the robots has
the light set to Red (to Green, respectively), the other robot will eventually
turn its light to Red (to Green, respectively), i.e. they are always able to be
synchronized at some point. In other words, Algorithm 3-ForthBack solves
FB in async3 by exploiting the parity encoding of the current step by means
of the light. We describe the algorithm as it is executed by a generic given robot
r. For the sake of clarity, we also summarize the behavior of each robot via a
finite state machine (see Figure 1), where the label within a node represents
the color of the light L[r] of the executing robot, while the label above an edge
represents the condition on the light L[r′] of the other robot r′ that triggers the
transition to occur.

Theorem 1. Algorithm 3-ForthBack correctly solves the FB problem in
async3 .

Proof. First of all, notice that, if d is the initial distance between the two robots
(when both lights are Red), then d + 2 defines the final placement of the two
robots after the first step. Therefore, in order to reach the requested configuration,

Improved Protocols for Luminous Asynchronous Robots 141

Algorithm 1: Algorithm 3-ForthBack performed by a generic robot
r to solve FB in async3.

1 Let r′ be the other robot;
2 Let δ be my distance from r′;
3 if L[r] = Red then
4 if L[r′] = Red ∨ L[r′] = Green then
5 L[r] := Green;
6 Let v be the neighbor at distance δ + 1 from r′;
7 The new position is v;
8 Exit;
9 if L[r] = Green then

10 if L[r′] = Green ∨ L[r′] = Yellow then
11 L[r] := Yellow;
12 Let v be the neighbor at distance δ − 1 from r′;
13 The new position is v;
14 Exit;
15 if L[r] = Yellow then
16 if L[r′] = Yellow ∨ L[r′] = Red then
17 L[r] := Red;
18 Exit;

when a robot has to move to increase its distance (i.e. its light is Red), if the
current distance is d′, then the target distance has to be set to d′+1 (see Line 7),
since both robots contribute of one edge.

Similarly, if d+ 2 is the distance between the two robots after an increasing
step, then d defines the placement of the two robots after the current step. Hence,
in order to reach the requested configuration, when a robot has to move to
decrease its distance (i.e. its light is Green), if the current distance is d′, then
the target distance has to be set to d′ − 1 (see Line 13), since both robots
contribute of one edge.

Now, if L[r] is either Red or Green, then r is ready to accomplish a
movement, which must either increase the distance of the previous placement
(L[r] = Red case) or decrease it (L[r] = Green case). The robot r can decide
which is the case by looking at the light of the other robot.

On the one hand, if L[r] = Red and L[r′] is either Red or Green (see
Line 4), then r must move away from r′ of one edge, as robot r′ is either ready
to move to increase the distance (L[r′] = Red) or is ready to move to decrease
the distance(L[r′] = Green). On the other hand, if L[r] = Green and L[r′]
is either Green or Yellow (see Line 10), then r must move closer to r′
of one edge since robot r′ is either ready to move to decrease the distance
(L[r′] = Green) or has already accomplished a movement that has decreased
it (L[r′] = Yellow).

If L[r] is Yellow and L[r′] is either Red or Yellow, then r can conclude
that r′ is either ready to move to increase the distance (L[r′] = Red) or has
already terminated a movement whose purpose was that of decreasing the distance

142 Mattia D’Emidio, Gabriele Di Stefano, Daniele Frigioni, Alfredo Navarra

(L[r′] = Yellow). Robot r, in this case, just switch its light to Red (see
Line 17). If r′ has performed the above step before r, i.e. L[r] = Yellow and
L[r′] is Green, then, r simply keeps L[r] to Yellow. ut

4 Generalizing Algorithm 3-ForthBack

In this section, we propose a general algorithmic paradigm that allows robots
operating in asynck, k > 2 to address a whole class of problems, namely the
basic formation problems BFPk.

BFPk problems can be informally defined as the class of problems where a
set of k static configurations have to be (possibly cyclically) reached, in order
to achieve the goal, regardless of the movements they perform to reach each
disposal (see [6] for a more thorough discussion). We remind that the class
of BFPk problems can be defined for robots moving on both graphs and the
Euclidean plane.

More formally, problems are in BFPk if and only if their dynamics can be
completely described by a finite state machine (o by any subset of it) with the
following characteristics:

– there are k distinct states;
– there exists a total (strict) ordering among the k states, i.e. for every i–th

state there exists a transition that brings the system from state i to a state
(i+ 1) mod k.

In other words, the problem asks the robots to change from a state to another
one in a sequential manner, according to some criteria. An example of finite state
machine of the above kind is reported in Figure 2, where label xi within a node
represents the i–the state in the ordering. Clearly the above class of problems
satisfies BFP1 ⊆ BFP2 ⊆ · · · ⊆ BFPk for any k.

Trivially, the FB problem, discussed in Section 3, belongs to BFP2, since
the robots have to cyclically oscillate between k = 2 distinct configurations, i.e.
those in which the robots are at distance d′+ 1 and d′− 1. However, to solve FB
we required 3 colors in order to synchronize the robots. Whereas, when k > 2
there is no need for an extra color.

Note that, problems in BFPk might be solvable in fsync or not. This
possibility depends on the capability of the robots of distinguishing, by only
observing the surrounding environment, two states that are adjacent in the
sequence (and therefore are connected by a transition in the finite state machine).
If robots are capable of doing so, it is easy to see that (any number of) fsync
robots can solve problems of BFPk in Θ(k) time steps by the following very
simple strategy. Starting from an initial state x0, at each synchronous time step,
all robots wake up and perceive the very same snapshot of the surrounding
environment. Then, given the state they perceived, say xi, they all check the
criterion associated to the arcs outgoing xi in the finite state machine (i.e. they
perform the compute phase) and, according to the result they perform the move
phase that either brings them into x(i+1) mod k or keeps them into xi. An example

Improved Protocols for Luminous Asynchronous Robots 143

x0start

x1 x2

x3

. . .xk−1

Fig. 2. Finite state machine associated to problems in BFPk.

of problem in BFPk that is not solvable in fsync is indeed problem FB, since
the knowledge obtained by the acquired snapshot is not enough to determine
whether the target distance has to be set to d′+1 or to d′−1 and hence to decide
the next state. On the contrary, an example of problem in BFPk that is solvable
in fsync, by the above strategy, is the so-called Pattern Series Chasing (PSC)
problem whose first description can be found in [7], and is reported below.

Pattern Series Chasing (PSC)

Input: An undirected and complete graph G with nodes labeled from 1 to
n. An array A of c patterns, for some integer constant c > 0, each
involving k < n nodes of G, such that A[i] 6= A[j], for every 0 ≤ i 6=
j < c. A set of k robots forming A[0] in G.

Solution:A distributed algorithm that ensures robots to form pattern A[(i+ 1)
mod c] after A[i mod c], i ∈ N.

Regarding FB, in the previous section we have shown that it can be solved
by two async3 robots by Algorithm 1. By following the intuition underlying
such algorithm, we now give a generalization of it that allows (any number of)
asynck robots to solve problems in BFPk for k > 2. The main idea behind the
algorithmic paradigm we are proposing is based on the fact that, when considering
BFPk problems, an implicit ordering can be provided by the lights of asynck
robots.

The strategy for solving any BFPk by asynck robots can be summarized as
follows (see Algorithm 2 for more details). Suppose we are given a generic problem
in BFPk and a set R = r1, r2, . . . , rn of n robots. We denote by L[rx] the color
assumed by the light of robot rx. We equip the robots with lights assuming
k colors with the following meaning: color coli indicates that the robot is in
state xi and it is ready to move to state x(i+1) mod k, and to accomplish the
associated (possibly null) move phase. Moreover, we assume that colors exhibit
a total (strict) ordering, i.e. for each color xi there exist two colors x(i±1) mod k

such that x(i−1) mod k < xi < x(i+1) mod k. To solve the problem is then enough

144 Mattia D’Emidio, Gabriele Di Stefano, Daniele Frigioni, Alfredo Navarra

Algorithm 2: Algorithmic paradigm that allows (any number of) asynck
robots to solve problems in BFPk, k > 2.

1 Let ri be the robot executing the algorithm;
2 if L[ri] = colxi then
3 foreach rj ∈ R : i 6= j do
4 if L[rj] < L[ri] then
5 Exit;
6 L[ri] := colx(i+1) mod k

;
7 Perform move phase of state x(i+1) mod k;
8 Exit;

to exploit the ordering of the colors to take coherent decisions about the state to
be reached. In particular, each robot ri performs its (possibly null) move phase
if and only if its current color L[ri] = colxi

is less or equal than the colors of
the lights of all other robots. If so, it also switches its light to colx(i+1) mod k

.
By the above discussion, the following result can be stated.

Theorem 2. asynck robots can solve any problem in BFPk, k > 2.

It is worth noticing that Algorithm 3-ForthBack, given in the Section 3,
can be easily derived by Algorithm 2 by considering the different move phases
associated to each of the two states of problem FB.

As a final remark, note that an algorithm for solving problem PSC by
asyncc robots, where c is the cardinality of the array A, can be derived as well
by Algorithm 2 by customizing each move phase according to the pattern to be
reached.

5 Further Applications of Algorithm 3-ForthBack

In this section, we show that there is a non-trivial category of problems in BFPk

for which something better than using asynck robots can be done. To this aim,
we first define the main characteristics of such category and show they can be
solved by weaker async3 robots. Consider again Algorithm 3-ForthBack
defined in Section 3, the three colors have been though to encode the static
configurations, but they can be used to simply encode an advancing in the
current computational process. This is not the case for the PSC problem as
shown in [7]. In order to better understand the intuition, we now consider a
variant of the classical patrolling problem, where three robots must infinitely
traverse a circle but ensuring some specific configurations where they are all idle.
It means that during the patrolling, robots must ensure some predefined static
configurations.

Given a circle C, let arc(x, y) be the smallest arc of C from x to y.

Improved Protocols for Luminous Asynchronous Robots 145

Patrolling With Stops (PWS)

Input: Three anonymous robots r1, r2 and r3 placed on a circle C with
center c, such that arc(r1, r2) = d, arc(r2, r3) = 2d, d < π

6 .
Solution: A distributed algorithm that ensures the three robots to patrol C

by forming a static configuration similar to C each time the angle α
in c defined by the initial position of r1, c and the current position
of r1 is p · π3 , for any integer p.

In PWS, we have considered six static configurations that must be reached
cyclically, by setting the angle α as a multiple of π3 . Clearly an arbitrary number
of configurations can be considered by reducing α. According to Theorem 2, we
know how to solve PWS in async6. We now show that an algorithm similar
to Algorithm 3-ForthBack can be defined to solve the PWS problem in
async3.
Theorem 3. There exists an algorithm in async3 that solves the PWS prob-
lem.
Proof. The proof proceeds by providing three subroutines of the same algorithm,
each one executed by a different robot, according to its role among r1, r2 and r3.
Although the three robots are anonymous, by looking to their relative positioning
and lights, they can always deduce who they are. As we are going to show, our
algorithm never changes the role of a robot. The meaning of the lights is the
same for all robots, that is:
– Red: ready to reach the new static configuration
– Green: moving to the computed target
– Yellow: target reached
The minimum arc of C containing all three robots is always divided into

two sub-arcs. The middle robot is always r2. Initially (when all robots assume
light Red), the closest robot to r2 is r1, while the other is r3. The proposed
algorithm makes r3 move always as first, increasing its distance from r2. This is
done by switching L[r3] to Green and evaluating the next position where a
static configuration must be guaranteed. Movements are always performed along
the circumference of C as the patrolling requires.

While L[r3] = Green, r1 and r2 do not move. Once L[r3] = Yellow,
r2 can start its movement toward the next position. Due to the adversary, each
time a robot moves toward a target position, it can reach it or it can be stopped
before. Nevertheless, our algorithm is designed so as the same robot will be the
unique one allowed to move until it reaches the desired destination, eventually.

Once both r2 and r3 have reached their current destinations and L[r2] =
L[r3] = Yellow, the last robot that has to move deduces it is r1.

Once all robots have reached their destinations, L[r1] = L[r2] = L[r3] =
Yellow and the configuration is static, that is a stop has been performed and
the next positioning can start. This is done first by switching all the lights to
Red, but in a sequential order, starting from r3, then r2 and finally r1. Then,
the whole process is repeated. ut

146 Mattia D’Emidio, Gabriele Di Stefano, Daniele Frigioni, Alfredo Navarra

Algorithm 3: Algorithm PWS {r1} performed by r1

1 Let x be the point on C between r1 and r2 such that |arc(x, r3)| = 3
2 |arc(r2, r3)|;

2 if (L[r] = Red ∧L[r2] = L[r3] = Yellow)∨ (L[r] = Green ∧ |arc(r, r3)| > x)
then

3 L[r] := Green;
4 The new position is x;
5 Exit;
6 if L[r] = Green then
7 L[r] := Yellow;
8 Exit;
9 if L[r] = Yellow ∧ L[r2] = L[r3] = Red then

10 L[r] := Red;
11 Exit;

Algorithm 4: Algorithm PWS {r2} performed by r3

1 Let x be the point on C between r2 and r3 such that
|arc(x, r3)| = 2

3

(
|arc(r1, r3)| − arcsin π

3

)
;

2 if (L[r] = Red ∧ L[r3] = Yellow) ∨ (L[r] = Green ∧ |arc(r, r3)| > x) then
3 L[r] := Green;
4 The new position is x;
5 Exit;
6 if L[r] = Green then
7 L[r] := Yellow;
8 Exit;
9 if L[r] = L[r1] = Yellow∧ = L[r3] = Red then

10 L[r] := Red;
11 Exit;

6 Conclusion

In this paper, we have considered the problem of devising protocols for luminous
asynchronous robots. In details, we have extended the work done in [6] and [7] in
three directions. We first have proposed a reviewed, improved version of the proof
given in [7] to show that fsync is not more powerful than asyncO(1). To do
so, we have introduced a new more efficient algorithm for solving the FB problem
that requires less colors to work with respect to to its previous counterpart of [7].
Apart from the desirable property of being optimized in terms of colors, the new
algorithm has driven us also to the design of its generalization that allows (any
number of) asynck robots to address any problem in BFPk, for any k > 2.
As a final contribution, we have shown that there exists a non-trivial subset of
problems in BFPk for which weaker async3 robots are powerful enough to
achieve the considered goal.

Improved Protocols for Luminous Asynchronous Robots 147

Algorithm 5: Algorithm PWS {r3} performed by r3

1 Let x be the point on C such that |arc(r1, x)| = 3|arc(r1, r2)|+ arcsin π
3 ;

2 if (L[r] = Green ∧ |arc(r1, r)| < |arc(r1, x)|) ∨ L[r] = L[r1] = L[r2] = Red
then

3 L[r] := Green;
4 The new position is x;
5 Exit;
6 if L[r] = Green then
7 L[r] := Yellow;
8 Exit;
9 if L[r] = L[r1] = L[r2] = Yellow then

10 L[r] := Red;
11 Exit;

References

1. A. Chatterjee, S. G. Chaudhuri, and K. Mukhopadhyaya. Gathering asynchronous
swarm robots under nonuniform limited visibility. In 11th International Conference
on Distributed Computing and Internet Technology (ICDCIT), volume 8956 of
Lecture Notes in Computer Science, pages 174–180. Springer, 2015.

2. S. Cicerone, G. Di Stefano, and A. Navarra. Minmax-distance gathering on given
meeting points. In 9th Int. Conference on Algorithms and Complexity (CIAC),
volume 9079 of Lecture Notes in Computer Science, pages 127–139. Springer, 2015.

3. G. D’Angelo, G. Di Stefano, and A. Navarra. Gathering on rings under the look-
compute-move model. Distributed Computing, 27(4):255–285, 2014.

4. S. Das, P. Flocchini, G. Prencipe, N. Santoro, and M. Yamashita. Autonomous
mobile robots with lights. Theoretical Computer Science, 609:171–184, 2016.

5. B. Degener, B. Kempkes, T. Langner, F. Meyer auf der Heide, P. Pietrzyk, and
R. Wattenhofer. A tight runtime bound for synchronous gathering of autonomous
robots with limited visibility. In 23rd ACM Symp. on Parallelism in algorithms
and architectures (SPAA), pages 139–148. ACM, 2011.

6. M. D’Emidio, D. Frigioni, and A. Navarra. Characterizing the computational power
of anonymous mobile robots. In 36th IEEE International Conference on Distributed
Computing Systems (ICDCS), pages 293–302, 2016.

7. M. D’Emidio, D. Frigioni, and A. Navarra. Synchronous robots vs asynchronous
lights-enhanced robots on graphs. In 16th Italian Conference on Theoretical Com-
puter Science (ICTCS), volume 322 of Electronic Notes in Theoretical Computer
Science, pages 169–180. Elsevier, 2016. doi:10.1016/j.entcs.2016.03.012.

8. S. Devismes, F. Petit, and S. Tixeuil. Optimal probabilistic ring exploration by
semi-synchronous oblivious robots. In 16th International Colloquium on Structural
Information and Communication Complexity (SIROCCO), volume 5869 of Lecture
Notes in Computer Science, pages 195–208, 2009.

9. A. Efrima and D. Peleg. Distributed models and algorithms for mobile robot
systems. In 33rd Conference on Current Trends in Theory and Practice of Computer
Science (SOFSEM), volume 4362 of Lecture Notes in Computer Science, pages 70–
87. Springer, 2007.

148 Mattia D’Emidio, Gabriele Di Stefano, Daniele Frigioni, Alfredo Navarra

10. P. Flocchini. Computations by luminous robots. In 14th International Conference
on Ad-hoc, Mobile, and Wireless Networks (ADHOC-NOW), volume 9143 of Lecture
Notes in Computer Science, pages 238–252. Springer, 2015.

11. P. Flocchini, G. Prencipe, and N. Santoro. Distributed computing by oblivious
mobile robots. Synthesis Lectures on Distributed Computing Theory, 3(2):1–185,
2012.

12. S. Kamei, A. Lamani, F. Ooshita, and S. Tixeuil. Gathering an even number
of robots in an odd ring without global multiplicity detection. In Mathematical
Foundations of Computer Science (MFCS), pages 542–553. Springer, 2012.

13. D. Peleg. Distributed coordination algorithms for mobile robot swarms: New
directions and challenges. In 7th International Workshop on Distributed Computing
(IWDC), volume 3741 of Lecture Notes in Computer Science, pages 1–12. Springer,
2005.

	Improved Protocols for Luminous Asynchronous Robots
	Introduction
	Our Contribution
	Structure of the Paper

	Preliminaries
	Algorithm 3-ForthBack
	Generalizing Algorithm 3-ForthBack
	Further Applications of Algorithm 3-ForthBack
	Conclusion

