
Runtime checks as nominal types

Paola Giannini1, Marco Servetto2, and Elena Zucca3

1 Università del Piemonte Orientale, Italy
giannini@di.unipmn.it

2 Victoria University of Wellington, New Zealand
marco.servetto@ecs.vuw.ac.nz

3 Università di Genova, Italy
elena.zucca@unige.it

Abstract. We propose a language design where types can be enriched
by tags corresponding to predicates written by the programmer. For in-
stance, int&positive is a type, where positive is a user-defined boolean
function on integers. Expressions of type int&positive are obtained by
an explicit check construct, analogous to cast, e.g., (positive) 2. In this
way, the fact that the value of an expression is guaranteed to succeed a
runtime check is a static property which can be controlled by the type
system. We formalize our proposal as an extension of the simply-typed
lambda calculus, and prove, besides soundness, the fact that expressions of
tagged types reduce to values which satisfy the corresponding predicates.

1 Introduction

It is very common in programming that an application needs to handle only
values which satisfy properties which can be checked through user-defined code.
As a very simple example, integer numbers which are odd, or positive, or prime.
In nominally typed languages, it is possible to declare specialized types which
enforce/encode such invariants. This is obtained by performing runtime checks
on the arguments of the constructor of the new type. There are two variations of
this technique, the first is wrapping the original type, and the second is extending
it. We describe them, by examples, using Java syntax.

The first solution is illustrated by the example of odd numbers:

class Odd{
public final int inner;
public Odd(int inner){

if (inner %2==0){// not odd
throw new Error (...); }

Copyright c© by the paper’s authors. Copying permitted for private and academic pur-
poses.
V. Biló, A. Caruso (Eds.): ICTCS 2016, Proceedings of the 17th Italian Conference
on Theoretical Computer Science, 73100 Lecce, Italy, September 7–9 2016, pp. 75–87
published in CEUR Workshop Proceedins Vol-1720 at http://ceur-ws.org/Vol-1720

http://ceur-ws.org/Vol-1720

76 Paola Giannini, Marco Servetto, and Elena Zucca

this.inner=inner;
}

}

Here we encode by wrapping, in such a way that all instances of Odd will always
contain an odd number. In particular, every method taking as input an Odd
argument myOdd can rely on the (static) guarantee that myOdd.inner is an odd
number.

The second solution is illustrated by an example of points with positive
coordinates:

class Point{int x; int y;...}
class PositivePoint extends Point{

public PositivePoint (int x, int y){
super(x,y);// checks parent invariant
if (x<0 || y <0){// not positive

throw new Error (...); }
}

}

Here we encode by extending the original type (class), calling the super construc-
tor and then checking for more properties. Again, every method taking in input
a PositivePoint may assume that the coordinates are positive numbers.

Both patterns could be verified by tools like Spec# [3] or Viper [9].4
Comparing the two solutions, we can say that:

– Wrapping can be always applied, while extending cannot be applied on prim-
itive types and final classes.

– While extending implies subtyping, a wrapped value has not a subtype of
the original type, thus forcing extra boilerplate code in the points of usage
to access the inner value.

– On the other hand, wrapping can be applied to existing values, while extend-
ing requires the creation of a new value.

– Anyway, both techniques require some amount of boilerplate code.

We propose an alternative approach, whose goal is to synthesize the core concept
behind these techniques: a user-defined predicate is checked on a value, and, in
case of success, the value gets a more specific type, that keeps track of the success
of the runtime test. For instance, we can declare two functions checking whether
an integer is odd or positive, respectively:

bool odd(int i){ return i %2!=0;}
bool positive (int i){ return i >=0;}

4 Viper requires to encode the invariant as constructor postcondition, and to repeat it
in the method precondition, while Spec# needs the assertion to be explicitly stated
in the class contract, and allows strengthening of superclass invariants (as needed in
PositivePoint).

Runtime checks as nominal types 77

Then, we can convert an integer to an odd, or to a positive, by a check con-
struct, which has a cast-inspired syntax, and indeed can be seen as a generalization
of cast:5

(odd)35// ok
(positive)-23 // runtime error
(positive)(odd)79 // checks chain

The expressions above have, respectively, tagged types: int&odd, int&positive,
and int&odd&positive. Tagged types are nominal, since tags are predicate names,
and behave as intuitively expected: tag sequences can be seen as sets (order and
repetition are immaterial), and subtyping corresponds to set inclusion. They can
be used, e.g., as types of local variables:
int& positive &odd myInt =(positive)(odd)79
int& positive anotherInt =myInt //safe , thanks to subtyping

or as types of function parameters/result:
int& positive factorial (int& positive n){

if (n==0){ return 1;}
return n * factorial ((positive) n -1); }

Note that the function does not need to check whether the argument is positive
(to avoid non termination), since this is ensured by the parameter type. However,
we need the check to perform the recursive call.

The paper is organized as follows. We formalize our proposal and prove its
expected properties in Sect.2. In Sect.3 we discuss related work, and present our
conclusions and further work in Sect.4.

2 The calculus

In this section we introduce syntax, operational semantics, and type system of
our calculus. Moreover, we prove expected properties.

Syntax We formalize our proposal as an extension of the simply-typed (call-by-
value) lambda calculus. Syntax is given in Fig.1. We assume an infinite set of
predicate names P.

Expressions include expressions of the lambda calculus (variable, abstraction
and application) and those defined with operators of primitive types, e.g., the
two boolean constants, and the infinite set of integer constants, ranged over by n.
For simplicity we omit other standard additional constructs, such as conditional,
let-in and recursion. In addition, there are two novel expressions:
– (P)e is a check expression, corresponding to a runtime check that (the value
of) expression e satisfies predicate P. If the runtime check succeeds, then the
result of the check expression will be the value of e tagged by P. In case of
failure, the result will be an error tagged by P.

5 That is, a standard cast expression (C)e can be seen as a particular case of check
expression where the predicate is instanceof C.

78 Paola Giannini, Marco Servetto, and Elena Zucca

p :: = P=λx : T .e predicate definition

e :: = expression
x | λx : T .e | e1 e2
| true | false | n | . . .
| (P)e check expression
| v&P[e] checking expression

v :: = base value
true | false | n | . . . primitive value
| v&P tagged value

V :: = λx : T .e | v value

E :: = [] | E e | V E evaluation context
(P)E | v&P[E]

t :: = base type
bool | int | . . . primitive type
| t&P tagged type

T :: = T 1 → T 2 | t type
Γ :: = x1:T 1 . . . xn:T n type context
∆ :: = P1:T 1 . . .Pn:T n predicate type context

Fig. 1: Syntax

– v&P[e] is a checking expression, a runtime expression (that cannot be written
by the programmer) which denotes an intermediate step in the runtime check
that value v satisfies predicate P. That is, if e is neither true nor false, then
we still have to evaluate e to complete the check. The checking expressions
v&P[true] and v&P[false], instead, denote the final result of the check, being
success and failure, respectively.

Accordingly with the intuition given above, we will use the following two
shortcuts:
– v&P[true] will be abbreviated by v&P. This is a tagged value, denoting the
result of a successful check of the predicate, hence we can rely on the fact
that P v holds.

– v&P[false] will be abbreviated by error P. This is a dynamic error, tagged
by P to denote that there has been a failure in checking P.

Values are abstractions, or values of primitive types, or tagged values as ex-
plained above. Note that we take a stratified approach, where only non-functional
values can be tagged. Tagged values are identified modulo order and repetitions
of tags, e.g., 1&positive&odd and 1&odd&positive are the same value.

Operational Semantics The reduction relation e→ e′ assumes a given predicate
table PT = p1 . . . pn, which is a sequence of predicate definitions which associate
to a predicate name a lambda expression (expected to be a predicate, that is,

Runtime checks as nominal types 79

to return a boolean value). We assume, as usual, that order of definitions is
immaterial, and there are no multiple definitions for the same predicate name.
That is, the predicate table can be seen as a (partial) map from predicate names
to predicates.

Reduction rules are given in Fig.2.

(Ctx)
e→ e′

E [e]→ E [e′] (Ctx-Err) E [error P]→ error P

(App) (λx : T .e) V→ e[V/x]

(Check) (P)v→ v&P[(λx : T .e) v] PT(P) = λx : T .e
v not of shape v′&P

(No-Check) (P)v&P→ v&P

Fig. 2: Reduction rules

The first two rules are standard contextual closure and error propagation
rules. Evaluation contexts, given in Fig.1, are as expected. The third rule is (call-
by-value) application rule. We denote by e[e′/x] the standard capture-avoiding
substitution of occurrences of x in e by e′.

The novel rule (Check) models starting the runtime check that predicate
named P holds on value v, by triggering the evaluation of the corresponding
predicate application. This rule is applied when v is not tagged by P yet. Other-
wise, this means that v is a value obtained through a previous check of predicate
named P, hence it is useless to perform the check again, and the value is directly
returned, as shown in rule (No-Check). Note that an implementation could
keep the tags and follow the same strategy, avoiding useless checks, or be based
on type erasure, but in this case checks should be repeated.

Type System Following the stratified approach mentioned above, there are two
forms of types:
– non-functional types, called base types, which are primitive types possibly
tagged with a sequence of predicate names

– functional types, which cannot be tagged.
As for tagged values, we assume that tagged types are identified modulo order
and repetitions of tags, e.g., int&positive&odd and int&odd&positive are
the same type.

The subtyping relation is given in Fig.3. Rule (Sub-Tag) expresses the
expected property that adding tags we get more specific types, other rules are
standard.

The typing judgment, Γ ` e : T , says that expression e has type T under the
type context Γ , where type contexts, Γ , are sequences of assignments of types to

80 Paola Giannini, Marco Servetto, and Elena Zucca

(Sub-Tag) t&P ≤ t (Sub-Fun)
T ′

1 ≤ T 1 T 2 ≤ T ′
2

T 1 → T 2 ≤ T ′
1 → T ′

2

(Sub-Tr)
T 1 ≤ T 2 T 2 ≤ T 3

T 1 ≤ T 3
(Sub-Refl) T ≤ T

Fig. 3: Subtyping rules

variables, see Fig.1. In Fig.4 we give the rules for deriving the typing judgment.
We assume a given predicate type context ∆, which is a sequence of assignments
of types to predicate names, see Fig.1.

(T-Var)
Γ ` x : T Γ (x) = T (T-Abs)

Γ, x:T ` e : T ′

Γ ` λx : T .e : T → T ′

(T-App)
Γ ` e1 : T → T ′ Γ ` e2 : T 2

Γ ` e1 e2 : T ′ T 2 ≤ T

(T-Check)
Γ ` e : t

Γ ` (P)e : t&P
∆(P) = t′ → bool
t ≤ t′

(T-Checking)
Γ ` v : t Γ ` e : bool
Γ ` v&P[e] : t&P

∆(P) = t′ → bool
t ≤ t′

(T-Error)
Γ ` v : t

Γ ` v&P[false] : T
∆(P) = t′ → bool
t ≤ t′

Fig. 4: Typing rules

The first three rules of Fig.4 are standard rules of the simply-typed lambda
calculus. We omit obvious rules for boolean and integer constants.

In rule (T-Check), a check expression has the type of the argument tagged
by the predicate name. The argument type t must be a subtype of the parameter
type of the predicate. Note that the explicit subtyping condition, rather than
an implicit subsumption rule, is necessary to assign to the check expression
type t&P, which is possibly more specific than t′&P. For instance, the predicate
positive requires an int, the argument could be an int&odd, and we want to get
an int&odd&positive.

Rule (T-Checking) enforces the restriction that, in a checking expression
of type t&P, the value v must have type t, and the expression e must be of type
bool, so that, if it converges to a value, then the value is either true or false. As
for rule (T-Check), the type of the value must be a subtype of the parameter
type of the predicate.

Runtime checks as nominal types 81

Finally, rule (T-Error) states that an error has any type.6 Since we encode
errors as checking expressions where the expression is false7, we also require
for uniformity the same conditions on v of the two previous rules.

Results To prove soundness, expressed as usual by subject reduction and progress
theorems, we assume that the predicates in the predicate table be well-typed
w.r.t. the predicate type context, that is, for all P ∈ dom(PT), ∅ ` PT(P) : ∆(P).
The proof of subject reduction relies on the (standard) substitution and context
lemmas, that follow.

Lemma 1 (Substitution). If Γ, x:T ′ ` e : T , and Γ ` e′ : T ′, then Γ `
e[e′/x] : T .

Lemma 2 (Context). Let Γ ` E [e] : T , then Γ ` e : T ′ for some T ′, and if
Γ ` e′ : T ′′, with T ′′ ≤ T ′, then Γ ` E [e′] : T , for all e′.

Theorem 1 (Subject reduction). Let e be such that, for some Γ and T , we
have that Γ ` e : T . If e→ e′, then Γ ` e′ : T ′ for some T ′ such that T ′ ≤ T .

Proof. By induction on the rule used for e→ e′.
If the rule applied is (Ctx), then we have the thesis by induction hypothesis,

using Lemma 2.

If the rule applied is (Ctx-Err), since error P is abbreviation for v&P[false],
from (T-error) of Fig.4 we have that Γ ` v&P[false] : T . This proves the
thesis.

If the rule applied is (App), then e = (λx : T 1.e1)V, e′ = e1[V/x]. The proof
is standard by using typing rules (T-App), (T-Abs), and Lemma 1.

If the rule applied is (Check), then

1. e = (P)v,
2. e′ = v&P[(λx : t′.ep) v], where PT(P) = λx : t′.ep.

From Γ ` (P)v : T , and typing rule (T-Check) for some t and t′ we have
that: T = t&P, Γ ` v : t, ∆(P) = t′ → bool, and t ≤ t′. Moreover, we know
that ∅ ` PT(P) : t′ → bool. Therefore, also Γ ` PT(P) : t′ → bool. Applying
rule (T-app) of Fig.4, we get that Γ ` (λx : t′.ep) V : bool. Therefore, from
Γ ` v : t, Γ ` (λx : t′.ep) V : bool, ∆(P) = t′ → bool, and t ≤ t′, applying rule
(T-checking) of Fig.4, we derive Γ ` e′ : T .

If the rule applied is (No-Check), then

1. e = (P)v&P[true], and
2. e′ = v&P[true].
6 Recall that this is a standard typing rule in calculi with dynamic errors, needed to
ensure that error propagation, see rule (Ctx-Err), preserves type.

7 We could have, alternatively, one more reduction step into an additional error ex-
pression, but we prefer this more succinct formulation.

82 Paola Giannini, Marco Servetto, and Elena Zucca

From Γ ` e : T , and typing rule (T-Check) for some t and t′ and we have
that: T = t&P, Γ ` v&P[true] : t, ∆(P) = t′ → bool, and t ≤ t′. From
Γ ` v&P[true] : t, and typing rule (T-Checking) we have that t is already of
shape t′′&P, for some t′′. Therefore, t = T , and Γ ` e′ : t. ut

The proof of progress relies on the canonical forms lemma, which characterizes
the shape of values of specific types.

Lemma 3 (Canonical forms).

1. If ` V : T 1 → T 2, then V = λx : T 1.e.
2. If ` V : bool, then either V = false, or V = true.
3. If ` V : int, then V = n.
4. If ` V : t&P, then V = v&P, i.e., V = v&P[true].

Theorem 2 (Progress). Let e be such that, for some T , we have that ∅ ` e : T .
Then, either e = V, for some V, or e = error P, or e→ e′ for some e′.

Proof. If e 6= V, for some V, and e 6= error P, then either e = e1 e2, or e = (P)e1,
or e = v&P[e1]. We consider the last two cases.

If e = (P)e1, and e1 is not a value or error, then by induction hypothesis
e1 → e2. Therefore, (P)e1 → (P)e2 with (Ctx) and E = (P)[].
If e1 = error P, then e→ error P with (Ctx-Err) and E = (P)[].
If e1 = V, for some V, from ∅ ` (P)V : T , and typing rule (T-Check), we have
that, for some t and t′: T = t&P, ∅ ` V : t, ∆(P) = t′ → bool, and t ≤ t′.
There are two cases for type t: either t = t′&P for some t′, that is, the type is
already tagged with P, or not.
If t = t′&P for some t′, then, from Lemma 3.4, V = v&P, and rule (no-check)
is applicable. So e→ v&P.
Otherwise rule (check) is applicable, and e→ V&P[(λx : t′.ep) V].

If e = v&P[e1], and e1 is not a value, as in the previous case we can apply
either rule (Ctx) or (Ctx-Err).
If e1 = V, for some V, then, from ∅ ` v&P[e1] : T , and typing rule (T-
Checking), we have that ∅ ` e1 : bool. Therefore, from Lemma 3.2, e1 = true
or e1 = false. If e1 = true, then e is the value v&P, and if e1 = false, then
e = error P. ut

In addition to soundness, we expect the following key property to hold: if
an expression of a tagged type t&P reduces to a value, then this value satisfies
predicate P. This is implied by subject reduction, plus the fact that a value
v of a tagged type t&P satisfies predicate P. The latter property is true “by
construction” in our calculus, provided that we consider as values only the subset
of syntactic values which can be actually obtained by reduction. (Recall that
checking expressions cannot be written by the programmer.) This is formalized
by the notion of admissible expression below.

Definition 1. The expression e is admissible if, for all subexpressions v&P[e′]
of e, we have (λx : T .ep) v→? e′, where PT(P) = λx : T .ep.

Runtime checks as nominal types 83

Note that expressions written by the programmer are always admissible since
they do not have subexpressions which are checking expressions.

Lemma 4. If e is admissible, and e→ e′, then e′ is admissible.

Proof. By induction on the reduction rules. The interesting case is:
(Check) (P)v→ v&P[(λx : T .e) v] PT(P) = λx : T .e
In this case, the thesis holds since (λx : T .e) v reduces to itself in zero steps. ut

Theorem 3. Let e be an admissible expression such that, for some Γ and T ,
we have that Γ ` e : T . If e →? v&P, then (λx : T .ep) v →? true, where
PT(P) = λx : T .ep.

Proof. By subject reduction (Theorem 1) and Lemma 4. ut

3 Related work

Constrained types and type invariants The work most closely related to ours are
likely constrained types of X10 [10]. A constrained type C{c} consists of a class
or interface C and a constraint c on the immutable state of C and in-scope final
variables. The system is parametric on the underlying constraint system: the
compiler implements simple equality-based constraints but, in addition, supports
extension with new constraint systems using compiler plugins. For instance, the
constraint solver automatically detects subtyping in cases such as Int[self>5]
≤ Int[self>0]. Their main goal is to support static verification as much as
possible, by allowing in constraints a very restricted subset of the language.8 On
the other hand, in our approach the programmer can express any property in
the predicate language, which is Turing complete being the language itself. This
could be coupled with static verification for conditions expressed in a limited
sub-language, but we do not require all the predicates to be in such category.

Whiley [11] offers type invariants, conceptually similar to constrained types
but, as in our approach, they use the full language in predicates. Whiley is
designed from scratch, with the aim of permitting both dynamic (runtime) ver-
ification and static one. As X10, Whiley attempts at automatically inferring
predicate subtyping. In a personal communication with David Pearce (Whiley
project leader) he agreed that static verification of predicates and subtyping
inference are orthogonal with respect to the main idea of checking a property
and then propagating such knowledge, and that a core model of such idea would
be very valuable.

Another important difference is that, in both X10 and Whiley, interpretation
of predicates is structural, that is, the meaning of a predicate is its definition.
Our interpretation is nominal instead, that is, , the meaning of a predicate is its
name, and the current definition is just an implementation of such concept. Under
our lens, predicate subtyping must be defined explicitly by the programmer, if
needed, see Sect.4.
8 The user is able to escape the confines of static type-checking using dynamic casts,
as in our approach.

84 Paola Giannini, Marco Servetto, and Elena Zucca

Pre/post conditions In the style of runtime verification, a method can have
preconditions on its arguments that are dynamically checked when the method
is invoked. If the preconditions do not hold, the caller is blamed. Then, before
producing the result, the postcondition is verified. If the postcondition does not
hold, the method implementation is blamed, see, e.g., [8].

In our approach, a method can encode preconditions as types of its parameters,
guaranteeing that the check is performed at the client side.9 Then, the method
may cast the result to a more specific type, as a way to check the postcondition.
An advantage of encoding a precondition as a type is that in this way the
information that a value satisfies the precondition can be propagated to internal
calls with the same precondition, rather than be checked again.

Runtime certification Our work can be seen as a (circular) variation over runtime
certification as in Athena [2]. In a nutshell, a program is runtime certified if, when
results are produced, they are guaranteed to respect certain properties. Runtime
certification is usually proposed together with a specific proof language, different
from the computation language. Our approach instead uses a single language,
and the correctness of a value is defined as the satisfaction of certain predicates
written in the language itself.

Refinement types and blame calculi Refinement types, introduced in [4], are a
system of subtypes for a polymorphically typed language like ML, which are used
to specify properties of user-defined data types. The properties are expressed as
union and intersection of types derived from user defined-types, and are statically
verified by a decidable type inference algorithm. In [7] are defined two hybrid
calculi, λC and λH , whose types include refinement types describing subsets of
base types satisfying predicates. Predicates are, as in our calculus, expressions
of the language evaluating to boolean values. Expressions include a cast, like our
check, which involves checking dynamically that a predicate holds. As for X10
and Whiley, the interpretation of predicates is structural.

The blame calculus, see [12], provides a uniform view of static and dynamic
type checking. Programmers may add casts to evolve statically typed code into
code including refinement types (as in [7], predicates are structural). The blame
calculus is more general than our calculus, since refinement is not limited to base
types, and, in [1], it is extended to a polymorphically typed lambda calculus.
The type system is tailored to detect where the cause of the violation comes
from, and, in particular, it is proved that it may not come from statically typed
code. We claim that, even though our framework is more limited, since we do
not allow properties of functional types, its simplicity, and the nominal approach
to refinement, make it easier to implement and integrate in existing languages,
see next section.

9 Preconditions involving more than one parameter could be encoded by using tuple
types.

Runtime checks as nominal types 85

4 Conclusion and future work

We have proposed and formalized a lightweight approach for handling values
which are required to satisfy a property.

Compared to works discussed in the previous section, which generally rely on
separate assertion language, structural interpretation of predicates, and (some)
static verification, our design is less powerful, but easier to integrate and imple-
ment in existing languages.

In particular, we adopt a meta-circular approach, where the property is imple-
mented by the programmer in the language itself. Note that, in this way, checking
that a value has a given property, say P, could lead to divergence. However, the
fact that an expression is guaranteed to succeed the corresponding runtime check
is a static property which can be controlled by the type system. More precisely,
an expression of type t&P can either reduce to a value of the same type, which
is guaranteed to succeed the check, or lead to a dynamic error, or not terminate,
as it happens for any other type.

Note also that by the nominal interpretation of predicates we gain the well-
known advantages of the nominal approach for software evolution: the meaning of
a predicate can change, and a system with structural approach would be fragile.

Our design is in principle language independent. To integrate and implement
check expressions on top of an existing language, they could be translated, by a
pre-processing step, into the application of the corresponding predicate, a function
written in the source language. In an imperative language, analogously to what
is required in other proposals, predicates should be pure functions, and an object
could be ensured to invariantly satisfy a property only under some conditions,
the simplest being that the object is deeply immutable, that is, all its fields
are (recursively) immutable. More permissive conditions could be allowed by
combining the type system with modifiers for aliasing and immutability control,
see, e.g., [6,5]. Interaction with polymorphic types is an interesting topic for
future work. Instantiating polymorphic types with tagged types seems to pose
no problems. Moreover, at a first sight, polymorphic types with tags seem to
make sense in combination with subtyping constraints, e.g., a predicate isempty
which holds when the argument, assumed to be of a subtype of Collection, is
empty.

As future work, we also discuss two extensions.

Predicate subtyping Certain predicates may be stronger than others, for example
we expect greaterThan5 to imply positive. Since these predicates are defined
as code, there is no general way to discover such implications automatically.
However, we could offer a language construct for subtyping relations declared by
the programmer, as usual for nominal types, for example, using again a Java-like
syntax:

bool positive (int x) { return x >=0;}
bool greaterThan5 (int x) { return x >5;}

implies positive

86 Paola Giannini, Marco Servetto, and Elena Zucca

This extension could be encoded in the original language by expanding occur-
rences of the stronger predicate name to a sequence, for instance:
int& greaterThan5 x=(greaterThan5)34

would be expanded to
int& greaterThan5 & positive x=(greaterThan5)(positive)34

Refinement for pre-existing operations One limitation of the proposed approach
is that existing operations are unaware of newly introduced properties.

For example, assume to have a Sum operation encoding the sum of two numbers,
with type int*int->int. If we add the concept of positive, we know that, in a
context where a and b are positive, Sum(a,b) should be positive; but in the current
system it is just an int. An extension of our approach could allow:
SumPosPos refines Sum:

int& positive *int&positive ->int& positive

This extension could be encoded in the original language by declaring an aux-
iliary function SumPosPos which just calls Sum and casts the result to int&positive.
In the case of an overpermissive refinement, the error can be traced back to the
declaration of SumPosPos.

Acknowledgments. We are grateful to the anonymous reviewers for their useful
suggestions, which led to substantial improvements.

References

1. A. Ahmed, R. B. Findler, J. G. Siek, and P. Wadler. Blame for all. In T. Ball
and M. Sagiv, editors, ACM Symp. on Principles of Programming Languages 2011,
pages 201–214. ACM Press, 2011.

2. K. Arkoudas and M. C. Rinard. Deductive runtime certification. Electronic Notes
in Theoretical Computer Science, 113:45–63, 2005. Fourth Workshop on Runtime
Verification (RV 2004).

3. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system:
An overview. In CASSIS’04 - Construction and Analysis of Safe, Secure and
Interoperable Smart Devices, volume 3362 of Lecture Notes in Computer Science,
pages 49–69. Springer, 2005.

4. T. Freeman and F. Pfenning. Refinement types for ML. In ACM SIGPLAN’91
Conference on Programming Language Design and Implementation, pages 268–277.
ACM, 1991.

5. P. Giannini, M. Servetto, and E. Zucca. Types for immutability and aliasing control
(extended abstract). In ICTCS’16 - Italian Conf. on Theoretical Computer Science,
2016. In this volume.

6. C. S. Gordon, M. J. Parkinson, J. Parsons, A. Bromfield, and J. Duffy. Uniqueness
and reference immutability for safe parallelism. In ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages and Applications (OOPSLA
2012), pages 21–40. ACM Press, 2012.

Runtime checks as nominal types 87

7. J. Gronski and C. Flanagan. Unifying hybrid types and contracts. In M. T.
Morazán, editor, TFP 2007 - Trends in Functional Programming, volume 8 of
Trends in Functional Programming, pages 54–70. Intellect, 2007.

8. G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok. How the design
of JML accommodates both runtime assertion checking and formal verification.
Science of Computer Programming, 55(1-3):185–208, 2005.

9. P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification infrastructure
for permission-based reasoning. In B. Jobstmann and K. R. M. Leino, editors,
VMCAI’16 - Verification, Model Checking, and Abstract Interpretation, volume
9583 of Lecture Notes in Computer Science, pages 41–62. Springer, 2016.

10. N. Nystrom, V. A. Saraswat, J. Palsberg, and C. Grothoff. Constrained types for
object-oriented languages. In G. E. Harris, editor, ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages and Applications (OOPSLA
2008), pages 457–474. ACM Press, 2008.

11. D. J. Pearce and L. Groves. Designing a verifying compiler: Lessons learned from
developing Whiley. Science of Computer Programming, 113:191 – 220, 2015.

12. P. Wadler and R. B. Findler. Well-typed programs can’t be blamed. In G. Castagna,
editor, ESOP 2009 - European Symposium on Programming, volume 5502 of Lecture
Notes in Computer Science, pages 1–16. Springer, 2009.

	Runtime checks as nominal types
	Introduction
	The calculus
	Related work
	Conclusion and future work

