
On the Clustered Shortest-Path Tree Problem
(Short Communication)

Mattia D’Emidio1, Luca Forlizzi2, Daniele Frigioni2,
Stefano Leucci3, Guido Proietti2,4

1 Gran Sasso Science Institute (GSSI), Viale F. Crispi 7, I–67100 L’Aquila, Italy.
mattia.demidio@gssi.infn.it

2 Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica,
Università degli Studi dell’Aquila, Via Vetoio, I–67100 L’Aquila, Italy.

{luca.forlizzi,daniele.frigioni,guido.proietti}@univaq.it
3 Dipartimento di Informatica “Sapienza” Università di Roma, Viale R. Elena 295b,

I–00161 Roma, Italy. leucci@di.uniroma1.it
4 Istituto di Analisi dei Sistemi e Informatica “Antonio Ruberti”, Consiglio Nazionale

delle Ricerche, Via dei Taurini 19, I–00185 Roma, Italy.

Abstract. Given an n-vertex and m-edge non-negatively real-weighted
graph G = (V, E, w), whose vertices are partitioned into a set of k clusters,
a clustered network design problem on G consists of finding a (possibly
optimal) solution to a given network design problem on G, subject to
some additional constraint on its clusters. In this paper, we focus on the
classic shortest-path tree problem and summarize our ongoing work in
this field. In particular, we analyze the hardness of a clustered version
of the problem in which the additional feasibility constraint consists of
forcing each cluster to form a (connected) subtree.

1 Introduction

In several network applications, the underlying set of nodes may be partitioned
into clusters, with the intent of modeling some aggregation phenomena taking
place among similar entities in the network. In particular, this is especially true
in communication and social networks, where clusters may refer to local-area
subnetworks and to communities of individuals, respectively. While on one hand
the provision of clusters allows to represent the complexity of reality, on the
other hand it may ask for introducing some additional constraints on a feasible
solution to a given network design problem, with the goal of preserving a specific
cluster-based property. Thus, on a theoretical side, given a vertex-partitioned
input (possibly weighted) graph G, a clustered (a.k.a. generalized) network design
problem on G consists of finding a (possibly optimal) solution to a given network
design problem on G, subject to some additional constraint on its clusters.

Copyright c© by the paper’s authors. Copying permitted for private and academic pur-
poses.
V. Biló, A. Caruso (Eds.): ICTCS 2016, Proceedings of the 17th Italian Conference on
Theoretical Computer Science, 73100 Lecce, Italy, September 7–9 2016, pp. 263–268
published in CEUR Workshop Proceedins Vol-1720 at http://ceur-ws.org/Vol-1720

http://ceur-ws.org/Vol-1720

264 D’Emidio et al.

One of the most intuitive constraint one could imagine is that of maintaining
some sort of proximity relationship among nodes in a same cluster. This scenario
has immediate practical motivations: for instance, in a communication network,
this can be convincingly justified with the requirement of designing a network
on a classic two-layer (i.e., local versus global layer) topology. In particular, if
the foreseen solution should consist of a (spanning) tree T in G, then a natural
setting is that of forcing each cluster to induce a (connected) subtree of T . For
the sake of simplicity, in the following this will be referred to as a clustered
tree design problem (CTDP), even if this is a slight abuse in the nomenclature.
As a consequence, classic tree-based problems on graphs can be revisited under
this new perspective, and while some of them do not actually exhibit, from a
computational point of view, a significant misbehavior w.r.t. the ordinary (i.e.,
non-clustered) counterpart (for instance, the minimum spanning tree (MST)
problem falls in this category, since we can easily solve its clustered version by
first computing a MST of each cluster, then contracting these MSTs each to a
vertex, and finally finding a MST of the resulting graph), some other will actually
become much more complex, as it is the case for the problem of our interest in
this paper, namely the single-source shortest-path tree (SPT) problem.

Related Work. Several classic tree/path-based problems have already been inves-
tigated in the framework of CTDPs. For instance, we refer the reader: (i) to [1,4]
for studies that have focused on the clustered traveling salesperson problem;
(ii) to [2,6] for works that have dealt with the clustered version of the minimum
Steiner tree problem. Moreover, we mention a study that has tackled the clustered
variant of the minimum routing-cost spanning tree problem [5], where the authors
also present an inapproximability result for the clustered shortest path problem,
which was in fact inspiring our present study. Finally, we refer the reader to the
paper by Feremans et al. [3], where the authors review several classic network
design problems in a clustered perspective, but with different side constraints on
the clusters.

Our Contribution. In this paper, we focus on the clustered version of the SPT
(say CluSPT in the following), and on its unweighted variant (say CluBFS
in the following, where BFS refers to the breadth-first search tree). It is worth
noticing that an SPT supports a set of communication primitives of primary
importance, as for instance the broadcasting and the spanning tree protocol,
and that in a non-clustered setting it can be computed in almost linear time
by means of the classic Dijkstra’s algorithm. Nevertheless, to the best of our
knowledge nothing is known about its clustered variant, despite the fact that
it is very reasonable to imagine a scenario where the aforementioned primitives
are required to be applied locally and hierarchically within each cluster. In this
work, we then try to fill this gap, by providing a set of results which allow to
shed light on its computational complexity.

Graph Notation. Throughout the paper, we use the following graph notation. Let
G = (V,E,w) denote a generic weighted undirected graph with |V | = n vertices

On the Clustered Shortest-Path Tree Problem 265

and |E| = m edges, where w : E → R≥0 is a weight function, associated with the
graph, such that each edge e = (u, v) ∈ E has a non-negative weight w(e). We
denote by N(u) the set of neighbors of u in G, i.e., N(u) = {v ∈ V | (u, v) ∈ E}.
Let dG(u, v) denote the distance between vertices u and v in G, that is the length
of a shortest path PG(u, v) between u and v in G, which is given by the sum
of the weights of the edges in PG(u, v). For a given spanning tree T of G, dT ()
will denote the corresponding distance function on T . Given a subset of vertices
S ⊆ V of G, we denote by G[S] the subgraph of G induced by S. Finally, we
denote by V (G) and E(G) the set of vertices and edges of G when we need to
emphasize the dependence on the graph.

2 CluBFS

In this section, we formally introduce the CluBFS problem and then give our
main results about it. The problem is defined as follows.

CluBFS

Input: An unweighted undirected graph G = (V,E), whose set of ver-
tices is partitioned into a set of k (pairwise disjoint) clusters
V = {V1, V2, . . . , Vk}, a distinguished source vertex s ∈ V .

Solution: A clustered BFS tree of G rooted at s, i.e., a spanning subgraph T
of G such that: (i) T is a spanning tree of G rooted at s; (ii) for each
Vi ∈ V, T [Vi] is connected.

Measure: The cost of T , i.e., cost(T) =
∑
v∈V dT (s, v).

In other words, a clustered BFS tree is a spanning tree T of G such that each
subgraph Ti = T [Vi] is connected and the sum of the hop distances in T from
the source s towards all the other vertices is minimized. By a reduction from the
NP-complete 3–CNF–SAT problem, we are able to prove the following result:

Theorem 1. CluBFS is NP-hard.

2.1 An approximation algorithm for CluBFS

In this subsection, we provide an approximation algorithm for the CluBFS
problem. The main idea of the algorithm is that of minimizing the number of
distinct clusters that must be traversed by any path from s to a vertex v ∈ V .
If all the clusters are of low diameter then this leads to a good approximation
for CluBFS. If at least one cluster has large diameter then it is possible to
show that the optimal solution must be expensive and hence any solution for
CluBFS will provide the sought approximation.

W.l.o.g., let V1 be the cluster containing vertex s. The algorithm first considers
each cluster Vi ∈ V and identifies all the vertices belonging to Vi into a single
vertex νi, so as to obtain a graph G′ in which (i) each vertex corresponds to a
cluster and (ii) there is an edge (νi, νj) between two vertices in G′ iff the set
Ei,j = {(vi, vj) ∈ E(G) : vi ∈ Vi ∧ vj ∈ Vj} is not empty. It then computes a

266 D’Emidio et al.

BFS tree T ′ of G′ rooted at ν1 and constructs the sought approximate solution
T̃ as follows: initially T̃ contains all the vertices of G and the edges of a BFS
tree of G[V1] rooted at s; then, for each edge (νi, νj) of T ′ where νi is the parent
of νj in T ′, it adds to T̃ a single edge (vi, vj) ∈ Ei,j along with all the edges of a
BFS tree of G[Vj] rooted at vj .

The analysis of the above algorithm allows us to prove the following result:

Theorem 2. There exists a polynomial-time O(n 2
3)-approximation algorithm

for CluBFS.

While CluBFS thus admits an o(n)-approximation algorithm, interestingly
we proved (by a reduction from the NP-complete Exact–Cover–by–3-Sets problem)
that the clustered single-source to single-destination shortest-path problem (on
unweighted graphs) cannot be approximated in polynomial time within a factor of
n1−ε, for any constant ε > 0, unless P = NP. This extends the inapproximability
result (within any polynomial factor) that was given in [5] for the corresponding
weighted version. Thus, establishing an o(n2/3)-inapproximability of CluBFS
is a problem that we leave open.

2.2 Fixed-Parameter Tractability Results for CluBFS

In this subsection, we prove that CluBFS is fixed-parameter tractable w.r.t.
two natural parameters by providing two different FPT algorithms. The notion
of fixed-parameter tractability relaxes the classical notion of polynomial-time
tractability, by admitting algorithms whose running time is exponential, but only
in terms of some parameter of the problem instance that can be expected to be
small in typical applications.

In the first algorithm, we choose as our first “natural” parameter the number
of clusters of V. Notice that every solution T for CluBFS induces a cluster-tree
T̃ obtained from T by identifying the vertices belonging to the same cluster. The
algorithm first guesses the cluster-tree T̃ ∗ of an optimal solution T ∗, and then
it reconstructs T ∗ by using a dynamic programming approach. Notice that our
first FPT algorithm is efficient when the number of clusters of the CluBFS
instance is small. On the other hand, the classical BFS tree problem can be
seen as a special instance of CluBFS where V = {{v} : v ∈ V }, i.e., each
cluster contains only one vertex. This problem can clearly be solved in polynomial
time, but the complexity of the above algorithm becomes super-exponential! This
suggests that, for the case in which V consists of many singleton clusters, there
must be another parametrization yielding a better complexity. Following this
observation, we are able to develop another FPT algorithm parameterized in
the total number of vertices, say h, that belong to clusters of size at least two.
The idea of the algorithm is that of guessing the cluster-root ri of each cluster
Vi ∈ V, i.e., a vertex of Vi closer to the source s in an optimal solution T ∗ to
the CluBFS instance. It can be shown that T ∗[Vi] must be a BFS tree of
G[Vi] rooted at ri, and this, along with the knowledge of the cluster-roots, allows
us to efficiently reconstruct the optimal tree T ∗. Thus, overall, we can give the
following result:

On the Clustered Shortest-Path Tree Problem 267

Theorem 3. CluBFS can be solved in O(min{nkk−2, hh} · (m+n)) time and
O(m) space.

3 CluSPT

In this section, we give our results on the CluSPT problem. Regarding the
formal definition of CluSPT, it can be simply derived as the weighted version of
CluBFS. In more details, the main differences w.r.t. CluBFS are then two:
(i) the given graph G = (V,E,w) is weighted by a weight function w : E → R≥0;
(ii) the measure that we are willing to minimize (i.e. the cost of T) is expressed
in terms of distances (instead of hop distances, as in the unweighted case). In
other words, in this case, a clustered SPT is a spanning tree T of G such that
each subgraph Ti = T [Vi] is connected, and the total length of all paths in T
emanating from the source s is minimized. By elaborating on the reduction we
used to prove the NP-hardness of CluBFS, we are able to prove the following:

Theorem 4. CluSPT cannot be approximated, in polynomial time, within a
factor of n1−ε for any constant ε ∈ (0, 1], unless P = NP.

The above result is easily seen to be (essentially) tight, since we can provide a
simple O(n)-approximation algorithm, as follows. First it computes a multigraph
G′ from G by identifying each cluster Vi ∈ V into a single vertex νi. When doing
this, it associates each edge of G′ with the corresponding edge of G. Then it
computes a minimum spanning tree (MST from now on) T ′ of G′, and k MSTs
T1, . . . , Tk of G[V1], . . . , G[Vk], respectively. Finally, the algorithm returns the
spanning tree T̃ of G which contains all the edges in E′ ∪

⋃k
i=1 E(Ti), where E′

denotes the set of edges of G associated with an edge in E(T ′).

3.1 Fixed-Parameter Tractability Results for CluSPT

The two fixed-parameter algorithms for CluBFS, presented in Section 2.2,
can be easily extended to CluSPT. In particular, the theorem below can be
easily derived by Theorem 3 basically by replacing, in both the algorithms for
CluBFS, the BFS algorithm with the Dijkstra’s algorithm, when the part of
the solution to the problem inside each cluster has to be computed.

Theorem 5. CluSPT can be solved in O(min{nkk−2, hh} (m+n logn)) time
and O(m) space.

References

1. Xiaoguang Bao and Zhaohui Liu. An improved approximation algorithm for the
clustered traveling salesman problem. Inf. Process. Lett., 112(23):908–910, 2012.

2. Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. Steiner
tree approximation via iterative randomized rounding. J. ACM, 60(1):6, 2013.

268 D’Emidio et al.

3. Corinne Feremans, Martine Labbé, and Gilbert Laporte. Generalized network design
problems. European Journal of Operational Research, 148(1):1–13, 2003.

4. Nili Guttmann-Beck, Refael Hassin, Samir Khuller, and Balaji Raghavachari. Approx-
imation algorithms with bounded performance guarantees for the clustered traveling
salesman problem. Algorithmica, 28(4):422–437, 2000.

5. Chen-Wan Lin and Bang Ye Wu. On the minimum routing cost clustered tree
problem. J. Comb. Optim., 31(1):1–16, 2016.

6. Bang Ye Wu and Chen-Wan Lin. On the clustered Steiner tree problem. J. Comb.
Optim., 30(2):370–386, 2015.

	On the Clustered Shortest-Path Tree Problem
	Introduction
	CluBFS
	An approximation algorithm for CluBFS
	Fixed-Parameter Tractability Results for CluBFS

	CluSPT
	Fixed-Parameter Tractability Results for CluSPT

