
A variant of Turing machines with no control
states and its connection to bounded temporal

memory

Domenico Cantone and Salvatore Cristofaro

Dipartimento di Matematica e Informatica, Università di Catania
Viale Andrea Doria, 6, I-95125 Catania, Italy

{cantone,cristofaro}@dmi.unict.it

Abstract. We present a variant with no control states of the Turing
machine model of computation in which, at each computation step, the
operation to be performed next is determined by the symbol currently
scanned and by a bounded-length suffix of the sequence of the opera-
tions already executed on the tape. We show that our variant is Turing
complete, i.e., it can simulate any (standard) Turing machine. (In fact,
we shall provide a strong simulation which replicates the same tape con-
figurations assumed by the simulated Turing machine, without using
any additional tape symbol.) As a consequence, we argue that in order
to perform general computation tasks, Turing machines do not need to
memorize in their control states events arbitrarily far back in the past.

Keywords: Stateless Turing machines, Turing completeness, bounded
temporal memory.

1 Introduction

The notion of control states of a Turing machine (TM) is strictly related to that
of temporal memory, i.e., the ability to remember events occurred in the past.1
In fact, TMs can remember actions performed in the past (i.e., the operations
executed on the tape and/or the symbols read off from it) by encoding the
information related to such actions within their control states. Since TMs have
only finitely many control states, for each TM there is a fixed bound on the
amount of information that can be encoded within control states, and hence a
bound on the number of past actions that it can remember. However, despite this
quantitative limitation, there is conceptually no limit on how “old” the actions

Copyright c© by the paper’s authors. Copying permitted for private and academic pur-
poses.
V. Biló, A. Caruso (Eds.): ICTCS 2016, Proceedings of the 17th Italian Conference
on Theoretical Computer Science, 73100 Lecce, Italy, September 7–9 2016, pp. 36–48
published in CEUR Workshop Proceedins Vol-1720 at http://ceur-ws.org/Vol-1720
1 In this paper, by a Turing machine we mean a deterministic two-way single-tape
Turing machine with the instructions represented by quadruples, as described in [2].

http://ceur-ws.org/Vol-1720

A variant of Turing machines with no control states 37

remembered by control states can be, i.e., remembered actions can be arbitrarily
old. To clarify this point, consider for instance the case of a TM that recognizes
the strings η, over a 2-symbol alphabet {a, b}, whose leftmost and rightmost
symbols are different. When the machine reads the rightmost symbol of η, it
needs only to remember which was the leftmost symbol. Thus, only two control
states suffice for this purpose: one to remember that the leftmost symbol of η
was ‘a’ and one to remember that it was, instead, ‘b’. Notice, however, that the
number of actions that the machine can perform between the reading of the
leftmost and of the rightmost symbols of η can be arbitrarily large, depending
on the length of η, and therefore, when the TM reads the rightmost symbol of η,
the previous reading of the leftmost symbol turns out to be arbitrarily old.

The capability to remember subsequences of arbitrarily old actions is a pecu-
liarity of TMs and, more generally, of any other device which uses control states
(e.g., finite automata). The main aim of this paper is to investigate to what extent
this property of TMs is demanded for performing general computations. To this
end, we introduce a stateless variant of TMs (namely, with no control states or,
equivalently, with only one control state), named Stateless Bounded Temporal
Memory Turing Machines (SBTMs).2 From a purely mechanical point of view,
SBTMs behave identically to standard TMs. However, at each computation step,
the operation to be performed next on the tape by the scanning head of a SBTM
(i.e., printing a symbol onto the scanned cell, or moving to the right or to the left
of the current position) is determined by a suffix of the sequence of the operations
already executed (including the symbols read by the head after these operations
and, therefore, also the symbol currently scanned),3 whose length cannot exceed
a bound depending solely on the particular machine.

We shall prove that SBTMs are Turing complete, i.e., they can simulate any
standard TM. In fact, we shall see that for each TM M one can construct a
SBTM V which faithfully simulates M, in the sense that (i) V does not use any
additional symbol other than those used by M, (ii) on any input η, V halts if
and only if so does M, and (iii) when, on input η, V and M halt, they reach
the same tape configuration, while scanning the same cell. As a consequence, we
shall also show that the above mentioned ability of TMs to remember within
their control states subsequences of arbitrarily old actions is not strictly required
for performing general computation tasks (see Section 3.1 for a more precise
statement of this fact). The latter property entails in particular a bound on the
amount of sequential data items needed to be memorized during computations,
which is a relevant topic, e.g., in the field of Streaming Algorithms [5].

Some Turing complete variants of stateless TMs have already been proposed
in the literature; however, these act quite differently from ours. This is the case,
for instance, for the stateless TM studied in [1], named JTM. The head of a JTM

2 Notice that restricting to one the number of control states in TMs results in a
decreased computational power (see [6]).

3 In fact, since SBTMs are devoid of the additional component of the set of control
states, the only way for these devices to be aware if something happened in the past,
is to trace back their own computations.

38 D. Cantone and S. Cristofaro

spans a window of three consecutive tape cells and can thus read/write blocks of
three symbols in a single move. However, motion to the left/right of the current
head position can occur only by one cell at a time. It turns out that JTMs are
Turing complete. Stateless variants of several computational devices other than
TMs have also been investigated in the literature, mainly stateless automata such
as stateless restarting automata [3], stateless multihead automata [4], stateless
pushdown automata [7], etc. However, these devices, even in their original form,
have lower computational power than TMs.

The paper is organized as follows. Below we briefly review some notations and
terminology which will be used in the rest of the paper. Then, in Section 2, we
provide the definition of SBTMs and their semantics. Subsequently, in Section 3,
we prove the Turing completeness of SBTMs, based on a simple encoding of the
states of a TM, and also discuss other similar encodings. Then, in Section 3.1, we
introduce a class of TMs with bounded temporal memory and prove its Turing
completeness (based on the Turing completeness of SBTMs), thereby showing
the independence of the computational power of TMs from the property of
remembering subsequences of arbitrarily old actions within their control states.
Finally, we draw our conclusions in Section 4.

Basic notations and definitions. Both in the case of TMs and SBTMs,
we shall assume that tape symbols are drawn from the set of symbols S :=
{s0, s1, s2, . . .}, where s0 is the blank. Often we shall write s0 as �. Additionally,
we shall use the symbols in the set A := {x,y,�} to denote certain active
operations (as will be specified in the next section).

Throughout the paper, by a string we shall always mean a finite sequence of
symbols belonging to the set S ∪A . In particular, for every B ⊆ S ∪A , the
set of all strings whose symbols belong to B will be denoted by B∗. We shall
write ε for the empty string and |α| for the length of the string α. Notice that we
do not distinguish between a symbol and the string of length 1 consisting only
of that symbol. The concatenation of two strings α and β is denoted by α .β or,
more simply, by αβ. For every string α and each n > 0, αn denotes the string of
length n|α| consisting of the concatenation of n copies of α; thus, in particular,
we put α0 := ε. A string α is a suffix (resp., prefix) of a string β, and in such a
case we write α w β (resp., α v β), if β = γα (resp., β = αγ), for some string γ;
α is a factor of β, if β = λαρ, for some strings λ and ρ.

Given a nonempty string α, we denote with Head(α) (resp., Last(α)) the
leftmost (resp., rightmost) symbol of α, and denote with Init(α) (resp., Tail(α))
the string of length |α| − 1 obtained by deleting the rightmost (resp., leftmost)
symbol of α; we also put Head(ε) := Last(ε) := � and Init(ε) := Tail(ε) := ε.

2 SBTMs and their semantics

Informal description. A SBTM is equipped with the very same hardware
components as a TM (see [2]), namely, a linear tape, infinite in both directions,
divided into cells, with a head that at any given instant of time is positioned

A variant of Turing machines with no control states 39

over a particular cell (the scanned cell), and a finite control box that determines
the operations that the head performs on the tape. As for TMs, such operations
are of the following four types: (a) reading the symbol in the scanned cell, (b)
printing a symbol onto the scanned cell, (c) moving to the left by one cell, and
(d) moving to the right by one cell. However, only the operations of type (b), (c),
and (d)–the active operations–are actually determined by the control box, since
the read operation takes place automatically after each active operation and at
the very beginning of each computation by a SBTM (see next).

Before a SBTM begins its computation with a string η as input, the symbols
of η are placed (from left to right) in consecutive cells of the tape (the input cells),
one symbol per cell, whereas the remaining cells of the tape are left “empty”, i.e.,
they contain a special blank symbol; the head is positioned over (i.e., scans) the
initial cell, namely, the cell immediately to the left of the input cell containing
the first (i.e., leftmost) symbol of η. This is the initial configuration for a SBTM
with input η. Then, starting from an initial configuration, SBTMs execute their
computation steps at discrete instants of time, beginning at time i = 0. Each
computation step, but the initial one, consists of the execution of an active
operation, of one of the types (b), (c), or (d), immediately followed by a read
operation from the cell being scanned by the head. In particular, for i > 0, the
active operation O performed at Stepi is determined by the control box of the
SBTM as a function of a suffix S of the sequence of the computation steps executed
up to Stepi−1 (included). In this case, we say that the SBTM has executed the
computation rule (or c-rule) S _ O. Concerning Step0, it is also convenient
to regard it as consisting of the execution of an active operation followed by a
read operation, as the remaining steps. Thus, we think of Step0 as consisting of
the initial activation of the SBTM-control box–the zero operation–immediately
followed by a read operation (of the blank symbol contained in the initial cell).
After executing a computation step, a SBTM proceeds to the next step, and so
on, until it possibly halts; this happens when none of the c-rules S _ O of the
SBTM can be executed, for any suffix S of the sequence of computation steps
executed up to then. Any finite sequence of consecutively executed computation
steps constitutes a (computation) trace of the SBTM, whereas a complete trace
is a trace starting at the initial computation Step0. The computation history of
a SBTM V is the whole sequence of configurations assumed by the tape of V
(namely, tape inscriptions along with head position) during the execution of the
computation steps of V.

From the above description, it emerges that a SBTM is essentially a (finite)
collection of c-rules. In particular, a deterministic SBTM is a suffix-free collection
of c-rules, namely a collection of c-rules containing no two distinct c-rules S ′ _ O′

and S ′′ _ O′′ such that S ′ is a suffix of S ′′.4 (Thus, intuitively, at any given
computation step, the active operation O that the head of a deterministic SBTM
can perform, if any, is uniquely determined by the previous computation steps.)

4 In this paper we are interested only in deterministic SBTMs.

40 D. Cantone and S. Cristofaro

Formal definition. To formally define SBTMs, we need a convenient represen-
tation of c-rules and their components (i.e., traces and active operations). If we
represent the zero operation with the symbol �, the left and right head motions
with the symbols x and y, respectively, and, for x ∈ S , we represent the op-
eration of printing x onto the scanned cell with the very same symbol x, then
every trace T can be handily represented as a string (in the alphabet S ∪A)
as follows. First of all, we designate each computation step S by a 2-symbol
string ox, where o ∈ S ∪ A is the symbol denoting the active operation O
performed by S (as explained earlier) and x is the symbol subsequently read
from the tape by step S, immediately after the execution of O. Then a trace T
can be represented with the string resulting from concatenating the 2-symbol
strings representing the computation steps in T , in the same order in which they
occur in it. For instance, let T consist of the two computation steps S1 and S2,
where: (i) S1 consists of moving the head one cell to the right and then reading
the symbol � from the tape; and (ii) S2 consists of printing s1 onto the scanned
cell and then reading the same symbol s1. Then, T is represented by the string
y�s1s1. Observe also that any complete trace of a SBTM, i.e., a trace starting at
the initial Step0, is represented by a string with prefix ��. Finally, we represent
a c-rule S _ O as the ordered pair (σ,o), where σ is the string representing the
trace S (as described above), and o is the symbol denoting the active operation
O.

At this point, a SBTM could be formally defined simply as the set of the
ordered pairs (σ,o) representing its c-rules S _ O. However, such an approach
would require particular care to avoid circularity, since the notion of traces of
SBTMs is defined in terms of the very same notion of c-rules which we want to
define. For the sake of minimality, we shall circumvent this circularity problem by
simply admitting, among the ordered pairs representing ‘genuine’ c-rules, even
those pairs (σ,o) in which the string σ could possibly represent no valid trace.
Thus we give the following definitions.

Definition 1. A c-rule is an ordered pair (σ,o), also written as σ _ o, where
σ is any string in the alphabet S ∪A and o ∈ S ∪ {x,y}. A set of c-rules is
suffix-free, if it contains no two distinct c-rules σ′ _ o′ and σ′′ _ o′′ such that
σ′ w σ′′.

Definition 2. A (deterministic) SBTM is any finite, suffix-free set of c-rules.
The alphabet of a SBTM V is the set SV of all the tape symbols, but the blank
�, occurring in any of its c-rules.

2.1 Formal semantics of SBTMs

Let V be a SBTM. Suppose that V is ran with some given input string η ∈ (SV)∗.
For any time instant i > 0, we denote with T V

i (η) the (string representing
the) complete trace of V from Step0 up to Stepi, and with CVi (η) the tape
configuration reached at the end of Stepi. Letting C be the cell scanned by the
head at the end of Stepi, we represent CVi (η) as the triple (λ, s, ρ) in which:

A variant of Turing machines with no control states 41

(a) λ is the string consisting of the symbols contained, at the end of Stepi, in
the (possibly empty) portion of the tape to the left of C from the leftmost cell
that has been scanned in any of the computation steps up to Stepi; (b) s is the
symbol contained in C at the end of Stepi; and (c) ρ is the string consisting of
the symbols contained, at the end of Stepi, in the (possibly empty) portion of
the tape to the right of C up to the rightmost cell that either has been scanned
in any of the computation steps up to Stepi or is an input cell.

We say that a trace T V
i (η) is terminal (relative to V), if there is no c-rule

σ _ o in V such that σ is a suffix of T V
i (η).

The formal definitions of CVi (η) and T V
i (η), for i > 0, are provided recursively

as follows. Initially, for i = 0, we put

CV0 (η) := (ε,�, η) and T V
0 (η) := �� .

For i > 0, let CVi−1(η) := (λ, s, ρ). Then, if T V
i−1(η) is terminal, we put CVi (η) :=

CVi−1(η) and T V
i (η) := T V

i−1(η). Otherwise, let σ _ o be the c-rule of V such
that σ is a suffix of T V

i−1(η).5 Then we put recursively:

CVi (η) / T V
i (η) :=

(λ,o, ρ) / T V

i−1(η)oo, if o ∈ S

(Init(λ), Last(λ), s .ρ) / T V
i−1(η)xLast(λ), if o = x

(λ .s,Head(ρ),Tail(ρ)) / T V
i−1(η)yHead(ρ), if o = y .

The sequence CV0 (η), CV1 (η), CV2 (η), . . . is the computation history of V with input
η. We say that V with input η halts, and produce as output a string ω ∈ (SV)∗
(and write V(η) ↓ ω), if, for some i > 0, we have that T V

i (η) is terminal and ω is
the string obtained from λsρ by deleting all occurrences of the symbol �, where
(λ, s, ρ) := CVi (η).

As in the case of TMs, SBTMs can be used in three different modalities: (a) to
compute partial functions, (b) as string generators, and (c) as language acceptors.
Specifically, given a SBTM V, we say that:

(a) V computes a (partial) string function f over (SV)∗, if, for all η, ω ∈ (SV)∗,

V(η) ↓ ω iff ω = f(η) .

(b) V generates a string ω ∈ (SV)∗, if V(ε) ↓ ω.

Finally, in order to use SBTMs as language acceptors, we must first define
what we mean for a SBTM to accept/reject its input. Since SBTMs have no
control states, a possibility could be the following one. We extend the definition
of a SBTM by including two new distinguished symbols, say the symbols y (for
“Yes”) and n (for “No”), such that for no c-rule σ _ o in the SBTM it is the
case that y or n occurs in σ (but possibly we can have that o = y or o = n).6
Then we say that
5 Observe that, according to Definition 2 there is in fact exactly one such c-rule σ _ o.
6 Thus, if the SBTM prints y or n then it halts.

42 D. Cantone and S. Cristofaro

(c) a SBTM V accepts (resp., rejects) an input string η ∈ (SV \ {y,n})∗, if there
is a time instant i > 0 such that Last(T V

i (η)) = y (resp., Last(T V
i (η)) = n).

Example 1. Let us consider the SBTM V, consisting of the following c-rules

(1) �� _y (2) ��y� _ n (3) ��ys_ s (4) ssyt_ s

(5) ystt_ y (6) yussy� _ y (7) ysssy� _ n,

where s, t, u ∈ {s1, s2}, with s 6= u. Then V accepts exactly the nonempty strings
in {s1, s2}∗ whose leftmost and rightmost symbols are different, while rejecting
all remaining strings in {s1, s2}∗. The SBTM V behaves as follows. Starting with
an input string η on its tape, V initially moves one cell to the right (cf. c-rule
(1)) and checks whether the newly scanned cell C is empty; if C is empty (which
means that η is the empty string), then V prints the symbol n onto C (cf. c-rule
(2)) and halts, thus rejecting η; otherwise, if C contains a symbol s ∈ {s1, s2},
then V prints back s onto C (cf. c-rule (3)). Then, each time V scans a nonempty
cell D, i.e., a cell containing a symbol t ∈ {s1, s2}, it checks which of the following
two conditions holds, namely: (i) the cell D has just been reached after a right
head motion preceded by a printing action of a symbol s ∈ {s1, s2}; (ii) the cell
D has just been involved in a printing action preceded by a right head motion.
In case (i), V prints the symbol s over D (cf. c-rule (4)), otherwise, in case (ii),
V moves one cell to the right of D (cf. c-rule (5)). Finally, when an empty cell
E is encountered (following a right head motion), it is checked whether the two
symbols s and u previously read from the two adjacent cells to the left of E are
different. If this is the case, V prints the symbol y onto E (cf. c-rule (6)) and
halts, thus accepting η; otherwise, if s and u are equal, V prints the symbol n (cf.
c-rule (7)) and halts, thus rejecting η. Observe that, during the computation, the
symbols of the input string η, but the leftmost one, are in turn replaced by the
leftmost symbol of η; hence, at any step, the leftmost symbol of η is remembered
by the last printed symbol. ut

3 Turing completeness of SBTMs

We prove the Turing completeness of SBTMs by constructing for every TM M a
SBTM 〈M〉 such that M and 〈M〉 are equivalent in the following strong sense,
namely, for each input string η: (a) M halts iff 〈M〉 halts; and (b) when M and
〈M〉 halt, they do with the same tape configuration, i.e., with the same tape
content and the same head position.7 (In fact, we shall see informally that the
computations of M and 〈M〉 are synchronized in an even stronger way.)

To begin with, let us review some useful notations and concepts pertaining to
TMs. We assume that the control states that any TM M can assume belong to the
set Q = {q0, q1, q2, . . .}, where q0 is bound to denote the initial state ofM. Turing
machine’s instructions are represented as quadruples of the form (q, x,o, p), where
7 In Section 3.1 we will see, as well, how to construct, for each SBTM V, an equivalent

TM 〈|V|〉 which simulates V.

A variant of Turing machines with no control states 43

q, p ∈ Q, x ∈ S , and o ∈ S ∪ {x,y}, whose meaning is that when a TM is
in state q while reading the symbol x, the head performs the active operation
represented by o, and then the TM enters state p (see [2]). A (deterministic)
TM is then formally defined as a finite set of quadruples of the above type, no
two of which begin with the same state-symbol pair (q, x), and such that at least
one quadruple begins with q0. For every TM M := {(qi, xi,oi, pi) : 0 6 i 6 n},
where n > 0, we put:

QM := {qi, pi : 0 6 i 6 n} and SM := {�}∪({xi,oi : 0 6 i 6 n}\{x,y}) .

Thus, QM and SM are the set of states and the tape alphabet of M, respectively.
We say that a TM M activates a state-symbol pair (q, x) ∈ QM ×SM when M
reads the symbol x from the tape while in state q.8

Let M be a given TM and SM its tape alphabet. Also, let m be the smallest
positive index such that SM ⊆ {s0, s1, . . . , sm}. For simplicity, we shall write sm
as s (hence, s 6= �). In addition, for x ∈ S , let the 2-symbol string xx be denoted
by LxM.9 The SBTM 〈M〉 intended to simulate the TM M will encode each state
qi of M with the trace LsML�Mi+2LsM, consisting of a sequence of (i+ 4) printing
steps which uniquely characterizes qi. The simulation proceeds in such a way
that when M activates the state-symbol pair (qi, x), (i) the string LsML�Mi+2LsMLxM
turns out to be a suffix of the current complete trace of 〈M〉 and, additionally,
(ii) M and 〈M〉 have the same tape configuration.

The first state-symbol pair activated by M is (q0,�). Thus we put into 〈M〉
the following block S0 of c-rules:

�� _ s, ��LsM _ �, ��LsML�M _ �, ��LsML�M2 _ s, ��LsML�M2LsM _ � .

The c-rules in S0 have the effect to generate the complete trace ��LsML�M2LsML�M
(while leaving the tape as in its initial configuration), whose suffix LsML�M2LsML�M
correctly encodes the activation of the pair (q0,�). Notice that the block S0 is
independent of the specific TM M.

Next, for each instruction I := (qi, x,o, qj) in M we define a corresponding
simulating block 〈I〉 of c-rules for 〈M〉. We distinguish the following cases:

Case o = y, with y ∈ S : In this case 〈I〉 consists of the following c-rules:

LsML�Mi+2LsMLxM _ s , LsML�Mi+2LsMLxMLsML�Mk _ � , for 0 6 k 6 j + 1

LsML�Mi+2LsMLxMLsML�Mj+2 _ s , LsML�Mi+2LsMLxMLsML�Mj+2LsM _ y .

[Comment: Assuming recursively that the current complete trace T of the simu-
lating computation of 〈M〉 has the suffix LsML�Mi+2LsMLxM (corresponding to the
8 Note that, since a TM initially scans the blank preceding the leftmost symbol of its
input string (see [2]), the pair (q0,�) is always activated by every TM at the very
beginning of each of its computations.

9 Thus, LxM represents the computation step consisting of printing the symbol x and
then reading the same symbol x (just printed) from the tape.

44 D. Cantone and S. Cristofaro

activation of the pair (qi, x)), on a tape configuration C in which the head scans a
cell C with the symbol x, the above block of c-rules has the effect of: (i) append-
ing the new suffix LsML�Mj+2LsMLyM to T ; and (ii) returning a tape configuration
C′ in which the head scans the cell C, now containing the symbol y, and that
otherwise is identical to C. Notice that the suffix LsML�Mj+2LsMLyM encodes the
pair state-symbol (qj , y), which is the next pair to be activated by M.]

Case o ∈ {x,y}: In this case 〈I〉 consists of the c-rule LsML�Mi+2LsMLxM _ o,
plus the blocks 〈I〉z, for each z ∈ SM, consisting of the following c-rules:

LsML�Mi+2LsMLxMoz _ s , LsML�Mi+2LsMLxMozLsML�Mk _ � , for 0 6 k 6 j + 1

LsML�Mi+2LsMLxMozLsML�Mj+2 _ s , LsML�Mi+2LsMLxMozLsML�Mj+2LsM _ z .

[Comment: For z ∈ SM, let us put 〈I〉+
z := 〈I〉z ∪

{
LsML�Mi+2LsMLxM _ o

}
. For

simplicity, let us suppose that o = x (we can reason similarly in the case in
which o = y). Assuming recursively that the current complete trace T of the
simulating computation of 〈M〉 has the suffix LsML�Mi+2LsMLxM (corresponding to
the activation of the pair (qi, x)), on a tape configuration C in which the head
scans a cell C and the cell L on the left of C contains the tape symbol z ∈ SM,
the subblock 〈I〉+

z of 〈I〉 has the effect of: (i) appending to T the new suffix
ozLsML�Mj+2LsMLzM; and (ii) returning a new tape configuration C′ in which the
head scans the cell L and that otherwise is identical to C. Notice that the suffix
LsML�Mj+2LsMLzM of the prolongated trace of 〈M〉 encodes the pair state-symbol
(qj , z), which is the next pair to be activated by M.]

Finally, we put:
〈M〉 := S0 ∪

⋃
I ∈M 〈I〉 ,

completing the formal definition of 〈M〉.
It can easily be verified that the set of c-rules 〈M〉 just given is suffix-tree

(and, therefore, correctly defines a SBTM according to Definition 2). Indeed,
observe that, for each c-rule σ _ o in the set

⋃
I∈M 〈I〉, the string σ starts with

a prefix π of the form LsML�Mi+2LsMLxM, for some i > 0 and x ∈ SM, such that,
for each c-rule σ′ _ o′ in

⋃
I∈M 〈I〉: (i) π is not a factor of Tail(σ′); and (ii) if

π v σ′ and |σ| = |σ′|, then σ = σ′ and o = o′. Also, observe that each c-rule
σ _ o in S0 is such that Head(σ) = �, and that � does not occur in any c-rule
in
⋃
I∈M 〈I〉. Notice also that, apart from the trivial case in which SM = {�}

(in which case we have s = s1 /∈ SM), the c-rules of 〈M〉 use only tape symbols
in the alphabet SM of M. Finally, we observe that the above comments to the
definitions of the blocks 〈I〉 of c-rules, for each instruction I ∈M, could be easily
translated into a formal proof of the fact that 〈M〉 correctly simulates M in the
strong sense described at the beginning of the section.

Complexity of various encodings. As discussed above, the main idea behind
the construction of 〈M〉 is to simulate the activation by M of each state-symbol
pair (qi, x) by means of the trace LsML�Mi+2LsMLxM of 〈M〉, where LsML�Mi+2LsM

A variant of Turing machines with no control states 45

encodes the state qi. This approach can be generalized as follows. First of all, we
associate to each state qi ofM a suitable codeword c(qi) in the alphabet {LsM, L�M}
(in which each of the two strings LsM and L�M is temporarily regarded as a single
symbol) and then simulate the activation of any pair (qi, x) by means of the trace
c(qi) . LxM. The case c(qi) := LsML�Mi+2LsM corresponds to the approach adopted
in the proof sketched above. For each choice of the particular encoding c of the
states of M, the definitions of the sets S0 and 〈I〉, for I ∈M, provided before,
generalize straightforwardly, thus obtaining the corresponding sets of c-rules Sc

0
and 〈I〉c, for I ∈M (details are omitted for brevity). Clearly, we are interested
only in encodings c which are admissible, in the sense that the resulting set of
c-rules

〈M〉c := Sc
0 ∪

⋃
I ∈M

〈I〉c

is suffix-free. For instance, a family of admissible encodings is provided by the
functions ch, for h > 2, such that ch(qi) := LsML�Mi+hLsM. Again, for h = 2
we obtain the encoding c2 adopted in our previous proof. If we assume that
QM = {q0, q1, . . . , qk−1}, for some k > 1 (in which case we say that M is tight),
each of the encodings ch generates a SBTM 〈M〉ch whose longest c-rule has linear
length in the number k of the states of M. More in general, for each TM T and
SBTM V, let us define the sizes ‖T‖ and ‖V‖ by putting:

‖T‖ := |QT| and ‖V‖ := max{|σ| : σ _ o ∈ V, for some o ∈ S ∪{x,y}}

(where |QT| denotes the cardinality of QT). Then, using the asymptotic notation
Θ, we have that ‖〈M〉ch‖ = Θ(‖M‖), for each h > 2. This indeed follows from
the facts that (A) for each encoding c, ‖〈M〉c‖ = Θ(max({|c(q)| : q ∈ QM})),
and (B) |ch(qi)| = 2 · (2+ i+h), for h > 2. Notice, however, that more “compact”
admissible encodings c can be devised such that ‖〈M〉c‖ = Θ(log ‖M‖). Indeed,
let ζ0, ζ1, ζ2, . . . be the list in quasi-lexicographic order10 of the nonempty strings
ζ in the alphabet {LsM, L�M} such that ζ contains no two consecutive occurrences
of LsM, and consider the encoding f such that f(qi) := LsM2L�MζiL�MLsM2, for each
i > 0. By reasoning much as we did for 〈M〉, it can be shown that 〈M〉f is
suffix-free, i.e., f is admissible.11 Concerning the size of 〈M〉f , we show next that
it is logarithmic in the size of M, provided that M is tight. To begin with, it can
easily be verified that, for each n > 0, the number of strings of length n in the
alphabet {LsM, L�M} containing no two consecutive LsM’s is exactly Fn+2, where
Fn is the nth Fibonacci number.12 Exploiting the identity

∑n
j=1 Fj = Fn+2 − 1

10 Hence, the strings ζi’s are firstly ordered by their length and then lexicographically,
where w.l.o.g. we conventionally assume that L�M < LsM.

11 Note that, if we remove from f(qi) the “symbol” L�M surrounding ζi, the resulting
encoding g(qi) := LsM2ζiLsM2 turns out to be not admissible. For, consider the case
in which the TM M contains the instruction I := (q0, s, x, q3), where x ∈ S . Then,
since ζ0 = L�M and ζ3 = L�MLsM, we have g(q0) = LsM2L�MLsM2 and g(q3) = LsM2L�MLsM3,
so that the set 〈I〉g contains the c-rules LsM2L�MLsM3 _ s and LsM2L�MLsM5L�MLsM3 _ x,
plainly implying that 〈M〉g is not suffix-free.

12 Thus, F0 = 0, F1 = 1, and Fk+2 = Fk + Fk+1, for k > 0.

46 D. Cantone and S. Cristofaro

(for n > 0), we have

F|ζi|+3 − 3 =
|ζi|−1∑
j=1

Fj+2 6 i <

|ζi|∑
j=1

Fj+2 = F|ζi|+4 − 3

for each i > 2. Given that Fn = Θ(φn) (in fact Fn

φn → 1√
5), where φ := 1+

√
5

2 ≈
1.618 is the golden ratio, the latter inequalities imply |ζi| = Θ(logφ i). Hence we
have |f(qi)| = Θ(logφ i), which yields, by (A) above and by the tightness of M,

‖〈M〉f‖ = Θ(logφ ‖M‖) ,

proving that the size of 〈M〉f is logarithmic in the size of M, when M is tight.

3.1 Standard TMs with bounded temporal memory

The intuitive considerations of Section 1 concerning the independence of the
computational power of TMs from the property of these devices to remember
subsequences of arbitrarily old actions within their control states can be made
more precise by using a notion of trace of TMs identical to that of SBTM’s trace
introduced earlier. More precisely, a trace of a TM M is a sequence of consecutive
computation steps of M, where a computation step consists in the execution of
an active operation of the scanning head on the tape (i.e., printing a symbol or
a left/right motion) followed by the subsequent reading of the symbol contained
in the newly scanned cell, as in the case of SBTMs.

Next, suppose that a TM M performs an active operation O on its tape, during
a given computation step S. Then, letting T be the complete trace ofM consisting
of the whole sequence of computation steps preceding S, it can be readily verified
that O is uniquely determined by T ; i.e., there is a function, ΥM, which maps each
complete trace T to the particular active operation O := ΥM(T) to be performed
next. Now, let us define the class Ω of TMs with bounded temporal memory.
Specifically, the class Ω consists of all TMs M for which there is a constant `

M

(depending on M) such that the (active) operations to be performed next on the
tape can be determined only by suffixes of the complete traces of M consisting of
at most `

M
consecutive computation steps; i.e., more formally, the function ΥM

is such that ΥM(T ′) = ΥM(T ′′), for any two complete traces T ′ and T ′′ which
share a common suffix of `

M
computation steps. Intuitively, TMs in the class Ω

do not care of (or forget) actions strictly older than `
M

computation steps. Then,
the question arises whether the computational power of TMs decreases when we
restrict to the class Ω above. As will be outlined below, given any SBTM V,
an equivalent TM 〈|V|〉 can be constructed such that 〈|V|〉 ∈ Ω; therefore, since
SBTMs are Turing complete, it follows that every TM M is equivalent to some
TM T ∈ Ω (e.g., T := 〈|〈M〉|〉). Hence the answer to the above question is that
the class Ω is, in fact, Turing complete.

The basic idea of the construction of the TM 〈|V|〉, for a given SBTM V, is to
use the control states of 〈|V|〉 to store in turn the strings θ of length 2`− 1, with

A variant of Turing machines with no control states 47

` := ‖V‖
2 , such that θ .x represents the last ` computation steps of the current

(complete) trace of 〈|V|〉, where x is the symbol currently scanned by the head of
〈|V|〉. When 〈|V|〉 assumes a state q, while reading the symbol x from the tape, the
particular operation O that 〈|V|〉 has to perform next is determined by the c-rule
σ .x_ o of V such that σ is a suffix of the string θ stored within q, i.e, O is the
operation represented by o. Formally, the construction of 〈|V|〉 goes as follows. Let
θ0, θ1, θ2, . . . be any listing of the strings in the alphabet B := SV∪{�,�,x,y},
where θ0 = �, and let Q : B∗ −→ {q0, q1, q2, . . .} be the function such that, for
each i > 0: if |θi| < 2`, thenQ(θi) = qi; otherwise, if |θi| > 2`, thenQ(θi) = Q(θi),
where θi is the suffix of θi of length 2` − 1.13 Then, we let 〈|V|〉 be the Turing
machine whose instructions are all the quadruples (Q(θ), x,o,Q(θxo)) such that
σ .x_ o ∈ V and σ w θ, where θ ∈ B∗, x ∈ SV∪{�}, and o ∈ SV∪{�,x,y}.
It can be verified that 〈|V|〉 is indeed a TM equivalent to V and that 〈|V|〉 ∈ Ω
(details are omitted for brevity).

4 Conclusions

We have presented a variant of the Turing machine model of computation with no
control states, named SBTM. In each computation step, the operation performed
by the head is determined by the symbol currently scanned and by a suffix of
bounded length of the sequence of the computation steps previously executed. We
have shown that SBTMs are Turing complete, namely they are computationally
as powerful as standard Turing machines. In addition, based on the Turing
completeness of SBTMs, we have also shown that the computational power of
TMs is independent of their ability to remember subsequences of arbitrarily old
actions within their control states.

We plan to investigate further computational properties of SBTMs and, in
particular, properties related to the following notion of string complexity which
naturally arises in this context: given a string η, the SBTM-complexity of η is
defined as the size of a minimum sized SBTM V such that: (i) the alphabet of
V consists precisely of the symbols occurring in η; and (ii) V generates η.

Acknowledgments

This work has been partially supported by the FIR project COMPACT: “Com-
putazione affidabile su testi firmati” (code D84C46) and by project PRISMA
PON04a2_A, funded by the Italian Ministry of University and Research within
the PON 2007-2013 “Smart cities and communities” framework.

References

1. Joshua J. Arulanandham: Unconventional “Stateless” Turing-Like Machines. In:
Selim G. Akl, Cristian S. Calude, Michael J. Dinneen, Grzegorz Rozenberg, and

13 Note that Q(�) = q0.

48 D. Cantone and S. Cristofaro

H. Todd Wareham, editors, Unconventional Computation, volume 4618 of Lecture
Notes in Computer Science, pages 55–61. Springer Berlin Heidelberg, 2007.

2. Martin Davis, Ron Sigal, Elaine J. Weyuker: Computability, complexity, and lan-
guages. Second Edition, Academic Press, 1994.

3. M. Kutrib, H. Messerschmidt, O. Friedrich: On stateless deterministic restarting
automata. Acta Informatica, volume 47, pages 391–412. Springer-Verlag, 2010.

4. O. H. Ibarra, J. Karhumäki, A. Okhotin: On Stateless Multihead Automata: Hier-
archies and the Emptiness Problem. In: E. S. Laber, C. Bornstein, L. T. Nogueira,
L. Faria, editors, LATIN 2008: Theoretical Informatics, volume 4957 of Lecture Notes
in Computer Science, pages 94–105, Springer Berlin Heidelberg, 2008.

5. S. Muthukrishnan: Data Streams: Algorithms and Applications. Foundations and
Trends in Theoretical Computer Science, volume 1, issue 2, pages 117–236, 2005.

6. Claude E. Shannon: A universal Turing machine with two internal states. Automata
Studies, Annals of Mathematics Studies, volume 34, pages 157–165, 1956.

7. L. Valiant: Decision procedures for families of deterministic pushdown automata.
PhD thesis, University of Warwick, 1973.

	A variant of Turing machines with no control states and its connection to bounded temporal memory
	Introduction
	SBTMs and their semantics
	Formal semantics of SBTMs

	Turing completeness of SBTMs
	Standard TMs with bounded temporal memory

	Conclusions

