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Abstract. We address the problem of Conjunctive Query Answering
(CQA) for the description logic DL〈4LQSR,×〉(D) (DL4,×

D , for short) which
extends the logic DL〈4LQSR〉(D) with Boolean operations on concrete
roles and with the product of concepts.
The result is obtained by formalizing DL4,×

D -knowledge bases and DL4,×
D -

conjunctive queries in terms of formulae of the four-level set-theoretic
fragment 4LQSR, which admits a restricted form of quantification on
variables of the first three levels and on pair terms. We solve the CQA
problem for DL4,×

D through a decision procedure for the satisfiability
problem of 4LQSR. We further define a KE-tableau based procedure
for the same problem, more suitable for implementation purposes, and
analyze its computational complexity.

1 Introduction

In the last few years, results from Computable Set Theory have been used as a
means to represent and reason about description logics and rule languages for
the semantic web. For instance, in [4–6], fragments of set theory with constructs
related to multi-valued maps have been studied and applied to the realm of knowl-
edge representation. In [8], an expressive description logic, called DL〈MLSS×2,m〉,
has been introduced and the consistency problem for DL〈MLSS×2,m〉-knowledge
bases has been proved NP-complete. The description logic DL〈MLSS×2,m〉 has
been extended with additional constructs and SWRL rules in [6], proving that
the decision problem for the resulting logic, called DL〈∀π0,2〉, is still NP-complete
under suitable conditions. The description logic DL〈∀π0,2〉 has been extended with
some metamodelling features in [4]. In [7], the description logic DL〈4LQSR〉(D)
(more simply referred to as DL4

D) has been introduced. DL4
D can be represented
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in the decidable four-level stratified fragment of set theory 4LQSR involving a
restricted form of quantification over variables of the first three levels and pair
terms (cf. [2]). The logic DL4

D admits concept constructs such as full negation,
union and intersection of concepts, concept domain and range, existential quan-
tification and min cardinality on the left-hand side of inclusion axioms. It also
supports role constructs such as role chains on the left hand side of inclusion
axioms, union, intersection, and complement of abstract roles, and properties
on roles such as transitivity, symmetry, reflexivity, and irreflexivity. It admits
datatypes, a simple form of concrete domains that are relevant in real world
applications.

The consistency problem for DL4
D-knowledge bases has been proved decidable

in [7] by means of a reduction to the satisfiability problem for 4LQSR, proved
decidable in [2]. It has also been proved, under not very restrictive constraints,
that the consistency problem for DL4

D-knowledge bases is NP-complete. The
latter result has practical outcomes since, for example, the ontology Ontoceramic
[9] can be expressed in such a restricted version of DL4

D. Finally, we mention that
the papers [4–8] are concerned with traditional research issues for description
logics mainly focused on the parts of a knowledge base representing conceptual
information, namely the TBox and the RBox, where the principal reasoning
services are subsumption and satisfiability.

In this paper we exploit decidability results presented in [2, 7] to deal with
reasoning services for knowledge bases involving ABoxes. The most basic service
to query the instance data is instance retrieval, i.e., the task of retrieving all
individuals that instantiate a class C, and, dually, all named classes C that an
individual belongs to. In particular, a powerful way to query ABoxes is the
Conjunctive Query Answering task (CQA). CQA is relevant in the context of
description logics and, in particular, for real world applications based on semantic
web technologies, since it provides a mechanism allowing users and applications
to interact with ontologies and data. The task of CQA has been studied for
several well-known description logics (cf. [1, 13,15]).

In particular, we introduce the description logic DL〈4LQSR,×〉(D) (DL4,×
D , for

short), extending DL4
D with Boolean operations on concrete roles and with the

product of concepts. Then we define the CQA problem for DL4,×
D and prove its

decidability via a reduction to the CQA problem for 4LQSR, whose decidability
follows from that of the satisfiability problem for 4LQSR (proved in [2]). Finally,
we present a KE-tableau based procedure that, given a DL4,×

D -query Q and a
DL4,×

D -knowledge base KB represented in set-theoretic terms, determines the
answer set of Q with respect to KB, providing also some complexity results. The
choice of the KE-tableau system [10] is motivated by the fact that this variant
of the tableau method allows one to construct trees whose distinct branches
define mutually exclusive situations thus avoiding the proliferation of redundant
branches, typical of semantic tableaux.
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2 Preliminaries

2.1 The set-theoretic fragment 4LQSR

It is convenient to first introduce the syntax and semantics of a more general
four-level quantified language, denoted 4LQS. Then we provide some restrictions
on quantified formulae of 4LQS that characterize 4LQSR. We recall that the
satisfiability problem for 4LQSR has been proved decidable in [2].

4LQS involves four collections, Vi, of variables of sort i, for i = 0, 1, 2, 3.
Variables of sort i, for i = 0, 1, 2, 3, will be denoted byXi, Y i, Zi, . . . (in particular,
variables of sort 0 will also be denoted by x, y, z, . . .). In addition to variables,
4LQS involves also pair terms of the form 〈x, y〉, with x, y ∈ V0.
4LQS-quantifier-free atomic formulae are classified as:
- level 0: x = y, x ∈ X1, 〈x, y〉 = X2, 〈x, y〉 ∈ X3;
- level 1: X1 = Y 1, X1 ∈ X2;
- level 2: X2 = Y 2, X2 ∈ X3.

4LQS purely universal formulae are classified as:
- level 1: (∀z1) . . . (∀zn)ϕ0, where z1, . . . , zn ∈ V0 and ϕ0 is any propositional
combination of quantifier-free atomic formulae of level 0;

- level 2: (∀Z1
1 ) . . . (∀Z1

m)ϕ1, where Z1
1 , . . . , Z

1
m ∈ V1 and ϕ1 is any propositional

combination of quantifier-free atomic formulae of levels 0 and 1, and of purely
universal formulae of level 1;

- level 3: (∀Z2
1 ) . . . (∀Z2

p)ϕ2, where Z2
1 , . . . , Z

2
p ∈ V2 and ϕ2 is any proposi-

tional combination of quantifier-free atomic formulae and of purely universal
formulae of levels 1 and 2.

4LQS-formulae are all the propositional combinations of quantifier-free atomic
formulae of levels 0, 1, 2 and of purely universal formulae of levels 1, 2, 3.

Let ϕ be a 4LQS-formula. Without loss of generality, we can assume that
ϕ contains only ¬, ∧, ∨ as propositional connectives. Further, let Sϕ be the
syntax tree for a 4LQS-formula ϕ,1 and let ν be a node of Sϕ. We say that a
4LQS-formula ψ occurs within ϕ at position ν if the subtree of Sϕ rooted at ν
is identical to Sψ. In this case we refer to ν as an occurrence of ψ in ϕ and to
the path from the root of Sϕ to ν as its occurrence path. An occurrence of ψ
within ϕ is positive if its occurrence path deprived by its last node contains an
even number of nodes labelled by a 4LQS-formula of type ¬χ. Otherwise, the
occurrence is said to be negative.

The variables z1, . . . , zn are said to occur quantified in (∀z1) . . . (∀zn)ϕ0. Like-
wise, Z1

1 , . . . , Z
1
m and Z2

1 , . . . , Z
2
p occur quantified in (∀Z1

1 ) . . . (∀Z1
m)ϕ1 and in

(∀Z2
1 ) . . . (∀Z2

p)ϕ2, respectively. A variable occurs free in a 4LQS-formula ϕ if it
does not occur quantified in any subformula of ϕ. For i = 0, 1, 2, 3, we denote
with Vari(ϕ) the collections of variables of level i occurring free in ϕ.
1 The notion of syntax tree for 4LQS-formulae is similar to the notion of syntax tree
for formulae of first-order logic. A precise definition of the latter can be found in [11].
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A (level 0) substitution σ := {x1/y1, . . . , xn/yn} is the mapping ϕ 7→ ϕσ such
that, for any given 4LQS-formula ϕ, ϕσ is the 4LQS-formula obtained from ϕ by
replacing the free occurrences of the variables x1, . . . , xn in ϕ with the variables
y1, . . . , yn, respectively. We say that a substitution σ is free for ϕ if the formulae
ϕ and ϕσ have exactly the same occurrences of quantified variables.

A 4LQS-interpretation is a pair M = (D,M) where D is a non-empty collec-
tion of objects (called domain or universe of M) and M is an assignment over
the variables in Vi, for i = 0, 1, 2, 3, such that: MX0 ∈ D,MX1 ∈ P(D),MX2 ∈
P(P(D)),MX3 ∈ P(P(P(D))), where Xi ∈ Vi, for i = 0, 1, 2, 3, and P(s) de-
notes the powerset of s.
Pair terms are interpreted à la Kuratowski, and therefore we put

M〈x, y〉 := {{Mx}, {Mx,My}}.
Next, let
- M = (D,M) be a 4LQS-interpretation,
- x1, . . . , xn ∈ V0, X1

1 , . . . , X
1
m ∈ V1, X2

1 , . . . , X
2
p ∈ V2, and

- u1, . . . , un ∈ D, U1
1 , . . . , U

1
m ∈ P(D), U2

1 , . . . , U
2
p ∈ P(P(D)).

By M[~x/~u, ~X1/~U1, ~X2/~U2], we denote the interpretation M′ = (D,M ′) such
that M ′xi = ui (for i = 1, . . . , n), M ′X1

j = U1
j (for j = 1, . . . ,m), M ′X2

k =
U2
k (for k = 1, . . . , p), and which otherwise coincides with M on all remaining

variables. For a 4LQS-interpretation M = (D,M) and a 4LQS-formula ϕ, the
satisfiability relationship M |= ϕ is defined inductively over the structure of
ϕ as follows. Quantifier-free atomic formulae are evaluated in a standard way
according to the usual meaning of the predicates ‘∈’ and ‘=’, and purely universal
formulae are evaluated as follows:
- M |= (∀z1) . . . (∀zn)ϕ0 iff M[~z/~u] |= ϕ0, for all ~u ∈ Dn;
- M |= (∀Z1

1 ) . . . (∀Z1
m)ϕ1 iff M[~Z1/~U1] |= ϕ1, for all ~U1 ∈

(
P(D)

)m;

- M |= (∀Z2
1 ) . . . (∀Z2

p)ϕ2 iff M[~Z2/~U2] |= ϕ2, for all ~U2 ∈
(
P(P(D))

)p.
Finally, compound formulae are interpreted according to the standard rules of
propositional logic. If M |= ϕ, then M is said to be a 4LQS-model for ϕ. A
4LQS-formula is said to be satisfiable if it has a 4LQS-model. A 4LQS-formula is
valid if it is satisfied by all 4LQS-interpretations.

We are now ready to present the fragment 4LQSR of 4LQS of our interest.
This is the collection of the formulae ψ of 4LQS fulfilling the restrictions:
1. for every purely universal formula (∀Z1

1 ) . . . (∀Z1
m)ϕ1 of level 2 occurring in

ψ and every purely universal formula (∀z1) . . . (∀zn)ϕ0 of level 1 occurring
negatively in ϕ1, ϕ0 is a propositional combination of quantifier-free atomic
formulae of level 0 and the condition

¬ϕ0 →
∧n
i=1

∧m
j=1 zi ∈ Z1

j

is a valid 4LQS-formula (in this case we say that (∀z1) . . . (∀zn)ϕ0 is linked
to the variables Z1

1 , . . . , Z
1
m);

2. for every purely universal formula (∀Z2
1 ) . . . (∀Z2

p)ϕ2 of level 3 in ψ:
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- every purely universal formula of level 1 occurring negatively in ϕ2 and
not occurring in a purely universal formula of level 2 is only allowed to
be of the form

(∀z1) . . . (∀zn)¬(
n∧
i=1

n∧
j=1
〈zi, zj〉 = Y 2

ij),

with Y 2
ij ∈ V2, for i, j = 1, . . . , n;

- purely universal formulae (∀Z1
1 ) . . . (∀Z1

m)ϕ1 of level 2 may occur only
positively in ϕ2.

Restriction 1 has been introduced for technical reasons concerning the decid-
ability of the satisfiability problem for the fragment, while restriction 2 allows
one to define binary relations and several operations on them (for space reasons
details are not included here but can be found in [2]).

The semantics of 4LQSR plainly coincides with that of 4LQS.

2.2 The logic DL〈4LQSR,×〉(D)

The description logic DL〈4LQSR,×〉(D) (more simply referred to as DL4,×
D ) is

the extension of the logic DL〈4LQSR〉(D) (for short DL4
D) presented in [7] in

which Boolean operations on concrete roles and the product of concepts are
admitted. Analogously to DL4

D, the logic DL4,×
D supports concept constructs

such as full negation, union and intersection of concepts, concept domain and
range, existential quantification and min cardinality on the left-hand side of
inclusion axioms, role constructs such as role chains on the left hand side of
inclusion axioms, union, intersection, and complement of roles, and properties
on roles such as transitivity, symmetry, reflexivity, and irreflexivity.

As far as the construction of role inclusion axioms is concerned, DL4,×
D is

more liberal than SROIQ(D) [12] (the logic underlying the most expressive
Ontology Web Language 2 profile, OWL 2 DL [16]), since the roles involved are
not required to be subject to any ordering relationship, and the notion of simple
role is not needed. DL4,×

D treats derived datatypes by admitting datatype terms
constructed from data ranges by means of a finite number of applications of
the Boolean operators. Basic and derived datatypes can be used inside inclusion
axioms involving concrete roles.

Datatypes are defined according to [14] as follows. Let D = (ND, NC , NF , ·D)
be a datatype map, where ND is a finite set of datatypes, NC is a map assigning
a set of constants NC(d) to each datatype d ∈ ND, NF is a map assigning a
set of facets NF (d) to each d ∈ ND, and ·D is a map assigning (i) a datatype
interpretation dD to each datatype d ∈ ND, (ii) a facet interpretation fD ⊆ dD

to each facet f ∈ NF (d), and (iii) a data value eD
d ∈ dD to every constant

ed ∈ NC(d). We shall assume that the interpretations of the datatypes in ND
are non-empty pairwise disjoint sets.

A facet expression for a datatype d ∈ ND is a formula ψd constructed from
the elements of NF (d) ∪ {>d,⊥d} by applying a finite number of times the
connectives ¬, ∧, and ∨. The function ·D is extended to facet expressions for
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d ∈ ND by putting >D
d = dD, ⊥D

d = ∅, (¬f)D = dD \ fD, (f1 ∧ f2)D = fD
1 ∩ fD

2 ,
and (f1 ∨ f2)D = fD

1 ∪ fD
2 , for f, f1, f2 ∈ NF (d).

A data range dr for D is either a datatype d ∈ ND, or a finite enumeration
of datatype constants {ed1 , . . . , edn}, with edi ∈ NC(di) and di ∈ ND, or a facet
expression ψd, for d ∈ ND, or their complementation.

Let RA, RD, C, Ind be denumerable pairwise disjoint sets of abstract role
names, concrete role names, concept names, and individual names, respectively.
We assume that the set of abstract role names RA contains a name U denoting
the universal role.
(a) DL4,×

D -datatype, (b) DL4,×
D -concept, (c) DL4,×

D -abstract role, and (d) DL4,×
D -

concrete role terms are constructed according to the following syntax rules:
(a) t1, t2 −→ dr | ¬t1 | t1 u t2 | t1 t t2 | {ed} ,
(b) C1, C2 −→ A | > | ⊥ | ¬C1 | C1 t C2 | C1 u C2 | {a} | ∃R.Self |∃R.{a}|∃P.{ed} ,
(c) R1, R2 −→ S | U | R−1 | ¬R1 | R1 tR2 | R1 uR2 | RC1| | R|C1 | RC1 | C2 | id(C) |

C1 × C2 ,

(d) P1, P2 −→ T | ¬P1 | P1 t P2 | P1 u P2 | PC1| | P|t1 | PC1|t1 ,

where dr is a data range for D, t1, t2 are data-type terms, ed is a constant in
NC(d), a is an individual name, A is a concept name, C1, C2 are DL4,×

D -concept
terms, S is an abstract role name, R,R1, R2 are DL4,×

D -abstract role terms, T is
a concrete role name, and P, P1, P2 are DL4,×

D -concrete role terms.
A DL4,×

D -knowledge base is a triple KB = (R, T ,A) such that R is a DL4,×
D -

RBox, T is a DL4,×
D -TBox, and A a DL4,×

D -ABox (see next).
A DL4,×

D -RBox is a collection of statements of the following forms:
R1 ≡ R2, R1 v R2, R1 . . . Rn v Rn+1, Sym(R1), Asym(R1), Ref(R1), Irref(R1),

Dis(R1, R2), Tra(R1), Fun(R1), R1 ≡ C1 × C2, P1 ≡ P2, P1 v P2, Dis(P1, P2), Fun(P1),
where R1, R2 are DL4,×

D -abstract role terms, C1, C2 are DL4,×
D -abstract concept

terms, and P1, P2 are DL4,×
D -concrete role terms. Any expression of the type

w v R, where w is a finite string of DL4,×
D -abstract role terms and R is an

DL4,×
D -abstract role term is called a role inclusion axiom (RIA).
Next, a DL4,×

D -TBox is a set of statements of the types:
C1 ≡ C2, C1 v C2, C1 v ∀R1.C2, ∃R1.C1 v C2, ≥nR1.C1 v C2, C1 v ≤nR1.C2,
t1 ≡ t2, t1 v t2, C1 v ∀P1.t1, ∃P1.t1 v C1, ≥nP1.t1 v C1, C1 v ≤nP1.t1,
where C1, C2 are DL4,×

D -concept terms, t1, t2 datatype terms,R1 a DL4,×
D -abstract

role term, and P1 a DL4,×
D -concrete role term. Any statement C v D, with C

and D DL4,×
D -concept terms, is a general concept inclusion axiom (GCI).

Finally, a DL4,×
D -ABox is a set of individual assertions of the forms: a : C1,

(a, b) : R1, a = b, ed : t1, (a, ed) : P1, with a, b individual names, C1 a DL4,×
D -

concept term,R1 a DL4,×
D -abstract role term, d a datatype, ed a constant inNC(d),

t1 a datatype term, and P1 a DL4,×
D -concrete role term. As mentioned above,

DL4,×
D is more liberal than SROIQ(D) in the construction of role inclusion

axioms. For example, the role hierarchy {RS v S,RT v R, V T v T, V S v V }
presented in [12] is expressible in DL4,×

D , but not in SROIQ(D).
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The semantics of DL4,×
D is based on interpretations I = (∆I, ∆D, ·I), where ∆I

and ∆D are non-empty disjoint domains such that dD ⊆ ∆D, for every d ∈ ND,
and ·I is an interpretation function. The interpretation of concepts and roles,
and of axioms and assertions is illustrated in [3, Table 1].

Let KB = (R, T ,A) be a DL4,×
D -knowledge base. An interpretation I =

(∆I, ∆D, ·I) is a D-model of R (and write I |=D R) if I satisfies each axiom in
R according to the semantic rules in [3, Table 1]. Similar definitions hold for T
and A too. Then I satisfies KB (and write I |=D KB) if it is a D-model of R, T ,
and A. A knowledge base is consistent if it is satisfied by some interpretation.

3 Conjunctive Query Answering for DL4,×
D

Let V = {v1, v2, . . .} be a denumerable and infinite set of variables disjoint from
Ind and from

⋃
{NC(d) : d ∈ ND}. A DL4,×

D -atomic formula is an expression of
of the following types

R(w1, w2), P (w1, u1), C(w1), w1 = w2, u1 = u2,
where w1, w2 ∈ V ∪ Ind, u1, u2 ∈ V ∪

⋃
{NC(d) : d ∈ ND}, R is a DL4,×

D -
abstract role term, P is a DL4,×

D -concrete role term, and C is a DL4,×
D -concept

term. A DL4,×
D -atomic formula containing no variables is said to be closed. A

DL4,×
D -literal is a DL4,×

D -atomic formula or its negation. A DL4,×
D -conjunctive

query is a conjunction of DL4,×
D -literals. Let v1, . . . , vn ∈ V and o1, . . . , on ∈

Ind ∪
⋃
{NC(d) : d ∈ ND}. A substitution σ := {v1/o1, . . . , vn/on} is a map

such that, for every DL4,×
D -literal L, Lσ is obtained from L by replacing the

occurrences of v1, . . . , vn in L with o1, . . . , on, respectively. Substitutions can be
extended to DL4,×

D -conjunctive queries in the usual way. Let Q := (L1∧ . . .∧Lm)
be a DL4,×

D -conjunctive query, and KB a DL4,×
D -knowledge base. A substitution

σ involving exactly the variables occurring in Q is a solution for Q w.r.t. KB
if there exists a DL4,×

D -interpretation I such that I |=D KB and I |=D Qσ. The
collection Σ of the solutions for Q w.r.t. KB is the answer set of Q w.r.t. KB.
Then the conjunctive query answering (CQA) problem for Q w.r.t. KB consists
in finding the answer set Σ of Q w.r.t. KB.

We shall solve the CQA problem just stated by reducing it to the analo-
gous problem formulated in the context of the fragment 4LQSR (and in turn
to the decision procedure for 4LQSR presented in [2]). The CQA problem for
4LQSR-formulae can be stated as follows. Let φ be a 4LQSR-formula and let ψ
be a conjunction of 4LQSR-quantifier-free atomic formulae of level 0 of the types
x = y, x ∈ X1, 〈x, y〉 ∈ X3 or their negations, such that Var0(ψ) ∩ Var0(φ) = ∅
and Var1(ψ) ∪ Var3(ψ) ⊆ Var1(φ) ∪ Var3(φ). The CQA problem for ψ w.r.t. φ
consists in computing the answer set of ψ w.r.t. φ, namely the collection Σ′ of
all the substitutions σ′ := {x1/y1, . . . , xn/yn} (where x1, . . . , xn are the distinct
variables of level 0 in ψ and {y1, . . . , yn} ⊆ Var0(φ)) such that M |= φ ∧ ψσ′,
for some 4LQSR-interpretation M. In view of the decidability of the satisfia-
bility problem for 4LQSR-formulae, the CQA problem for 4LQSR-formulae is
decidable as well. Indeed, given two 4LQSR-formulae φ and ψ satisfying the
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above requirements, to compute the answer set of ψ w.r.t. φ, for each candi-
date substitution σ′ := {x1/y1, . . . , xn/yn} (with {x1, . . . , xn} = Var0(ψ) and
{y1, . . . , yn} ⊆ Var0(φ)) one has just to test for satisfiability the 4LQSR-formula
φ∧ψσ′. Since the number of possible candidate substitutions is |Var0(φ)||Var0(ψ)|

and the satisfiability problem for 4LQSR-formulae is the decidable, it follows that
the answer set of ψ w.r.t. φ can be computed effectively. Summarizing,
Lemma 1. The CQA problem for 4LQSR-formulae is decidable. ut

The following theorem states that also the CQA problem for DL4,×
D is decid-

able.

Theorem 1. Given a DL4,×
D -knowledge base KB and a DL4,×

D -conjunctive query
Q, the CQA problem for Q w.r.t. KB is decidable.

Proof (sketch). For space reasons we just outline the main ideas of the proof.
The interested reader, however, can find complete details in the extended version
of this paper (see [3]).

As remarked above, the CQA problem for DL4,×
D can be solved via an effective

reduction to the CQA problem for 4LQSR-formulae, and then exploiting Lemma 1.
The reduction is accomplished through a function θ that maps effectively variables
in V and individuals in Ind into variables of sort 0 (of the 4LQSR-language),
etc., DL4,×

D -TBoxes, -RBoxes, and -ABoxes, and DL4,×
D -conjunctive queries into

4LQSR-formulae in conjunctive normal form (CNF), which can be used to map
effectively CQA problems from the DL4,×

D -context into the 4LQSR-context. More
specifically, given a DL4,×

D -knowledge base KB and a DL4,×
D -conjunctive query Q,

using the function θ we can effectively construct the following 4LQSR-formulae
in CNF:

φKB :=
∧
H∈KB θ(H) ∧

∧12
i=1 ξi, ψQ := θ(Q) .2

Then, if we denote by Σ the answer set of Q w.r.t. KB and by Σ′ the answer
set of ψQ w.r.t. φKB, we have that Σ consists of all substitutions σ (involving
exactly the variables occurring in Q) such that θ(σ) ∈ Σ′. Since, by Lemma 1,
Σ′ can be computed effectively, then Σ can be computed effectively too. ut

4 A tableau-based procedure

In this section, we illustrate a KE-tableau based procedure that, given a 4LQSR-
formula φKB corresponding to a DL4,×

D -knowledge base and a 4LQSR-formula
2 The definition of the function θ is inspired to that of the function τ introduced in the
proof of Theorem 1 in [7]. Specifically, θ differs from τ as (i) it allows quantification
only on variables of level 0, (ii) it treats Boolean operations on concrete roles and
the product of concepts, and (iii) it constructs 4LQSR-formulae in CNF. In addition,
the constraints ξ1–ξ12 are similar to the constraints ψ1–ψ12 introduced in the proof
of Theorem 1 in [7]; they are introduced to guarantee that each model of φKB can
be transformed into a DL4,×

D -interpretation. Details of the construction of θ and of
ξ1–ξ12 can be found in [3].
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ψQ corresponding to a DL4,×
D -conjunctive query Q, yields all the substitutions

σ = {x1/y1, . . . , xn/yn}, with {x1, . . . , xn} = Var0(ψQ) and {y1, . . . , yn} ⊆
Var0(φKB), belonging to the answer set Σ′ of ψQ w.r.t. φKB.

Let φKB be the formula obtained from φKB by:
- moving universal quantifiers in φKB as inwards as possible according to the
rule (∀z)(A(z) ∧B(z))←→ ((∀z)A(z) ∧ (∀z)B(z)),

- renaming universally quantified variables so as to make them pairwise dis-
tinct.
Let F1, . . . , Fk be the conjuncts of φKB that are 4LQSR-quantifier-free atomic

formulae and S1, . . . , Sm the conjuncts of φKB that are 4LQSR-purely universal
formulae. For every Si = (∀zi1) . . . (∀zini)χi, i = 1, . . . ,m, we put

Exp(Si) :=
∧

{xa1 ,...,xani
}⊆Var0(φKB)

Si{zi1/xa1 , . . . , z
i
ni/xani}.

Let ΦKB := {Fj : i = 1, . . . , k} ∪
m⋃
i=1
Exp(Si).

To prepare for the KE-tableau based procedure to be described next, we
introduce some useful notions and notations (see [10] for a detailed overview of
KE-tableau, an optimized variant of semantic tableaux).

Let Φ = {C1, . . . , Cp} be a collection of disjunctions of 4LQSR-quantifier-free
atomic formulae of level 0 of the types: x = y, x ∈ X1, 〈x, y〉 ∈ X3. T is a
KE-tableau for Φ if there exists a finite sequence T1, . . . , Tt such that (i) T1 is
a one-branch tree consisting of the sequence C1, . . . , Cp, (ii) Tt = T , and (iii)
for each i < t, Ti+1 is obtained from Ti by an application of one of the rules in
Fig 1. The set of formulae Sβi = {β1, . . . , βn} \ {βi} occurring as premise in the
E-rule contains the complements of all the components of the formula β with
the exception of the component βi.

β1 ∨ . . . ∨ βn Sβi
βi

E-Rule

where Sβ
i

:= {β1, ..., βn} \ {βi},
for i = 1, ..., n

A | A
PB-Rule

with A a literal

Fig. 1. Expansion rules for the KE-tableau.

Let T be a KE-tableau. A branch ϑ of T is closed if it contains both A and
¬A, for some formula A. Otherwise, the branch is open. A formula β1∨ . . .∨βn is
fulfilled in a branch ϑ, if βi is in ϑ, for some i = 1, . . . , n. A branch ϑ is complete
if every formula β1 ∨ . . .∨βn occurring in ϑ is fulfilled. A KE-tableau is complete
if all its branches are complete.

Next we introduce the procedure Saturate-KB that takes as input the set
ΦKB constructed from a 4LQSR-formula φKB representing a DL4,×

D -knowledge
base KB as shown above, and yields a complete KE-tableau TKB for ΦKB.
Procedure 1 Saturate-KB(ΦKB)
1. TKB := ΦKB;
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2. Select an open branch ϑ of TKB that is not yet complete.
(a) Select a formula β1 ∨ . . . ∨ βn on ϑ that is not fulfilled.
(b) If Sβj is in ϑ, for some j ∈ {1, . . . , n}, apply the E-Rule to β1 ∨ . . . ∨ βn and

Sβj on ϑ and go to step 2.

(c) If Sβj is not in ϑ, for every j = 1, . . . , n, let Bβ be the collection of formulae
β1, . . . , βn present in ϑ and let βh be the lowest index formula such that βh ∈
{{β1, . . . , βn} \Bβ}, then apply the PB-rule to βh on ϑ, and go to step 2.

3. Return TKB.

Soundness of Procedure 1 can be easily proved in a standard way and its com-
pleteness can be shown much along the lines of Proposition 36 in [10]. Concerning
termination of Procedure 1, our proof is based on the following two facts. The
rules in Fig. 1 are applied only to non-fulfilled formulae on open branches and
tend to reduce the number of non-fulfilled formulae occurring on the considered
branch. In particular, when the E-Rule is applied on a branch ϑ, the number of
non-fulfilled formulae on ϑ decreases. In case of application of the PB-Rule on
a formula β = β1 ∨ . . . ∨ βn on a branch, the rule generates two branches. In
one of them the number of non-fulfilled formulae decreases (because β becomes
fulfilled). In the other one the number of non-fulfilled formulae stays constant
but the subset Bβ of {β1, . . . , βn} occurring on the branch gains a new element.
Once |Bβ | gets equal to n − 1, namely after at most n − 1 applications of the
PB-rule, the E-rule is applied and the formula β = β1∨ . . .∨βn becomes fulfilled,
thus decrementing the number of non-fulfilled formulae on the branch. Since the
number of non-fulfilled formulae on each open branch gets equal to zero after a
finite number of steps and the rules of Fig. 1 can be applied only to non-fulfilled
formulae on open branches, the procedure terminates.

By the completeness of Procedure 1, each open branch ϑ of TKB induces a
4LQSR-interpretation Mϑ such that Mϑ |= ΦKB. We define Mϑ = (Dϑ,Mϑ)
as follows. We put Dϑ := {x ∈ V0 : x occurs in ϑ}; Mϑx := x, for every x ∈ Dϑ;
MϑX

1
C = {x : x ∈ X1

C is in ϑ}, for every X1
C ∈ V1 occurring ϑ; MϑX

3
R = {〈x, y〉 :

〈x, y〉 ∈ X3
R is in ϑ}, for every X3

R ∈ V3 occurring in ϑ. It is easy to check that
Mϑ |= φKB and thus, plainly, that Mϑ |= φKB.

Next, we provide some complexity results. Let r be the maximum number
of universal quantifiers in Si, and k := |Var0(φKB)|. Then, each Si generates kr
expansions. Since the knowledge base contains m such formulae, the number of
disjunctions in the initial branch of the KE-tableau is m · kr. Next, let ` be the
maximum number of literals in Si, for i = 1, . . . ,m. Then, the maximum depth
of the KE-tableau, namely the maximum size of the models of ΦKB constructed
as illustrated above, is O(`mkr) and the number of leaves of the tableau, that is
the number of such models of ΦKB, is O(2`mkr ).

We now describe a procedure that, given a KE-tableau constructed by Proce-
dure 1 and a 4LQSR-formula ψQ representing a DL4,×

D -conjunctive query Q, yields
all the substitutions σ′ in the answer set Σ′ of ψQ w.r.t. φKB. By the soundness
of Procedure 1, we can limit ourselves to consider only the models Mϑ of φKB
induced by each open branch ϑ of TKB. For every open and complete branch ϑ
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of TKB, we construct a decision tree Dϑ such that every maximal branch of Dϑ
defines a substitution σ′ such that Mϑ |= ψQσ

′.
Let d be the number of literals in ψQ. Dϑ is a finite labelled tree of depth

d+ 1 whose labelling satisfies the following conditions, for i = 0, . . . , d: (i) every
node of Dϑ at level i is labelled with (σi, ψQσi), and, in particular, the root is
labelled with (σ′0, ψQσ′0), where σ′0 is the empty substitution; (ii) if a node at
level i is labelled with (σ′i, ψQσ′i), then its s-successors, with s > 0, are labelled
with

(
σ′i%

qi+1
1 , ψQ(σ′i%

qi+1
1 )

)
, . . . ,

(
σ′i%

qi+1
s , ψQ(σ′i%qi+1

s )
)
, where qi+1 is the (i +

1)-st conjunct of ψQσ′i and Sqi+1 = {%qi+1
1 , . . . , %qi+1

s } is the collection of the
substitutions % = {x1/y1, . . . , xj/yj} with {x1, . . . , xj} = Var0(qi+1) such that
p = qi+1%, for some literal p on ϑ. If s = 0, the node labelled with (σ′i, ψQσ′i) is
a leaf node and, if i = d, σ′i is added to Σ′.

Let δ(TKB) and λ(TKB) be, respectively, the maximum depth of TKB and
the number of leaves of TKB computed above. Plainly, δ(TKB) = O(`mkr) and
λ(TKB) = O(2`mkr). It is easy to verify that s = 2k is the maximum branching
of Dϑ. Since Dϑ is a s-ary tree of depth d+ 1, where d is the number of literals
in ψQ, and the s-successors of a node are computed in O(δ(TKB)) time, the
number of leaves in Dϑ is O(s(d+1)) = O(2k(d+1)) and they are computed in
O(2k(d+1)δ(TKB)) time. Finally, since we have λ(TKB) of such decision trees,
the answer set of ψQ w.r.t. φKB is computed in O(2k(d+1)δ(TKB)λ(TKB)) =
O(2k(d+1) · `mkr · 2`mkr) = O(`mkr2k(d+1)+`mkr) time. Since the size of φKB
and of ψQ are polynomially related to those of KB and of Q, respectively (see [3]
for details), the construction of the answer set of Q with respect to KB can
be done in double-exponential time. In case KB contains no role chain axioms
and qualified cardinality restrictions, the complexity of our CQA problem is in
EXPTIME, since the maximum number of universal quantifiers in φKB, namely
r, is a constant (in particular r = 3). We remark that such result is comparable
with the complexity of the CQA problem for a large family of description logics
such as SHIQ [15]. In particular, the CQA problem for the very expressive
description logic SROIQ turns out to be 2-NEXPTIME-complete.

5 Conclusions

We have introduced the description logic DL〈4LQSR,×〉(D) (DL4,×
D , for short) that

extends the logic DL〈4LQSR〉(D) with Boolean operations on concrete roles and
with the product of concepts. We addressed the problem of Conjunctive Query
Answering for the description logic DL4,×

D by formalizing DL4,×
D -knowledge bases

and DL4,×
D -conjunctive queries in terms of formulae of 4LQSR. Such formalization

seems to be promising for implementation purposes.
In our approach, we first constructed a KE-tableau TKB for φKB, a 4LQSR-

formalization of a given DL4,×
D -knowledge base KB, whose branches induce the

models of φKB. Then we computed the answer set of a 4LQSR-formula ψQ, repre-
senting a DL4,×

D -conjunctive query Q, with respect to φKB by means of a forest
of decision trees based on the branches of TKB and gave some complexity results.
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We plan to generalize our procedure with a data-type checker in order to
extend reasoning with data-types, and also to extend 4LQSR with data-type
groups. We also intend to improve the efficiency of the knowledge base saturation
algorithm and query answering algorithm, and to extend the expressiveness of the
queries. Finally, we intend to study a parallel model of the procedure described
and to provide an implementation of it.
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