
A semantics for disciplined concurrency in COP?

Matteo Busi, Pierpaolo Degano, and Letterio Galletta

Dipartimento di Informatica, Università di Pisa
m.busi@studenti.unipi.it, {degano,galletta}@di.unipi.it

Abstract. A concurrent extension of the recent COP language MLCoDa
is presented. We formalise its operational semantics and we propose a run
time verification mechanism that enforces a notion of non-interference
among concurrent threads. More precisely, this mechanism prevents an
application from modifying the context so as to dispose some resources
or to contradict assumptions upon which other applications rely.

1 Introduction

Modern software have to run in highly dynamic and open heterogeneous environ-
ment, often referred as the context. The context abstracts the communication
infrastructure and the available resources, so as to make them seem less heteroge-
neous, unlimited and fully dedicated to their users. Programming these systems
thus requires new programming language features and effective mechanisms to
deal with context-awareness, i.e. sensing the context, reacting and properly adapt-
ing the program behaviour to changes of the actual context. Recently the last
two authors proposed MLCoDa a two-component Context-oriented Programming
(COP) language [10]. It has a logical constituent for specifying and manipulating
the context and a functional one for computing. Separation of concerns drove
the design choices. Indeed, one specifies the context and its evolution, using its
own specific mechanisms and rules, that are typically different from those used
in programming applications. Designing a context requires skills different from
those needed for applications, and it is usually programmed by requirements en-
gineers [19]. The declarative approach allows requirements engineers to express
what information the context has to include, leaving to the virtual machine how
this information is actually collected and managed.

In MLCoDa a context is a Datalog knowledge base [15]. Thus, verifying whether
a given property holds in the context simply consists in querying a Datalog goal.
During the needed deductions the relevant information is also retrieved. The
? Partially supported by the Università di Pisa PRA_2016_64 Project Through the

fog.
Copyright c© by the paper’s authors. Copying permitted for private and academic pur-
poses.
V. Biló, A. Caruso (Eds.): ICTCS 2016, Proceedings of the 17th Italian Conference on
Theoretical Computer Science, 73100 Lecce, Italy, September 7–9 2016, pp. 177–189
published in CEUR Workshop Proceedins Vol-1720 at http://ceur-ws.org/Vol-1720

http://ceur-ws.org/Vol-1720

178 Matteo Busi, Pierpaolo Degano, and Letterio Galletta

choice of a functional language was driven by the popularity of this paradigm
(see e.g. F#, Scala), by its formal elegance and the conciseness of its programs.
The first mechanism takes care of those program variables that assume different
values depending on the different properties of the current context. The notion of
context-dependent binding makes that explicit. The second one extends standard
behavioural variations, that are chunks of code that are dynamically activated
depending on the context, so adapting the behaviour of the program. In MLCoDa
behavioural variations are a first-class construct, so they can be referred to by
identifiers, and passed to and returned by functions. This helps in programming
dynamic adaptation patterns, as well as reusable and modular code. Also, a
behavioural variation can be supplied by the context, and then composed with
existing ones.

We study these aspects from a basic point of view, in [10] a single application
within a context was considered. MLCoDa was equipped with an operational
semantics which provided us with the basis for a prototypical implementation
in F# [5]. Since adaptive applications may misbehave because at design time
an unknown environment was not considered, a static analysis ensures that this
kind of run time errors never occur, e.g. because the actual hosting environment
lacks a required capability. The analysis is performed in two phases: a type
and effect system (at compile time) and a Control Flow Analysis (at load time).
Type-checking a program also computes an effect that over-approximates the
capabilities required by an application at run time. When entering a new context,
before running the program, this abstraction is exploited to check that the actual
context, and those resulting from its evolution, support the capabilities required
by the application. Note that this last analysis can only be done at load time,
because at compile time the possible hosting contexts are still unknown.

A first extension of MLCoDa with concurrency is in [11], where there is a
two-threaded system: the context and the application. The first virtualizes the
resources and the communication infrastructure, as well as other software com-
ponents running within it. Consequently, the behaviour of a context, describing
in particular how it is updated, abstractly accounts for all the interactions of the
entities it hosts. The other thread is the application and the interactions with
the other entities therein are rendered as the occurrence of asynchronous events
that represent the relevant changes in the context. The semantics of [11] also
offered a way of preventing a context change to affect the validity of a choice of
a behavioural variation. Also a recovery mechanism is triggered at need.

Here we extend this approach by explicitly describing many applications
that execute in a context, and possibly exchange information through it and
asynchronously update it. The well known problem of interference now arises,
because one thread can update the context possibly making unavailable some
resources or contradicting assumptions that another thread relies upon. Classical
techniques for controlling this form of misbehaviour, like locks, are not satisfying,
because they contrast with the basic assumption of having an open world where
applications appear and disappear unpredictably, and freely update the context.
However, application designers are only aware of the relevant fragments of the

A semantics for disciplined concurrency in COP 179

context and cannot anticipate the effects a change may have. Therefore, the
overall consistency of the context cannot be controlled by applications.

The novelty of the semantics proposed here consists in addressing this problem
through a run time verification mechanism. We assume our applications be
typed as in [10], and the resulting effect, called history expression is carried
on by the code. Roughly, a history expression collects the sequence of context
modifications that an application may perform, as well as the Datalog goals
it queries. Intuitively, the effects of the running applications are checked to
make sure that the execution of the selected behavioural variation will lead no
other application to an inconsistent state, e.g. by disposing a shared resource.
Dually, also the other threads are checked to verify that they cause no harm to
the application entering in a behavioural variation. Differently than in [10], the
verification is not done at load time, but it occurs at run time when a behavioural
variation is about to be evaluated. All the checks sketched above are performed
on the effects computed at compile time using the Control Flow Analysis of [10].
Note that performing the verification mechanism at load time will result is a
huge loss of precision of the analysis due to the inherent non-determinism. At the
moment, we designed no recovery mechanisms for when a possible inconsistency
is predicted, and we only leave stuck the application responsible for that.

Structure of the paper The next section intuitively presents our COP language
and the verification mechanism through an example. In Section 3 we formally
define the syntax and the operational semantics of this extension of MLCoDa.
The last section concludes and discusses some related work.

2 An example: competing for visors

Here we elaborate on the example of [10] describing a museum guide. First, we
briefly recall the features of the functional component of MLCoDa, omitting the
Datalog constituent that is fully standard. We refer the reader to [10] for a full
description of the language.

The original functional component of MLCoDa provides two main mecha-
nisms for adaptation. The first is context-dependent binding through which a
programmer declares variables whose values depend on the context. The con-
struct dlet x = e1 when G in e2 means that the variable x (called parameter
hereafter) may denote different objects, with different behavior depending on the
different properties of the current context, checked by evaluating the goal G. If
the goal G is true in the current context, the variable x is bound the result of
evaluation of the expression e1.

The second mechanism is based on the notion of behavioural variations. Basi-
cally, it is a list of pairs (x){G1.e1, . . . ,Gn.en}, similar to a case statement, that
alters the control flow of applications according to which goal holds in the context,
so as to dynamically adapt the running application. Behavioural variations are
similar to functions: they take arguments (e.g. x) and are (high-order) values
so facilitating programming dynamic adaptation patterns. To run a behavioural

180 Matteo Busi, Pierpaolo Degano, and Letterio Galletta

variation we need to apply it through the application operator #(bv, v) where
bv = (x){G1.e1, . . . ,Gn.en}. The application triggers a dispatching mechanism
that visits the cases in textual order and selects the first expression ei whose
goal Gi holds; then ei evaluates in a environment with a new binding between x
and v. If no goal holds then the application cannot adapt to the context and a
run time error occurs. The interaction with the Datalog context is not limited to
queries, but one can change the knowledge base through tell/retract operations
that add/remove facts.

We illustrate now how the linguistic extensions to MLCoDa we are proposing
help in designing an adaptive museum guide application. To make our point, it
suffices to consider two concurrent applications that are hosted in the shared
context offered by the museum intranet.

Each visitor registers at entrance and gets credentials to access the museum
intranet and to download the guide application to his smartphone. This guide
adapts to the device (e.g. enabling/disabling particular features like HD videos
or NFC communication) and to the user’s preferences (e.g. accessibility options
for blind or deaf people) and has the ability to interact with (some of) those
exhibits of the museum which are interactive. Differently than in [10] we here
explicitly consider applications that are deployed at an interactive exhibit and
reply to user’s questions, e.g. about the author of the exhibit.

Since the museum resources can typically be concurrently accessed by a
limited number of users, the activities performed by the guide applications and
those done by the context itself have to be coordinated.

Here we focus on the operations performed by the guide applications to access
the shared interactive exhibits. We assume that applications communicate with
a central server; and as in [11] that the shared context provides applications with
a communication infrastructure accessible through the tell/retract operations
that update the context, as well as through suitable remote procedure calls
(RPCs).

2.1 The context

Abstractly the context could be thought as a heterogeneous collection of data
coming from different sources and having different representations. As we said,
the context in MLCoDa is a knowledge base implemented as a Datalog program,
i.e. a set of facts that predicate over a possibly rich data domain, and a set of
logical rules to deduce further implicit properties of the context itself. Below, we
briefly introduce some aspects of the context of the museum where the multimedia
guide is plugged in.

Suppose we have the museum context presented in [10], that includes informa-
tion about the user profiles, their device capabilities, the ticketing policies, access
points to the intranet etc. Here we enrich the museum context with some facts
about the exhibits, e.g. the following fact declares that exhibit x is interactive:

is_interactive (x)

A semantics for disciplined concurrency in COP 181

A specific exhibit can interact with a visitor through a virtual reality visors that
plays a video. This feature can be expressed in the context by the following fact

play_video (x,visor) :-
is_interactive (x), has_visors (x,visor)

Acquiring a visor requires to check if it is available, i.e. that the following Datalog
goal holds

← ¬busy(x, visor)

If this is the case, the application can lock the visor by inserting the fact
busy(x, visor) in the context through the tell construct. Symmetrically, re-
leasing the visor is done by removing the fact through a retract.

2.2 The guide and the exhibit application

We now show the relevant code concerning the interaction among the multimedia
guide, the exhibit application and the shared environment. For readability we use
a sugared syntax of our extended MLCoDa which will be formally introduced in
Section 3. Assume that a new GUI element in the guide is enabled when data are
downloaded from the interactive exhibit. Once active it allows a user to visualize
the data of the exhibit.

Suppose that a user U wants to interact with the virtual reality exhibit ie
with two visors v1 and v2. As expected U can acquire a visor if it is available and
cannot if in use until it is released. The following code implements the above:

fun interact () =
let get_visor = (){
← ¬busy(ie , v1).

showMessage " Please use the first visor"
enable_first ()
← busy(ie , v1), ¬busy(ie , v2).

showMessage " Please use the second visor"
enable_second ()
← busy(ie , v1), busy(ie , v2).

showMessage " Please wait ..."
}
in #(get_visor , ())

In the code we define the behavioural variation get_visor with no argument that
queries the context to get information on availability of visors. The behavioural
variation is applied in the last line through the # construct. Each case of get_visor
is driven by a goal, e.g. ¬busy(ie, v1). The application interacts with visors via
RPCs.

In the exhibit the implementation of the RPC function enable_first is
straightforward:

fun enable_first () =
tell busy(exhibitID ,v1)
(* Code for interacting with the user *)
retract busy(exhibitID ,v1)

182 Matteo Busi, Pierpaolo Degano, and Letterio Galletta

where exhibitID identifies the current exhibit; the code for the function
enable_second is analogous.

2.3 Executing the guide

Assume Alice is in front of one of the interactive exhibits and wants to play with
it. She taps on the relevant button to launch the function interact, causing the
behavioural variation get_visor to run. If the visor v1 is available, the first goal
succeeds and the RPC enable_first is invoked.

Now Bob arrives and wants to interact with the same exhibit. Three differ-
ent situation may occur, depending on the execution point reached by Alice’s
application when Bob starts to execute the behavioural variation get_visor:

– Alice has still to execute tell(busy(v1)) and thus also Bob could get the visor
v1. The runtime of MLCoDa first inspects the history expression H associated
with Bob at compile time, and discovers the potential damage to Alice. Indeed
H records that Bob will change the context through tell busy(exhibitID,v1),
so falsifying the goal ¬busy(ie, v1) that Alice has just checked. In this case,
the runtime prevents Bob from performing the harmful operation;

– Alice completed the execution of tell(busy(v1)) and is interacting with the
exhibit. Then Bob will simply find the visor v1 busy and the second case of
his behavioural variation will be selected;

– Alice has released the visor v1 through retract(busy(v1)) and so Bob can
acquire it.

As intuitively described above, the extended runtime support of MLCoDa em-
beds a verification mechanism at run time, so enforcing a sort of non-interference
property among threads. Of course, the simple situation above can be extended
to the case with many visitors interacting with the same exhibit.

3 Regulating concurrency in MLCoDa

This section presents our extension of MLCoDa with concurrency. As in [10] the
context provides applications with information and resources they need. Here,
the context works also as a shared memory through which applications inter-
act. Additionally, our semantics makes sure that when an application modifies
the context, it falsifies no hypothesis that drove the selection of the running
behavioural variations of other applications.

Syntax The Datalog part is standard: a program is a finite set of (ground) facts
and clauses. As defined in [8], we assume that each program is safe and stratified,
so negation is allowed.

The functional part inherits most of the ML constructs. In addition to the
usual ones, our values include Datalog facts F and behavioural variations. More-
over, we introduce the set x̃ ∈ DynV ar of parameters, i.e., variables assuming

A semantics for disciplined concurrency in COP 183

values depending on the properties of the running context; while x, f ∈ V ar are
standard identifiers, with the proviso that V ar ∩ DynV ar = ∅. The syntax of
MLCoDa follows:

V a ::=Gl.e | Gl.e, V a

v ::=c | λfx.e | (x){V a} | F
e ::=v | x | x̃ | e1 e2 | if e1 then e2 else e3 | letx = e1 in e2 |

dlet x̃ = e1 whenGl in e2 | tell(e1)l | retract(e1)l | #(e1, e2) | becG

The novelties w.r.t. [10] are that the goals of behavioural variations (x){V a} and
of the context dependent binding dlet have labels l ∈ Lab to link them with
their abstract counterparts in history expressions (see below). These labels are
mechanically attached (in the abstract syntax tree) and uniquely identify sub-
expressions. They do not alter the semantics of [10]: at run time, the first goal
Gl

i satisfied by the context determines the expression ei to be run (dispatching).
Also the tell/retract constructs, which insert/remove facts from the context,
carry labels. The application of a behavioural variation #(e1, e2) which applies e1
to its argument e2 is the same as in [10]: the dispatching mechanism is triggered
to query the context and to select from e1 the expression to run. In the formal
development we record the goal selected by the dispatching mechanism through
the auxiliary expression becG.

Semantics We assume that our systems are made of some expressions running
concurrently in a context C ∈ Context. Here we inherit the standard top-down
semantics [8] for Datalog under the Closed World Assumption to deal with
negation. We write C � Gwith θ when the goal G, under a ground substitution θ,
is satisfied in the context C. The concurrent semantics of a system is defined by a
hierarchy of three SOS transition systems. The first one is for expressions with no
free variables, but possibly with free parameters, thus allowing for openness. It is
a slight modification of the one in [10], where the environment ρ : DynVar → Va
maps parameters to variations Va. A first novelty is that transitions are labelled
to record the actions performed (irrelevant labels will be omitted). For example
we have the following axiom that specifies how the fact F is added to the context
C. It also records where this happens through the label that identifies the specific
tell responsible for that. This information will be used later on to link the actual
code with its history expression, computed by the type and effect system, and it
helps the verification made at run time.

ρ ` C, tell(F)l l−→ C ∪ {F}, ()
Tell2

A second novelty concerns the rules that query the context. Through the dis-
patching mechanism (see below), we detect a case e of a behavioural variation
which will be selected and run (suitable instantiated). Also here the transition
records the label ` of the goal G satisfied, for future use. Additionally, the goal
G indexes the selected case, giving raise to the auxiliary expression becG. Indeed,

184 Matteo Busi, Pierpaolo Degano, and Letterio Galletta

G has to always hold along the execution of e, until it reduces to a value v; in
other words, becG reduces to v.

ρ(x̃) = Va dsp(C, Va) = (e, {−→c /−→y }, Gl)

ρ ` C, x̃ l−→ C, be{−→c /−→y }cG
Dyvar

where dispatching is essentially the same of [10]:

dsp(C, (Gl.e,Va)) =
{

(e, θ,Gl) if C � Gwith θ

dsp(C, Va) otherwise

Also the rules for behavioural variation applications are modified similarly. Labels
are preserved by the inference rules.

The second level provides the third one with the relevant information to
guarantee that no applications modify a resource needed by another one. To do
that, we exploit the behavioural abstraction of the application computed by the
type and effect system of [10] in order to perform run time checks. We recall
from [10] the syntax of the abstractions, called history expressions H ∈ H, that
here carry labels ` ∈ L̂ab, for simplicity disjoint from Lab.

H ::= ε | h | µh.H | tell F ` | retract F ` | H1 +H2 | H1 ·H2 | ∆
∆ ::= ask G`.H ⊗ ∆ | fail

History expressions abstractly represent the activities performed: tell/retrect are
obvious, µh.H is for recursion, + abstracts conditionals, · sequential compositions
and∆ represents the dispatching mechanism. As in [4], our type and effect system
associates with an expression e a (standard) type, an effect H and a function Λ
that records the correspondence of labels ` in H with those in e. The semantics
of history expression is trivially extended to take care of labels.

There are three rules in the second level. The first follows:

∅ ` C, e l−→ C ′, e′ C,H →∗ C,H ′′ `−→ C ′, H ′

C, e : (H,ω)→ C ′, e′ : (H ′, ω ∧ Ĝ)
Λ(`) = l

where Ĝ =
{
G if ask G`.H is a sub-history of H
true otherwise

We write e : (H,ω), when H is the abstraction of e and ω is the conjunction of
all the goals (holding in C) of the behavioural variations still in execution. The
case Ĝ = true holds when l labels a tell or a retract.

The second rule governs the termination of a behavioural variation and the
elimination of the relevant goal:

∅ ` C, bvcG → C, v

C, e : (H,ω ∧G)→ C, v : (H,ω)

A semantics for disciplined concurrency in COP 185

The third rule considers the case when the context does not change (we do
not track the changes in H):

∅ ` C, e→ C, e′

C, e : (H,ω)→ C, e′ : (H,ω)

The top-level transition system takes care of the (interleaved) concurrent
behaviour of systems. Here we assume the standard congruences of ‖, the parallel
operator, e.g. commutativity. The first rule of this level is

C, e0 : (H0, ω0)→ C, be′0cG : (H ′0, ω0 ∧G) α1 α2

C, ‖n
i=1 ei : (Hi, ωi) ‖ e0 : (H0, ω0)→

C, ‖n
i=1 ei : (Hi, ωi) ‖ be′0cG : (H ′0, ω0 ∧G)

where α1 and α2 are the following conditions:

α1 = ∀C ′′s.t. C,H0 →∗ C ′′, H ′′0 . C ′′ |=
n∧

i=1
ωi

α2 = ∀i ∈ [1, n]∀C ′′s.t. C,Hi →∗ C ′′, H ′′i . C ′′ |= ω0 ∧G

The first condition says that no actions of e0 will falsify any of the goals of the
ei. Symmetrically, the second one guarantees that the goals of e0 will hold along
the execution of the other threads.

There is a rule for when the context changes because of a tell/retract:

C, e0 : (H0, ω0)→ C ′, e′0 : (H ′0, ω0) α1 α2

C, ‖n
i=1 ei : (Hi, ωi) ‖ e0 : (H0, ω0)→ C ′, ‖n

i=1 ei : (Hi, ωi) ‖ e′0 : (H ′0, ω0)
C 6= C ′

The last rule is for when the context does not change, and no violations may
then occur

C, e0 : (H0, ω0)→ C, e′0 : (H0, ω0)
C, ‖n

i=1 ei : (Hi, ωi) ‖ e0 : (H0, ω0)→ C, ‖n
i=1 ei : (Hi, ωi) ‖ e′0 : (H0, ω0)

The mechanism specified by the last two inference rules prevents all the applica-
tions running concurrently to misbehave so causing adaptivity errors each other.
The properties of the context and the resources acquired by an application in
order to execute a behavioural variation are guaranteed to hold until the be-
havioural variation itself is not completed, regardless of any update made by
other applications. The conditions α1 and α2 are crucial for performing these
checks at run time. These conditions can be verified through the control flow
analysis of [10]. Essentially, exploiting the history expressions Hi and H0 the
analysis results in a graph G that describes the possible evolutions of the context
C. Technically, the graph G is obtained as solution of a set of constraints following
the Flow Logic approach [16]. Very roughly, these constraints express how a tell or
a retract inside a history expression modifies a context into a new one. Note that
there this static analysis is done at load time, while here it has to be performed at

186 Matteo Busi, Pierpaolo Degano, and Letterio Galletta

run time, because one only knows the acquired resources while executing. Note
also that condition α1 constrains the effects of the running application e0 on the
other applications, but not on itself, otherwise a wanted, and fairly acceptable
behaviour could be discarded. An example of this is discussed in Section 2: the
RPC function enable_first above falsifies the goal← ¬busy(ie, v1) driving the
first case of the behavioural variation of the function interact. Summing up our
concurrent semantics embeds a sort of non-interference mechanism.

4 Conclusions

Our starting point has been the two-component COP language MLCoDa [10], in
which the context is a Datalog knowledge base and the application code is ML
with specific adaptation constructs; in particular, the dispatching mechanism is
driven by Datalog goals. Here, we have extended MLCoDa to operate in a concur-
rent environment. A major contribution of this paper is the run time verification
mechanism embedded in the semantics. It is triggered when a behavioural varia-
tion is about to start and it enforces a sort of non-interference among the running
applications.

Our proposal relies on a formal operational semantics of the extended lan-
guage, as well as on a type and effect system that associates each application
with a safe abstraction of its run time behaviour, namely a history expression.
The verification mechanism uses the history expressions of the application ready
to evaluate a behavioural variation and checks that none of its future actions
may invalidate the assumptions driving the execution of the other threads. Anal-
ogously, the application is protected against actions done by other threads. The
verification can be performed by simply moving at run time the Control Flow
Analysis done in [10] at load time. As a matter of fact, our mechanism for non-
interference has been inspired by the classical notion of critical section. In our
case, the resources to protect are the properties of the context that are relevant
for the execution of applications: a behavioural variation plays here a role similar
to that of a critical section.

Future work includes extending our prototypical implementation of MLCoDa [5]
with concurrency and the run time verification. Since history expressions are over-
approximations of the behaviour of applications, in some cases the verification
mechanism unnecessarily suspends the execution of a thread, e.g. when there is
a conditional and only one branch may lead to troubles. We would like to inves-
tigate whether it will be possible to live dangerously in a partially inconsistent
context. However, in this case some notions of compensation (or recovery like
in [11]) would be in order to prevent an application to crash definitely. A differ-
ent approach would be analysing a history expression to detect where the code
may perform dangerous activities, and dynamically instrument it accordingly, as
proposed in [4].

Related Work Most research efforts in COP have been directed toward the design
and the implementation of concrete languages; see [2] for an analysis of some

A semantics for disciplined concurrency in COP 187

implementations. Below, we focus on papers that are strictly related to our
proposal and on those proposing concurrency and verification mechanism; see [17]
for a broad survey on primitives and possible language designs.

Many COP languages are object oriented, thus behavioural variations are
often implemented as partially defined methods, and are not values as it is the
case in MLCoDa. The most notable exception is ContextL [9], that is based on
Common Lisp, from which it inherits higher-order features.

Typically, the context is a stack of layers, that can be activated and deactivated
at run time. One can simply and intuitively view a layer as an elementary property
(a proposition) of the current context. MLCoDa differs from this approach having
distinct formalisms for specifying the context and the applications. Others papers
in the literature do the same. The language Javanese [14] supplies primitives for
declaring a context and its properties in a logical manner through a temporal logic.
In Javanese the context represents properties of the system that are “activated
by an action and held active until another action that deactivates it occurs”.
This is similar to our vision where the system running an application is part
of the context and where a fact inserted into the context holds until explicitly
retracted. Also Subjective-C [13] is equipped with a domain-specific language
for specifying the contents of what is called a set of contexts. A context of
Subjective-C is just a single property holding in the working environment of an
application, behaving much like our facts. Similarly, a context is activated when
particular circumstances occur in the environment. Furthermore, Subjective-C
proposes constructs for specifying relationships and constraints over contexts,
e.g. inclusion and conflict. This approach is very similar to ours, and Datalog
can also express these kinds of relations through logical rules.

As far as we know a limited number of papers have considered concurrency
in COP. In [12] ContextML, a predecessor of MLCoDa, is proposed. It extends
ML with layers, layered expressions, and scoped activation mechanisms for layers
(with and without). Applications are made of many components with a local
context interacting through message passing. Similarly to the present proposal
a type and effect system computes application abstractions, but there they are
statically model-checked to enforce communication compliance and security poli-
cies. In [18] the formal semantics of ContextErlang describes the behaviour of the
constructs for adaptation within a distributed and concurrent framework, based
on message passing. Similar to ours, that semantics ensures a non-interference
property among Erlang actors.

As regards event-driven adaptation, EventCJ [1] is a Java-based language
which combines mechanisms from COP with event based changes of the context.
It provides constructs to declare both the events thrown by an application and the
transition rules specifying how to change the context when an event is received.
The language Flute [3] is designed for programming reactive adaptive software.
Flute constrains the execution of a procedure with certain contextual properties
specified by a developer. If any of these properties is no longer satisfied, the
execution is suspended until the property holds again. Stopping the execution

188 Matteo Busi, Pierpaolo Degano, and Letterio Galletta

is like in our approach when goal of a behavioural variation has been falsified
because of a context change.

In [6] a run time verification mechanism based on symbolic execution is
proposed. Differently from ours the verification step is performed just before
activating/deactivating a layer in the context, in order to check whether adap-
tation is possible. A different approach to verify applications is proposed in [7]:
the structure of contexts is a(n enriched) Petri net which is analysed through
existing tools.

References

1. Aotani, T., Kamina, T., Masuhara, H.: Featherweight EventCJ: a core calculus
for a context-oriented language with event-based per-instance layer transition. pp.
1:1–1:7. COP ’11, ACM, New York, NY, USA (2011)

2. Appeltauer, M., Hirschfeld, R., Haupt, M., Lincke, J., Perscheid, M.: A comparison
of context-oriented programming languages. In: COP ’09. pp. 6:1–6:6. ACM, New
York, USA (2009)

3. Bainomugisha, E.: Reactive method dispatch for Context-Oriented Programming.
Ph.D. thesis, Comp. Sci. Dept., Vrije Universiteit Brussel (2012)

4. Bodei, C., Degano, P., Galletta, L., Salvatori, F.: Linguistic Mechanisms for Context-
aware Security. In: Ciobanu, G., Méry, D. (eds.) ICTAC 2014. LNCS, vol. 8687.
Springer (2014)

5. Canciani, A., Degano, P., Ferrari, G.L., Galletta, L.: A context-oriented extension
of F#. In: FOCLASA 2015. EPTCS, vol. 201 (2015)

6. Cardozo, N., Christophe, L., De Roover, C., De Meuter, W.: Run-time validation
of behavioral adaptations. In: COP’14s. pp. 5:1–5:6. ACM, New York, NY, USA
(2014)

7. Cardozo, N., González, S., Mens, K., Straeten, R.V.D., Vallejos, J., D’Hondt, T.:
Semantics for consistent activation in context-oriented systems. Information and
Software Technology 58, 71 – 94 (2015)

8. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about Datalog
(and never dared to ask). IEEE Trans. on Knowl. and Data Eng. 1(1), 146–166
(Mar 1989)

9. Costanza, P., Hirschfeld, R.: Language Constructs for Context-oriented Program-
ming: An Overview of ContextL. In: DSL ’05. pp. 1–10. ACM, New York, NY, USA
(2005)

10. Degano, P., Ferrari, G.L., Galletta, L.: A two-component language for adaptation:
Design, semantics, and program analysis. IEEE Trans. Software Eng. 42(6), 505–529
(2016)

11. Degano, P., Ferrari, G.L., Galletta, L.: Event-driven adaptation in COP. In:
PLACES 2016. EPTCS, vol. to appear

12. Degano, P., Ferrari, G.L., Galletta, L., Mezzetti, G.: Types for coordinating secure
behavioural variations. In: Sirjani, M. (ed.) COORDINATION 2012. LNCS, vol.
7274, pp. 261–276. Springer (2012)

13. González, S., Cardozo, N., Mens, K., Cádiz, A., Libbrecht, J.C., Goffaux, J.:
Subjective-c. In: Malloy, B., Staab, S., van den Brand, M. (eds.) Software Lan-
guage Engineering, LNCS, vol. 6563, pp. 246–265. Springer (2011)

14. Kamina, T., Aotani, T., Masuhara, H.: A unified context activation mechanism. In:
COP’13. pp. 2:1–2:6. ACM, New York, NY, USA (2013)

A semantics for disciplined concurrency in COP 189

15. Loke, S.W.: Representing and reasoning with situations for context-aware pervasive
computing: a logic programming perspective. Knowl. Eng. Rev. 19(3), 213–233
(Sep 2004)

16. Nielson, H.R., Nielson, F.: Flow logic: A multi-paradigmatic approach to static
analysis. In: Mogensen, T., Schmidt, D.A., Sudborough, I. (eds.) The Essence of
Computation, Lecture Notes in Computer Science, vol. 2566, pp. 223–244. Springer
Berlin Heidelberg (2002)

17. Salvaneschi, G., Ghezzi, C., Pradella, M.: An analysis of language-level support for
self-adaptive software. ACM Trans. Auton. Adapt. Syst. 8(2), 7:1–7:29 (Jul 2013)

18. Salvaneschi, G., Ghezzi, C., Pradella, M.: Contexterlang: A language for distributed
context-aware self-adaptive applications. Sci. Comput. Program. 102, 20–43 (2015)

19. Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans.
Softw. Eng. Methodol. 6(1), 1–30 (Jan 1997)

	A semantics for disciplined concurrency in COP
	Introduction
	An example: competing for visors
	The context
	The guide and the exhibit application
	Executing the guide

	Regulating concurrency in MLCoDa
	Conclusions

