
An Evaluation of
Multi-Level Modeling Frameworks

for Extensible Graphical Editing Tools

Kosaku Kimura1 and Kazunori Sakamoto2

1 Fujitsu Laboratories, Japan
2 National Institute of Informatics, Japan

kimura.kosaku@jp.fujitsu.com, exkazuu@nii.ac.jp

Abstract. We need to have comprehensive knowledge about when, where
and how we should use multi-level modeling methodologies and frame-
works. There are previous work that introduce patterns and confirm the
applicability of the methodologies. However, it is still difficult to select
frameworks for various kinds of applications. In this paper, we focus on
graphical editing tools as an application of multi-level modeling frame-
works, and evaluates the capability for modeling and extensibility of
multi-level modeling frameworks. We introduce a dataflow model as an
example model of graphical editing tools. The evaluation result shows
that Melanee can describe the dataflow model more accurately and can
extend metamodels and metametamodels with less changes to existing
elements.

1 Introduction

Model-driven engineering (MDE) is for facilitating automation and abstraction
of software developments. Providing graphical editing tools based on MDE tech-
nologies is a typical approach for developing complex software with less effort.
Diagrams edited on graphical editing tools encapsulate complex but unimpor-
tant information in order to help software developers to concentrate what really
matters for their work.

Several standardized specifications and frameworks contribute the dissemi-
nation of MDE. Meta Object Facility (MOF)3 provided by Object Management
Group (OMG) is one of the standardized metamodeling specifications. Eclipse
Modeling Framework (EMF)4 is one of the popular MOF-compliant frameworks
and has many mature sub-projects implementing OMG standards. There are
several EMF-based frameworks for developing graphical editing tools that are
extensible by plugins.

Extensibility is one of the most important feature for graphical editing tools.
Graphical editing tools should be easily extensible for third-party developers in
order to create applications for emerging domains. EMF provides the method

3 http://www.omg.org/mof/
4 https://eclipse.org/modeling/emf/



for extending models. However, in EMF, we can access only two levels, model
and its metamodel, and it is difficult to define our own metametamodel. This
problem makes limitations for extending graphical editing tools. For example,
adding a new concept of diagrams by third-party developers is difficult due to
metametamodel.

Multi-level modeling is an approach that can define and manipulate the arbi-
trary number of levels of metamodels. There are several methodologies for multi-
level modeling: orthogonal classification architecture (OCA)[2, 3, 5], potency-
based multi-level modeling[6, 15], powertype-based metmodeling[8, 9], dual deep
instantiation (DDI)[14], etc. There are also several frameworks for multi-level
modeling: Melanee [4], MetaDepth[7], Diagram Predicate Framework (DPF)[12],
etc.

We need to have comprehensive knowledge about when, where and how we
should use those multi-level modeling methodologies and frameworks. Lara et al.
[13] elicited several patterns of multi-level models from metamodels in various
domains and described how we apply methodologies to the patterns. Their work
contributes to select methodologies for applying to our metamodels. However, it
is still difficult to choose frameworks for various kinds of applications.

This paper focuses on graphical editing tool as an application of multi-level
modeling frameworks, and evaluates the capability for modeling and extensibility
of multi-level modeling frameworks. Our evaluation contributes to select the
framework that is the most appropriate for graphical editing tools.

The remainder of this paper is organized as follows. Section 2 describes a
dataflow model as an example of graphical editing tools. Section 3 evaluate
frameworks by defining and extending the dataflow model on them. In Sect. 4
we discuss the result, and our conclusions are presented in Sect. 5.

2 Models for Graphical Editing Tools

In this section, we describe a model of typical graphical editing tools and intro-
duce a dataflow model for using in the evaluation of the paper.

A typical graphical editing tool consists of a palette and a canvas. The palette
displays icons of building blocks for composing a diagram. On the canvas, we
put icons from the palette and create connections between icons for defining a
diagram.

We consider the typical graphical editing tool has a five-level model. Table 1
shows the overview of the five-level model of the graphical editing tool. Models

Table 1. Five-level model of graphical editing tools.

Level Overview

M4 MOF
M3 Metametamodels defining conceptual types of elements
M2 Metamodels defining types of elements displayed in palette
M1 Models of the diagram edited on canvas
M0 Real-world software



M1

M2

M3

M4

out

out[0]

out[1]
in in

d1 p1 p2
time := timeStr

millis := millisStr
storedIn := timestamp

M0

d3

d4

DataTypeProcessType

Table Model

Class (EClass)

SVMModel

Element

EventData

+eventId: int

+timeStr: string

+millisStr: string

+type: string

+value: string

AddTimestamp

+time: string

+millis: string

+storedIn: string

Duplication

TemporaryData

+eventId: int

+timeStr: string

+millisStr: string

+type: string

+value: string

+timestamp: string

Process Data

port

<<port>> in, out

<<port>> in, out

d2

software
p1

queue
d1

datastore
d2

datastore
d3

datastore
d4

software
p2

Fig. 1. Dataflow model.

residing in level M4 is the metametamodel of the metamodeling architecture
such as MOF. Beware that definitions of each level of the five-level model differs
from the original MOF definitions such that the MOF metametamodel resides
in level M3. The model only allows instantiation relations between elements of
different levels in the model. Metametamodels of the diagram edited on the tool
reside in level M3. Metamodels that define types of elements displayed in the
palette reside in level M2. Models residing in level M1 are diagram instances
edited on the canvas, and level M0 is the real-world software defined by diagram
instances in level M1.

Now, we introduce a dataflow model as an example of models of graphi-
cal editing tools. Figure 1 shows the dataflow model. The dataflow model is
used to define data processing applications[11, 16]. The dataflow model con-
sists of process nodes and data nodes. There are two conceptional types in
level M3: ProcessType and DataType. ProcessType has association port to
DataType, and DataType does not have any association to ProcessType, which
means only process nodes have ports for connecting to data nodes. There are



two classifications of elements from two super types: Process and Data. In Fig.
1, AddTimestamp and Duplication are subclasses of Process. EventData and
TemporaryData are subclasses of Table. Table is a data type such that con-
sists of tuples having several fields . Subclasses of Table (e.g., EventData and
TemporaryData) are data types such that are stored in a relational database
or a message queue. AddTimestamp and Duplication have association in and
out to Table and Data, respectively. AddTimestamp produces a Table-type data
by adding a field for calculated timestamp value to another Table-type data,
and Duplication producing multiple data by duplicating the input data. Their
associations are instances of association port, which means process nodes that
are instances of AddTimestamp and Duplication have input and output port in
level M1. The input and output ports in level M1 are instances of association
in and out.

3 Evaluation

In order to help selecting the framework that is most appropriate for models of
graphical editing tools, we apply multi-level modeling frameworks to define the
dataflow model5 and evaluate the frameworks from the following viewpoints.

Capability for modeling: how well we can represent the dataflow model as it
is,

Extensibility: how easy we can extend metamodels and metametamodels of
the dataflow model.

We select EMF and two multi-level modeling frameworks, Melanee and MetaDepth6,
which are still actively maintained and support MDE tools such as model trans-
formation from the list of tools in the multi-level modeling wiki [1]. Table 2
shows the three frameworks and their characteristics.

EMF is a two-level modeling framework based on MOF. Regarding Fig. 1,
if we use EMF, we have to define level M3 and M2 in the same level. There
are several methods for defining two levels in one level[13, 10]. In this paper, we

Table 2. Selected frameworks

Framework Methodology Top-level metamodel elements (excerpted)

EMF Two-level EClass, EReference, EAttribute

Melanee OCA Entity, Attribute, Connection, Inheritance

MetaDepth Potency-based Node, Edge, Field

5 The files can be downloaded from https://github.com/dataflow-mlm/

dataflow-mlm
6 We have tried DPF, which is also actively maintained and supports several EMF
subprojects. However, we found DPF does not provide how to define attributes, and
thus it is difficult to define diagrams whose nodes have attributes like the dataflow
model.



Fig. 2. Dataflow model by EMF.

in, out

in, out

DataTypeProcessType

Table Model

Class (EClass)

SVMModel

Element

EventData

+eventId: int

+timeStr: string

+millisStr: string

+type: string

+value: string

AddTimestamp

+time: string

+millis: string

+storedIn: string

Duplication

TemporaryData

+eventId: int

+timeStr: string

+millisStr: string

+type: string

+value: string

+timestamp: string

Process Data

Fig. 3. Class diagram of Fig. 2.

Fig. 4. Dataflow model by Melanee.



Model M3@2 {

Node Element { _id: String; name: String; }

Node DataType : Element { process: ProcessType[*]; }

Node ProcessType : Element { data: DataType[*]; }

Edge port (DataType.process, ProcessType.data) {}

}

M3 M2 {

abstract DataType Data

{ _in: Process[0..1] {process}; _out: Process[0..1] {process}; }

abstract DataType Table : Data {}

DataType EventData : Table

{ eventId: int; timeStr: String; millisStr: String; value: String; }

DataType TemporaryData : Table

{ eventId: int; timeStr: String; millisStr: String; value: String;

timestamp: String; }

abstract DataType _Model : Data {}

DataType SVMModel : _Model {}

abstract ProcessType Process {}

ProcessType AddTimestamp : Process

{ _in: Table[0..1] {data};

_out: Table[0..1] {data};

time: String;

millis: String;

storedIn: String; }

ProcessType Duplication : Process

{ _in: Data[0..1] {data};

_out: Data[*] {data}; }

port AT_in

(Data._out, AddTimestamp._in) {}

port AT_out

(Data._in, AddTimestamp._out) {}

port D_in

(Data._out, Duplication._in) {}

port D_out

(Data._in, Duplication._out) {}

}

M2 M1{

EventData d1

{ _id = 1; name = d1; }

AddTimestamp p1

{ _id = 2; name = p1;

time = timeStr; millis = millisStr;

storedIn = timestamp; }

TemporaryData d2 { _id = 3; name = d2; }

Duplication p2 { _id = 4; name = p2; }

TemporaryData d3 { _id = 5; name = d3; }

TemporaryData d4 { _id = 6; name = d4; }

AT_in (d1, p1);

AT_out(d2, p1);

D_in (d2, p2);

D_out (d3, p2);

D_out (d4, p2);

}

Fig. 5. Dataflow model
by MetaDepth.

DataTypeProcessType

Table Model

Class (EClass)

SVMModel

Element

EventData

+eventId: int

+timeStr: string

+millisStr: string

+type: string

+value: string

AddTimestamp

+time: string

+millis: string

+storedIn: string

Duplication

TemporaryData

+eventId: int

+timeStr: string

+millisStr: string

+type: string

+value: string

+timestamp: string

Process Data

port

<<port>> in, out

<<port>> in, out

Fig. 6. Class diagram of Fig. 5.

used the simple static methods for achieving extensibility; instantiation between
level M3 and M2 are defined as inheritance relations, and instantiations of
association port are omitted.

Melanee[4] is a multi-level modeling framework implementing OCA based on
EMF, and has plugins for supporting Object Constraint Language (OCL) 7 and
ATL Transformation Language (ATL)8. The top-level metamodel of Melanee
has elements to distinguish the types of associations such as Connection and
Inheritance. Melanee has a graphical modeling editor, and we can edit multiple
levels on the canvas of the editor at the same time.

MetaDepth[7] is a potency-based multi-level modeling framework. The top-
level metamodel of MetaDepth mainly consists of Node and Edge. The instances
of Node and Edge have Fields for defining their attributes. MetaDepth supports
Epsilon languages9 for model transformation, model validation and so on.

7 http://projects.eclipse.org/projects/modeling.mdt.ocl
8 https://eclipse.org/atl/
9 http://www.eclipse.org/epsilon/



Table 3. # of limitations for defining the original model.

Framework # of limitations

EMF 3
Melanee 0

MetaDepth 1

3.1 Capability for Modeling

We defined the dataflow model shown in Fig. 1 on each framework, and con-
firmed existing limitations for defining the original model by each framework.
Table 3 shows the number of limitations for defining the original model by each
framework.

Figures 2 and 3 show the dataflow model defined by EMF. We found there
are three limitations; 1) inheritance relations from ProcessType and DataType

should be used instead of instantiation relations, 2) association between ProcessType
and DataType cannot be created, and 3) the associations from Duplication

and AddTimestamp cannot be defined as the instances of the association of
ProcessType.

Figure 4 shows the dataflow model defined by Melanee. Melanee can com-
pletely define the original dataflow model as it is, because it can represent in-
stantiation relations between levels and instantiate references of level M3 at
level M2.

Figure 5 and 6 show the dataflow model defined by MetaDepth. We found
there is a limitation; Although MetaDepth can instantiate references of level M3
at level M2, the references cannot be defined as unidirectional relations. This
means Data and Table also have references to Duplication and AddTimestamp,
respectively, and it causes violations of the original connective rules between
types of Process and Data.

3.2 Extensibility

We consider that there are two kinds of extentions of graphical editing tools:
adding a new building block to palette and introducing a new notation in the
diagrams. In accordance with the two kinds of extentions, we used the following
two scenarios.

A) Adding a new type in level M2: as shown in Fig. 7, we added process
type Filter in level M2. Filter is the process type that picks up data
records satisfying the conditions given by attributes of the process.

B) Adding a new conceptual type in level M3: as shown in Fig. 8, we added
ControlType in level M3. ControlType is a conceptual type for configur-
ing execution of real-world software and has references to ProcessType and
DataType. We also added Control and Schedule in level M2. They are in-
stances of ControlType, and Schedule is the type of elements that schedule
the execution of the referenced process.

Table 4 shows the number of modifications of existing parts as a result of
extending the model for each framework. We found we do not have to mod-
ify anything in both scenarios using EMF. Regarding Melanee, we just had to



DataTypeProcessType

Table Model

Class (EClass)

SVMModel

Element

EventData

+eventId: int

+timeStr: string

+millisStr: string

+type: string

+value: string

AddTimestamp

+time: string

+millis: string

+storedIn: string

Duplication

TemporaryData

+eventId: int

+timeStr: string

+millisStr: string

+type: string

+value: string

+timestamp: string

Process Data

port

<<port>> in, out

<<port>> in, out
Filter

+fieldName: String

+equals: String

<<port>> in, out

Fig. 7. Adding a new type, Filter, in level M2.

Table 4. # of existing parts we have to modify in two scenarios.

Framework Scenario A Scenario B

EMF 0 0
Melanee 1 1

MetaDepth 0 4

modify the element representing the inheritance relation among Process and
its subclasses in scenario A. There is only one modification of the inheritance
relation among Element and its subclasses in Scenario B as well. Regarding
MetaDepth, scenario B requires four modifications of bidirectional references
between process types and data types.

4 Discussion

We could say that Melanee is more suitable than the other two frameworks to
define models of graphical editing tools. Regarding the capability of modeling,
Melanee can define the original dataflow model most precisely. Regarding the
extensibility, EMF has the least modifications in both scenarios. Melanee also
has the least modifications next to EMF.

The dataflow model having two conceptual types and a unidirectional relation
between the types in its metametamodel has the generality as the models of
graphical editing tools, because there are various kinds of graphical editing tools
for defining procedures such as dataflow, workflow and process flow.

We consider that the results of conducting two scenarios for extending models
also have the generalities because of the following facts. Regarding the scenario



DataTypeProcessType

Table Model

Class (EClass)

SVMModel

Element

EventData

+eventId: int

+timeStr: string

+millisStr: string

+type: string

+value: string

AddTimestamp

+time: string

+millis: string

+storedIn: string

Duplication

TemporaryData

+eventId: int

+timeStr: string

+millisStr: string

+type: string

+value: string

+timestamp: string

Process Data

port

<<port>> in, out

<<port>> in, out

ControlType

process

data

Control

Schedule

+runOn: String

<<process>> target

Fig. 8. Adding a new conceptual type, ControlType, in level M3.

A, the evaluation result basically depends on the number of additional types
in level M2. Adding process types or data types just causes the changes of
inheritance relations. Regarding the scenario B, the evaluation result depends
on the number of additional relations between conceptual types in level M3. If
Melanee needs modifications of relations, MetaDepth generally needs much more
modifications than Melanee.

We consider that there is a limitation in our conclusion. The dataflow model
contains only two of the five patterns shown in [13]: the relation configurator pat-
tern for defining relations in metamodels by instantiating relations in metameta-
models, and the element classification pattern for representing classfications of
types in metamodels. We have to conduct evaluation by applying to other mod-
els in order to confirm whether or not our conclusion is valid for other three
patterns.

5 Conclusions

In this paper, we have evaluated the following frameworks regarding the capa-
bility for modeling and their extensibility: EMF, Melanee and MetaDepth. We
have used the dataflow model as an example of graphical editing tools, which is
five-level metamodels including MOF at the top level.

The evaluation results show that Melanee is more suitable than the other
three frameworks for graphical editing tools. Melanee can represent the dataflow
model most precisely and has less modifications for extending metamodels and
metametamodels. However, we consider that the multi-level modeling frame-
works including Melanee still have difficulities regarding developing graphical
editing tools and need more compatibilities with MDE tools to facilitate the
tool developments.



References

1. Multi-level modeling wiki, http://homepages.ecs.vuw.ac.nz/Groups/

MultiLevelModeling/WebHome

2. Atkinson, C., Gutheil, M., Kennel, B.: A flexible infrastructure for multilevel lan-
guage engineering. Software Engineering, IEEE Transactions on 35(6), 742–755
(Nov 2009)

3. Atkinson, C., Kuhne, T.: Model-driven development: a metamodeling foundation.
Software, IEEE 20(5), 36–41 (Sept 2003)

4. Atkinson, C., Gerbig, R.: Flexible Deep Modeling with Melanee. In: Reimer, S.B.U.
(ed.) Modellierung 2016, 2.-4. März 2016, Karlsruhe - Workshopband. Modellierung
2016, vol. 255, pp. 117–122. Gesellschaft für Informatik, Bonn (2016), http://
subs.emis.de/LNI/Proceedings/Proceedings255/117.pdf

5. Atkinson, C., Kennel, B., Goß, B.: The level-agnostic modeling language. In: Soft-
ware Language Engineering, pp. 266–275. Springer (2011)

6. Atkinson, C., Kühne, T.: The essence of multilevel metamodeling. In: UML 2001
- The Unified Modeling Language. Modeling Languages, Concepts, and Tools, pp.
19–33. Springer (2001)

7. De Lara, J., Guerra, E.: Deep meta-modelling with metadepth. In: Objects, Models,
Components, Patterns, pp. 1–20. Springer (2010)

8. Henderson-Sellers, B., Gonzalez-Perez, C.: The rationale of powertype-based meta-
modelling to underpin software development methodologies. In: Proceedings of
the 2nd Asia-Pacific Conference on Conceptual Modelling - Volume 43. pp. 7–16.
APCCM ’05, Australian Computer Society, Inc., Darlinghurst, Australia, Australia
(2005)

9. Henderson-Sellers, B., Gonzalez-Perez, C.: On the ease of extending a powertype-
based methodology metamodel. Meta-Modelling and . WoMM 2006 pp. 11–25
(2006)

10. Kimura, K., Nomura, Y., Tanaka, Y., Kurihara, H., Yamamoto, R.: Practical multi-
level modeling on mof-compliant modeling frameworks. In: MULTI 2015–Multi-
Level Modelling Workshop Proceedings. p. 43 (2015)

11. Kimura, K., Nomura, Y., Tanaka, Y., Kurihara, H., Yamamoto, R.: Runtime Com-
position for Extensible Big Data Processing Platforms. In: 2015 IEEE 8th Inter-
national Conference on Cloud Computing. pp. 1053–1057 (2015)

12. Lamo, Y., Wang, X., Mantz, F., MacCaull, W., Rutle, A.: DPF Workbench: A
Diagrammatic Multi-Layer Domain Specific (Meta-) Modelling Environment. In:
Computer and Information Science 2012, pp. 37–52. Springer (2012)

13. Lara, J.D., Guerra, E., Cuadrado, J.S.: When and how to use multilevel modelling.
ACM Trans. Softw. Eng. Methodol. 24(2), 12:1–12:46 (Dec 2014), http://doi.
acm.org/10.1145/2685615

14. Neumayr, B., Jeusfeld, M.A., Schrefl, M., Schütz, C.: Dual Deep Instantiation and
Its ConceptBase Implementation. In: CAiSE. pp. 503–517. Springer (2014)

15. Neumayr, B., Schrefl, M.: Abstract vs concrete clabjects in dual deep instantiation.
In: MULTI 2014–Multi-Level Modelling Workshop Proceedings. pp. 3–12 (2014)

16. Nomura, Y., Kimura, K., Kurihara, H., Yamamoto, R., Yamamoto, K., Tokumoto,
S.: Massive event data analysis and processing service development environment
using dfd. In: Services (SERVICES), 2012 IEEE Eighth World Congress on. pp.
80–87 (2012)


