
Towards A Practical Model of
Reactive Communication-Centric Software?

Jaime Arias1, Mauricio Cano2, and Jorge A. Pérez2

1 University of Bordeaux, CNRS LaBRI UMR, INRIA, France
2 University of Groningen, The Netherlands

Abstract. Many distributed software systems are communication-cen-
tric: they are composed of heterogeneous software artifacts that interact
following precise communication structures (protocols). One much-studied
approach to system analysis equips process calculi with behavioral types
(such as session types) so to abstract protocols and verify interacting
programs. Unfortunately, existing behaviorally typed frameworks do not
adequately support reactive behavior, an increasingly relevant feature in
protocols. To address this shortcoming, We have been exploring how
the synchronous programming paradigm can uniformly support the for-
mal analysis of reactive, communication-centric programs. In this short
communication, we motivate our approach and report on ongoing devel-
opments.

1 Introduction

In this short note, we describe our ongoing work on a reactive programming model
for communication-centric software systems. While most previous work relies on
models based on the π-calculus [14], we are developing practical support for
communication-centric software systems using ReactiveML [13], a synchronous
programming language with functional and reactive features, and which relies
on solid formal foundations.

In communication-centric software systems, collections of heterogeneous soft-
ware artifacts usually follow well-defined communication structures, or protocols.
Ensuring that programs conform to these protocols is key to certify system cor-
rectness. One much-studied approach to the analysis of communicating programs
uses behavioral types [12], a type-based verification technique that captures com-
plex communication structures while enforcing resource-usage policies. Session
? Research partially supported by EU COST Action IC1201 (Behavioral Types for
Reliable Large-Scale Software Systems) and CNRS PICS project 07313 (SuCCeSS).

Copyright c© by the paper’s authors. Copying permitted for private and academic pur-
poses.
V. Biló, A. Caruso (Eds.): ICTCS 2016, Proceedings of the 17th Italian Conference on
Theoretical Computer Science, 73100 Lecce, Italy, September 7–9 2016, pp. 227–233
published in CEUR Workshop Proceedins Vol-1720 at http://ceur-ws.org/Vol-1720

http://ceur-ws.org/Vol-1720

228 Jaime Arias, Mauricio Cano, and Jorge A. Pérez

types [11] are a class of behavioral types that organize protocols as sessions be-
tween two or more participants; a session type describes the contribution of each
partner to the protocol. First formulated as a type theory for the π-calculus,
session-based concurrency has been implemented as communication libraries for
mainstream languages, such as OCaml [15] and Scala [16].

One shortcoming of existing implementations is that they are based on
overly rigid programming models. In particular, current practical support for
communication-centric software systems does not explicitly consider reactive
behavior in communicating programs. This is a crucial feature, especially as
autonomous agents can now engage into protocols in our behalf (e.g., financial
transactions). In fact, reactive behavior is central in realistic implementations
of protocols with, e.g., exception handling, dynamic reconfiguration, and time.
While these features can be represented in languages based on the π-calculus
(cf. e.g., [6,3]), resulting models are often difficult or unnatural to reason about.
Session types themselves focus on representing communication structures and
thus abstract away from aspects related to reactivity. As protocols in emerging
applications are increasingly subject to external stimuli/events (typically hard to
predict), developing programming support that uniformly integrates structured
communications and flexible forms of reactive behavior appears as a pressing
need.

To our knowledge, the amalgamation of reactive behavior into models of struc-
tured communications has been little explored by previous works (see, e.g., [9]).
Our efforts have been triggered by our declarative interpretation of session-based
concurrency [5]. Our current work goes beyond the interpretation in [5] so to con-
sider reactive and declarative behavior from a programming languages perspective.
To this end, we have developed an implementation of sessions in ReactiveML [13],
supported by a formal translation of session processes as ReactiveML programs.
Based on our preliminary results, we believe that models of reactive programming
improve previous works by offering a uniform basis for expressing and reasoning
about different kinds of constructs.

2 Session Types

Session types offer a type-based methodology to the validation of communicating
programs [11]. Structured dialogues (protocols) between interacting parties are
represented as sessions; sequences of interactions along each channel in the
program/process are then abstracted as types, which can be used to (statically)
verify whether a program conforms to its intended protocols. Key properties
are fidelity (programs respect prescribed protocols) and communication safety
(programs do not have errors, e.g., communication mismatches). The syntax of

Towards A Practical Model of Reactive Communication-Centric Software 229

(binary) session types T, S is as follows:

!T.S Output a value of type T , continue as type/protocol S
?T.S Receive a value of type T , continue as type/protocol S
&{li : Ti}i∈I External choice among labeled types/protocols Ti (branching)
⊕{li : Ti}i∈I Internal choice of a labeled type/protocol Tj , with j ∈ I (selection)
µX.T Recursive protocol/type (with type variable X)
end Terminated protocol

In session-based concurrency, the notion of duality is key to ensure communication
safety. Intuitively, duality relates session types with opposite behaviors: e.g., the
dual of input is output, and vice versa; branching is the dual of selection, and
vice versa.

We illustrate session types using a traditional example in the literature: the
Buyer-Seller-Shipper protocol, which can be informally described as follows:

1. Buyer requests an item from Seller.
2. Seller replies back asking for Buyer’s unique address.
3. Buyer sends his address to Seller, confirming the order.
4. Seller forwards Buyer’s address to Shipper.
5. Shipper sends to Buyer the estimated delivery time.
6. Buyer confirms to Shipper his availability for receiving the item.

We may formalize this protocol using the following session types:

BuySell = !item.?confirmation.!address.end SellShip = !address.end
ShipBuy = !ETA.&{yes :!ok.end, no :!bye.end}

where item, confirmation, address, and ETA denote basic types. Type BuySell
describes interactions between Buyer and Seller from Buyer’s perspective. Simi-
larly, SellShip describes an interaction from Seller’s perspective, and ShipBuy
takes the standpoint of Shipper in communications. Complementary types can
be obtained using duality. These three sessions take place in order, as in the
informal description above.

3 A Reactive Approach to Communication-Centric
Systems

The protocol presented before is well-suited for deployment using traditional
technologies (e.g., web services). However, it does not consider the possibility of
changes at runtime due to unexpected circumstances or external events. Moreover,
the protocol is not suited to emerging scenarios in which protocol partners are
deployed in, e.g., mobile devices with limited computational power and availability.
For instance, it is easy to imagine Shipper being implemented by a drone with
communication capabilities.

To address these shortcomings of protocol descriptions in session-based con-
currency, we propose to use reactive behavior, as present in synchronous reactive

230 Jaime Arias, Mauricio Cano, and Jorge A. Pérez

programming. In this context, we can envision a reactive variant of the Buyer-
Seller-Shipper protocol, in which Shipper is a drone, and Buyer communicates
from a mobile phone. In this variant of the protocol, the first six steps are as
before; after Steps 1–6, an event from Buyer to Seller triggers the following
protocol:

R1. Buyer adds an item to his recently completed order.
R2. Seller replies back confirming the modified order.
R3. Seller forwards the modified order to Shipper.
R4. Shipper replies back in one of the following ways:

a) Shipper returns back to the store, picks up the new item, and confirms
to Buyer the previously given estimated delivery time, or

b) Shipper continues with the original order, and informs Buyer that the
second item will be delivered separately.

That is, in the reactive Buyer-Seller-Shipper protocol some of the exchanges are
“standard” or “default” (cf. Steps 1-6); there are also other exchanges that are
executed as a reaction to some event or external circumstance (cf. Steps R1-R4).
In the latter steps, the external event concerns the request by Buyer of modifying
his order; other conceivable conditions include, e.g., drone malfunctioning and
wrong/delayed package deliveries. These extra exchanges also constitute struc-
tured protocols, amenable to specification and validation using sessions; however,
their occurrence can be very hard to predict.

Synchronous Reactive Programming and ReactiveML. Synchronous Reactive
Programming (SRP) is an event-based model of computation, optimized for
programming reactive systems [1]. Synchronous languages are based on the
hypothesis of perfect synchrony: reactive programs respond instantaneously and
produce their outputs synchronously with their input. A synchronous program
is meant to deterministically react to events coming from the environment: in
essence, it evolves through an infinite sequence of successive reactions indexed by
a global logical clock. During a reaction, each system component computes new
output values based on the input values and its internal state; the communication
of all events between components occurs synchronously during each reaction.
Reactions are required to converge and computations are entirely performed
before the current execution instant ends and the next one begins. This notion of
time enables SRP programs to have an order in the events of the system, which
makes it possible to reason about some time-related properties [8,10].

ReactiveML is an SRP-based extension to the OCaml programming lan-
guage [13], based on the reactive model presented in [4]. This model allows
unbounded time response from processes and avoids causality issues that can
occur in other approaches to SRP, such as the one used by ESTEREL [2]. Reac-
tiveML extends OCaml with the notion of processes, which are state machines
whose behavior can be executed through several logical instants. Processes are
considered the reactive counterpart of OCaml functions, which are considered as
instantaneous in ReactiveML.

Towards A Practical Model of Reactive Communication-Centric Software 231

In ReactiveML, synchronization is based on signals: events that occur in
one logical instant. Signals can trigger reactions in processes, to be executed
instantaneously or in the next time unit. Signals can carry values and can be
emitted from different processes in the same logical instant. There are three basic
ReactiveML constructs:

emit s v emits signal s with value v.
await one s <e> in P awaits a value along signal s that is pattern-

matched to expression <e>. Process P is exe-
cuted in the next instant.

signal s in P declares signal s and bounds it to continuation
P.

Our Current Work: Structured Communications in SRP. Models of communication-
centric systems (such as session types) usually rely on directed exchanges along
named channels. However, in SRP there is no native notion of channels: as we
have seen, signals are the main synchronization unit in ReactiveML. To deal with
this discrepancy, a key idea in our work is “simulating” channels using signals.
To this end, and since we would like to represent protocols respecting linearity,
we follow the representation of session channels in [7], which uses a continuation-
passing style. This means that for each interaction within a communication
structure a new channel is created.

We describe our ReactiveML implementation for Seller in the reactive Buyer-
Seller-Shipper protocol. Recall that Seller is involved in two sessions: he first
communicates with Client, then interactions with Shipper occur. In the code
below we assume that all sessions have been already initiated; these are noted
cb for Buyer and cs for Seller.

let process seller conf =
await one cb (item,y) in signal c1 in
emit y (conf,c1);pause;
await one c1 (addr,u) in signal c2 in
emit cs (addr,c2);pause

The code declares seller as a process in ReactiveML (a non-instantaneous
function); we describe its body. The first line awaits a signal cb, which carries a
pair of elements: a value and a reference to the signal where further interactions
will occur (i.e., y). Then, a signal c1, where the next interaction will occur, is
declared. Subsequently, a pair (containing a message conf and a reference to
signal c1) is emitted over signal y; no further actions are taken in this time unit.
Once the message is received by Buyer, seller awaits Buyer’s address. At this
point, the first session has finished and communication with Shipper begins. In
the last line, Buyer’s address is sent to Shipper.

Notice that once seller is finished, so is any communication from Seller. But
in the reactive protocol, Seller must await possible further actions from either
Buyer or Shipper. To implement this key feature, we extend the previous code
with the following line of code: await one g (v,e) in P. This new line puts
seller to “sleep" until an event/signal g from either Buyer or Seller triggers a new

232 Jaime Arias, Mauricio Cano, and Jorge A. Pérez

reaction P from it. Note that this signal for interrupts or events should be known
to every party in the communication. The idea is then that the continuation
process P should decide which course of action to take depending on the value
carried by g. In our reactive protocol, process P could implement Steps R1-R4,
following the implementation scheme of seller.

4 Concluding Remarks

We have described our ongoing implementation of essential features of session-
based concurrency in ReactiveML, a reactive functional programming language.
Our implementation uses ReactiveML processes to handle usual session protocols
(send, receive, select, and branch constructs). We believe that our approach is
already on a par with other session implementations (such as [15]) with substantial
room for improvement, due to the reactive behavior supported by ReactiveML.
We expect our research to enable the practical use of session-based concurrency
into emerging application scenarios, such as, e.g., Collective Adaptive Systems
(CAS).

References
1. A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic, and R. de Si-

mone. The synchronous languages 12 years later. Proceedings of the IEEE, 91(1):64–
83, 2003.

2. G. Berry and G. Gonthier. The esterel synchronous programming language: Design,
semantics, implementation. Sci. Comput. Program., 19(2):87–152, 1992.

3. L. Bocchi, W. Yang, and N. Yoshida. Timed multiparty session types. In Proc. of
CONCUR’14, volume 8704, pages 419–434. Springer, 2014.

4. F. Boussinot and R. de Simone. The SL synchronous language. IEEE Trans.
Software Eng., 22(4):256–266, 1996.

5. M. Cano, C. Rueda, H. A. López, and J. A. Pérez. Declarative interpretations of
session-based concurrency. In Proc. of PPDP’15, pages 67–78. ACM, 2015.

6. M. Carbone. Session-based choreography with exceptions. Electr. Notes Theor.
Comput. Sci., 241:35–55, 2009.

7. O. Dardha, E. Giachino, and D. Sangiorgi. Session types revisited. In Proc. of
PPDP’12, pages 139–150, 2012.

8. R. de Simone, J. Talpin, and D. Potop-Butucaru. The synchronous hypothesis and
synchronous languages. In Embedded Systems Handbook. CRC Press, 2005.

9. X. Fu, T. Bultan, and J. Su. Conversation protocols: a formalism for specification
and verification of reactive electronic services. Theor. Comput. Sci., 328(1-2):19–37,
2004.

10. A. Gamati. Designing Embedded Systems with the SIGNAL Programming Language:
Synchronous, Reactive Specification. Springer, 1st edition, 2009.

11. K. Honda, V. T. Vasconcelos, and M. Kubo. Language Primitives and Type Dis-
cipline for Structured Communication-Based Programming. In Proc. of ESOP’98,
volume 1381, pages 122–138. Springer, 1998.

12. H. Hüttel, I. Lanese, V. T. Vasconcelos, L. Caires, M. Carbone, P.-M. Deniélou,
D. Mostrous, L. Padovani, A. Ravara, E. Tuosto, H. T. Vieira, and G. Zavattaro.
Foundations of session types and behavioural contracts. ACM Comput. Surv.,
49(1):3:1–3:36, Apr. 2016.

Towards A Practical Model of Reactive Communication-Centric Software 233

13. L. Mandel and M. Pouzet. ReactiveML: a reactive extension to ML. In Proc. of
PPDP’05, pages 82–93. ACM, 2005.

14. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I. Inf. Comput.,
100(1):1–40, 1992.

15. L. Padovani. FuSe - A simple library implementation of binary sessions. URL:
http://www.di.unito.it/~padovani/Software/FuSe/FuSe.html.

16. A. Scalas and N. Yoshida. Lightweight session programming in scala. In ECOOP
2016, LIPIcs. Dagstuhl, 2016.

http://www.di.unito.it/~padovani/Software/FuSe/FuSe.html

	Towards A Practical Model of Reactive Communication-Centric Software
	Introduction
	Session Types
	A Reactive Approach to Communication-Centric Systems
	Concluding Remarks

