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Abstract—While designing dependable systems, a large num-
ber of asset combinations (system configurations) with contrary
quality objectives needs to be investigated. Basically, each feasible
configuration should be investigated. For fault-tolerant embedded
systems this problem is extended by anticipating hardware
faults leading to changed deployments of stressed resources in
redundant constellations. The identification and evaluation of the
best-fitting configuration remains a computationally intensive and
difficult task at all.

We propose a multi-stage approach (1) to sample Pareto-
optimal configurations for redundant system designs within
hostile environments, (2) to check satisfiability of structural
constraints and (3) to measure and identify quality degradation
in fault scenarios. Thus, allowing developers to identify design
flaws, leading to large quality degradations in case of emerging
faults. We use genetic algorithms (NSGA-II) for sampling a wide
range of system designs and demonstrate our approach by means
of an exemplary fault-tolerant system.

I. INTRODUCTION

In fault-tolerant software design, the provision of depend-
able systems is charged with high expenses. In particular,
a diversity of replacement units (redundancies) needs to be
specified and addressed in redundancy methods and distributed
well to successfully maintain faults [1]. Thus, developers are
concerned with distinguishing many feasible system configura-
tions, mostly equipped with redundant hardware resources. To
meet the functional requirements and simultaneously optimize
multiple dimensions of system’s quality, expensive explo-
rations of the design space are inevitable to find a best-fitting
system variant for deployment.

This challenge is getting even more complicated by further
considering further variants for reconfiguration upon hardware
resource faults. Such potential faults of stressed resources in
hostile environments, e.g., cosmic radiation harming space
crafts and satellites, might be predicted by methods like Fault
Tree Analysis, but the consequences on quality and functional
validity are still expensive to inspect appropriately for rich
design spaces. Here, each feasible configuration should be
evaluated in face of all alternatives, leading to a exponential
complexity of comparisons. Even if the initial commit of a
fault-tolerant system is usually more expensive than the initial
commit of a regular system, the exploration of the design space
has to be done in a systematic manner.

From an architecture-oriented point of view, the separation
and modeling of software components and hardware resources
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Fig. 1. System Architecture for a Dependable System with Quality Ratings

lifts the exploration to an abstract level of component-based
software engineering for embedded systems [2]. Here, the
deployment of components describes use-relations to the plat-
form (resources for execution). Figure 1 shows an example
for a redundant system design with an excerpt of feasible
configurations, defined as the reconfiguration space by the
developer. Each configuration requires a different subset of
hardware resources from the platform and result in varying
ratings (values) for quality attributes. Figure 1 depicts the
differing uses of hardware resources (R1, R2) by software
components (Cl, C2, C3) during execution. Configurations
(rows) are defined by selecting (marked by 1) elements.
Some selections are optional, denoted with dashed lines. Each
defined configuration is rated, leading to rising, falling, or con-
stant quality changes (arrow directions). Here, we consider the
quality attributes energy, performance and maintenance costs.
Each configuration is also validated against a set of structural
constraints, representing the basic functional relations in the
architecture model. As soon as one of the hardware resources
is marked as faulty (defined as fault scenario), some configu-
rations including fault-affected components may no longer be
executable. To handle this partial loss of fault-tolerance, the
developer needs to extend the former reconfiguration space by
additional configurations, not relying on the faulty hardware
resources. Each configuration has to be identified, quality-
rated and compared to the existing (valid) configurations.
This procedure supports the developer in identifying possible



alternative configurations for an assumed fault scenario. In
order to focus on significant degradations of quality attributes,
a user-definable threshold for quality degradation is desirable
from a developer’s point of view.

In previous work [3], we arranged alternative configurations
as nodes in a graph structure called Architecture Relation
Graph. Edges result from the reduction of available hardware
resources caused by faults. For edge prioritization, the qualities
of each configuration are investigated. Such a strict hardware-
oriented procedure is not feasible to evaluate alternative con-
figurations efficiently while considering quality attributes. In
this paper, we therefore investigate the measurement of quality
distances between configurations, including validity checking
according to required hardware resources.

Foundations and Related Work

Our work relates to the concept of Degrees of Freedom [4]
to define and evaluate variability in architecture design. Pos-
sible variation points are specified as explicit part of the
architecture model. A genetic algorithm explores the design
space to find Pareto-optimal solutions, i.e., the supremum
of all feasible solutions with respect to contrary objectives,
respecting a set of quality attributes. This procedure can be
applied to support design decisions and to explore potential
reconfiguration options [5]. To apply the approach to its
full extend, we need to create rich design models to gather
ratings for quality attributes by simulation. Instead in this
paper, we use simplified representations of design models and
abstract quality measurements in order to provide a lightweight
implementation of the basic concepts in our approach.

The sampling of system configurations is performed by the
genetic algorithm NSGA-II [6]. Echtle et al. [7] also apply
such algorithms to identify fault-tolerant system designs on
a high level of abstraction. This work is focused on finding
critical fault combinations leading to invalid system designs.
We describe the variation space of the system explicitly to
check validity of many sampled designs in a short period of
time. More precisely, we use a propositional logic formula to
describe the design space of examined systems and imitate
faults by disabling operation-critical hardware resources to
restrict feasible variations in configurations. Technically, we
represent relevant parts of the architecture model as features
in a feature model. Feature models provide a comprehensible
graphical representation of a variant rich system. Relations
between functional components and hardware resources are
defined by constraints in the feature model. The fitness of a
feasible solution, i.e., a configuration validated by the feature
model, is based on quality assignments annotated as property
to each feature.

Frey et al. [8] inspect reconfigurations as deployment op-
tions for cloud-based systems derived by genetic algorithms.
The authors predefine rules at design time for systematically
modified deployments of a system upon changed circum-
stances in operation, e.g., system overloads. Similar to that,
Jung et al. [9] adapt a running system by policies derived at
design time. For that, a decision-tree learner is trained with

feasible system configurations, generated from queuing mod-
els. Both approaches guide the developer to identify alterna-
tives for reconfiguring a system. However, the reconfiguration
space is not explicitly explored to identify quality drops upon
faults in unstable hardware/software systems. Our approach
identifies such gaps and prioritizes near-by alternative configu-
ration for recommendation and decision support. In relation to
our distance measurement in neighborhood of faulty configura-
tions, Barnes et al. describe relations between architectures as
candidate evolution paths [10]. These paths specify a search-
based reconfiguration process from a source to a pre-defined
target architecture via a sequence of transient architectures.
The goal is to shorten the paths to minimize reconfiguration
efforts. However, we aim to retain as much system quality
as possible without defining a target architecture manually.
J. R. Schott [11] defines a metric called spacing to measure
how well non-dominated individuals on the Pareto-frontier
are distributed with respect to their neighbors. Following that
idea, Gong et. al [12] also use a neighbor-based technique to
inspect the crowding distances of non-dominated individuals
and select minority isolated individuals. Thus, they refine
recombination and mutation by determining nearest neighbors
of less-crowded individuals for the next optimization iteration.
In our approach, we also explore dominated neighbors to find
design alternatives for individuals that became infeasible due
to resource faults by comparing and minimizing distances in
the objective space.

In the area of search-based approaches, Garvin et al. [13]
combine heuristic search with Feature Modeling. By using
simulated annealing, the authors extend a test generation
algorithm to determine valid feature configurations. Based
on an array representation of a feature model, the algorithm
perform pair-wise changes of feature selections. After each
change a SAT check on the feature model is done. The fitness
function of the optimization tries to maximize coverage of
feature pairs. Similarly to that, Ensan et al. [14] apply a genetic
algorithm to generate products (configurations) in accordance
to a feature model. In both approaches, each gene of a
chromosome represents a feature. The fitness of a product is
coverage-oriented by evaluating the variability points and their
constraints from the feature model. In our approach, a feature
model provides the structure for variation points and restricts
the selection of configurations by constraints. However, we do
not consider coverage measurements, but guide our approach
by minimizing distances between configurations. Furthermore,
we assume, that the number of variation points is decreased
by faulty features, potentially leading to faulty configurations.
Several other tools from literature apply genetic algorithms to
generate products from a feature model in testing Software
Product Lines, e.g., PLEDGE [15].

II. MULTI-STAGE ARCHITECTURE DESIGN ANALYSIS

Our approach searches for appropriate architectural design
alternatives for reconfiguration under the assumption of pre-
dictable hardware resource faults. The resulting set of configu-
rations needs to be ordered and prioritized by multiple quality
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Fig. 2. Overview of our Multi-Stage Approach

dimensions. Thus, we explore the impact of resource faults
with respect to the system’s quality dimensions in multiple
stages. For (re-)sampling, comparing and representing feasible
configurations in a comprehensible manner, we provide tool
support in five stages, depicted in Figure 2.

In the first two stages individual optimization runs are
performed with different settings. In stage one, no faults are
considered and each locally optimal and valid alternative con-
figuration is added to the Pareto-frontier. Although fault-prone
configurations of the first run might be detected for reevalu-
ation easily, another run is needed to determine previously
dominated non-faulty configurations. A second Pareto-frontier
without any faulty configurations results from the second
run performed in stage two. In stage three, the comparison
of both Pareto-frontiers is prepared by injecting the same
fault scenarios in the results of the first run. Therefore, all
faulty configurations are separated from the healthy (still fully
operational) ones. Faults in resources might lead to side effects
in quality evaluation, e.g., if a faulty resource is cold-redundant
to another still healthy resource of the configuration. Thus, an
a posteriori re-calculation of qualities of each healthy configu-
ration is performed. In a reconfiguration process, an alternative
configuration for a faulty configuration seems to be optimal
if minimal quality losses is archived. As measurement for
comparing neighbors of faulty configurations, the Euclidean
distances between the faulty configurations and healthy ones
are determined in stage four. Next the distance measurement
between faulty configuration of the first run and the newly
sampled configurations from the second run is performed to
find new nearest neighbors again. From both comparisons dis-
tance matrices result. To figure out the best-fitting alternative
configurations, the matrices are merged to find in the combined
results the nearest neighbors for each faulty configuration.
This action already leads us to a basic transition structure to
judge reconfiguration decisions. Our approach is intended to
support design and maintenance activities. Therefore, the final
stage five refers to the presentation of results. This allows
developers of fault-tolerant systems to identify design flaws
leading to potentially large quality degradations in case of

faults. The presentation consists of statistics about the amount
of nearest neighbors of faulty solutions and quality differ-
ences in distance matrices. Furthermore, large degradations
are highlighted to identify needs for design improvements.
Ultimately, the developer has just to set a threshold for distance
values as the upper limit for acceptable degradations in each
quality dimension. In the result all best-fitting alternatives for
a configuration, addressed by a fault scenario, are presented
including quantified quality differences.

Implementation

Our approach was prototyped as an ECLIPSE plug-in'.
Thereby, we combined the plug-in FEATUREIDE [16] for
variant-rich feature modeling and validity analysis and the
JMETAL [17] library for multi-objective optimization with
meta-heuristics. Each problem-essential software component
and hardware resource of the system is identified with a feature
within a feature model. Furthermore, constraints in the model
describe cross-cutting concerns between components and re-
sources, i.e., implications or excludes. In order to improve
readability and to represent an architecture-oriented structure,
abstract features with no corresponding architectural elements
are used. To define objectives for the optimization, the root of
the feature model is annotated with a list of considered quality
attributes. Based on this list, each concrete feature holds dis-
crete ratings of one or more of these quality attributes. During
optimization these assignments are evaluated and summed up?
for each feature contributing to the configuration under the
fitness analysis. We do not consider additional side constraints
to restrict the optimization objectives beyond the ones from the
feature model.

We apply the NSGA-II implementation from the JMETAL
framework to sample binary decision vectors. For each 1
occurring in that vector, a corresponding feature in the feature
model is selected; without any propagation guided by the
rules in the feature model. The whole selection is validated
by the SAT checker of the FEATUREIDE core engine. If the

Uhttps://github.com/Imaertin/modcomp
2Function for aggregation can be customized, e.g., Mean or Median



sampled configuration is valid, the solution is rated by the
quality assignments of the configuration, gathered from the
feature annotations before. If the SAT check fails, the solution
is downgraded in each quality dimension.

For the given fault scenarios, we mark faulty resources
by deselecting features that are related with deployments to
such resources. During the first optimization run, such faults
are initially ignored. After the run is completed, faults are
injected and all configurations from the first run are re-
validated in FEATUREIDE. By rechecking satisfiability, some
alternative might be no longer valid. The resulting faulty (non-
valid) and healthy (still valid) configurations are stored in two
independent sets for further processing. In addition, also the
quality assignments of healthy configurations are reevaluated
according to the potentially changed number of addressed
quality attributes affecting the aggregated sums.

The presentation of results provides all data about feasible
alternative configuration to the developer in a comprehensive
manner. In addition to general statistics (number of solutions
of both runs, ratios faulty vs. healthy and faulty vs. second
run), the data of the new reconfiguration space is aggregated
for decision support.

Because of usually varying qualities in multi-objective opti-
mization, it is reasonable to let the user define a threshold for
qualities for alternative configurations. In this way, the identi-
fication of a rich neighborhood set of configurations for each
faulty configuration is promoted. Without a distance threshold,
just the (one) best-fitting neighbor would be computed. After
the data processing is completed, all distances are ordered
beneath the threshold. On the one hand, the subset of results
is shown as a distance matrix and new neighbors from the
second run are highlighted. On the other hand, gaps between
the Pareto-frontiers are investigated to identify most significant
quality impacts. For that, a list of largest distances between
faulty configurations and nearest neighbors is created.

The aggregated information can be used by the developer to
optimize the design, e.g., by adding additional resources, and
to derive rules for reconfigurations during self-maintenance.

III. EVALUATION

For evaluation purposes, we applied our tool-supported
approach to a fault-tolerant vending machine. For simplicity,
the system deals with a well-known application scenario en-
hanced by redundancies and a fair reconfiguration space. Thus,
the scenario addresses the domain of fault-tolerant embedded
system design regarding redundant sensors and actuators. In
addition, the system relies on software-intensive sensing and
control, instead of pure mechanical solutions.

Fault-tolerant Vending Machine

The vending machine offers still water, sparkling water and
coke in cups, optionally chilled. Payments are accepted by
coins, notes and money card. Some sensors and actuators can
partially emulate other ones to support a high degree of fault-
tolerance without cost-intensive replication of resources. For
instance, water can alternatively be served by the coke injector

after that injector was cleaned by an additional resource.
Thus, each of these reproductions leads to changes in required
resources and system’s quality.

The system contains the following sensors and actuators.
Sensors: Buttons (still water, sparkling water, coke, return
money), counters (coins, notes), a money card terminal and
filling-level meters (water, coke-mix, collector tray for clean-
ing, cups), and a thermometer for chilling-control.
Actuators: Mixers (coke, CO;), flow controllers (pump, grav-
ity), valves (water, coke) and injectors (water, coke), money
changers (coins, notes).

As a baseline for complexity analysis and satisfiability
checks during configuration validations, we specified our de-
sign by a feature model, depicted in Fig. 3. The resources
are represented as concrete features (dark blue boxes) in
the model and labeled with indexes from O to 20. In total
our system provides a design space of about 7,700 valid
configurations with a variety of degradations in all quality
dimensions. We assume that customers prefer to drink chilled
drinks and like coke more than sparkling as well as sparkling
water more than still water.

Quality Attributes and Fault Scenarios

For optimization, we defined a set of quality attributes
to be minimized. (1) pollution to observe the compliance
of hygienic value limits, (2) faste deviation according to
company’s standards, (3) response time representing the time
to drink delivery, and (4) energy consumption of the machine.

In order to evaluate our approach, we use a fault scenario
with significant impact on the design space, i.e., affecting
more than just optional features. By defining the resources
Cokelnjector and Pump as faulty, one half of initially sampled
configurations is no longer valid. Thus, the developer has to
figure out which alternative configurations are best-fitting.

Results and Findings

The evaluation is performed on an Intel i5 CPU at 2,5GHz
with 16GB of memory running Mac OS El Capitan, Java 8
and ECLIPSE NEON (FEATUREIDE 3.0.1, IMETAL 4.5.2). The
NSGA-II was set to a population size of 100 and 250 iterations
for demonstration purposes.

After the first three stages are performed, the following
statistics result from our experiment.

o #Solutions first run: 4

— #Faulty: 2
— #Healthy: 2

o #Solutions second run: 2
Thus, the comparison of distances between faulties and health-
ies as well as faulties and new sampled is done both times in
ratios of 2:2. We pruned duplicate solutions, leading to a small
set of unique optimal solutions for the example system.

With a threshold set to a maximal distance of 0.65, a
distance matrix for each faulty solution is generated. Due
to lack of space, in Table I the neighbors for only one
faulty configuration are shown. The configurations are shown
as binary vectors (optimization solution) representing the
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Fig. 3. Feature Model of Fault-Tolerant Vending Machine

TABLE I
DISTANCES FOR FAULTY SOLUTION (100100100100110101010)
Dis. Qual. Assignments Solution Vector Origin
0.58 03141.10.0 100001100100101101000 | healthy
0.58 0.3141.10.0 100001100100101101000 | second
0.64 03091205 100100100100101101010 | healthy
0.64 0.309 1.2 0.5 100100100100101101010 | second

selection of concrete features in order of depth-first search
corresponding to the indexes given in Fig. 3. Newly appearing
nearest neighbors from the second run are highlighted in bold
font. The quality assignments refer to the quality attributes and
their order introduced before. Further neighbors with distances
above the threshold value are hidden by “

By inspecting the values, the developer can figure out
the configuration (100001100100101101000) as the nearest
therefore and best-fitting neighbor of the faulty configuration.
According to the feature model, the resulting vending machine
sells still water via card payment, monitors water fill level
and number of remaining cups, supports CO, mixing and
uses a gravity-based water flow control towards a water value
and a water injector. In this case, this configuration was
randomly sampled in first and second optimization run. To
assure fault-tolerance, the nearest neighbors shall also be
considered in the rule set for run-time reconfiguration. Thus,
all neighbors under the given distance threshold are added to
a new set of solutions, representing the reconfiguration space.
For optimization of the design space, the largest distances
between solutions are also investigated. Our implementation
performs pair-wise comparisons to find the largest distance
between quality dimensions in objective space, i.e., gaps in
Pareto-frontiers. In our experiments, we figured out the largest
distances in solutions for all quality dimensions as listed in
Table II. Subsequent to those results a developer may use an
appropriate tool to visually explore gaps in the solution, e.g.,
by hierarchical cluster analysis in GNU R.

To visually present our idea, we performed an optimization
with two quality dimensions (Response Time and Energy
Consumption), resulting in the 2D-plot in Figure 4. Faulty
solutions are colored in red, still healthy solutions are green
and new solutions from second sampling are shown in blue.
The plot shows a large gap between the Pareto-frontier of

TABLE II
LARGEST GAPS IN VALUE ASSIGNMENTS TO OBJECTIVES

Objective || Gap Assignment 1 Assignment 2
1 0.00 || 0.3 1.41.10.0 03 1.41.10.0
2 0.00 || 0.3 1.41.10.0 03 1.41.10.0
3 0.09 || 0.3091.20.5 03 1.41.10.0
4 054 || 030912054 | 031.41.10.0

Response Time
14 1.6 1.8

1.2

1.0

T T T T T T
0.7 0.8 0.9 1.0 11 12

Energy Consumption

Fig. 4. Plot for two Quality Dimensions

faulty solutions and the frontier containing all alternative so-
lutions from the second run. Here, we suggest to recapture the
design to minimize that gap by resource changes contributing
to meeting the objectives.

Discussion

During evaluation we were faced with some algorithmic
characteristics in optimizing multiple objectives. Despite of
differing assignments of quality attributes and a complexity
of about 7.700 feasible configurations, the generation led to
just a few unique configurations and many duplicates. We
presume, that this is caused by the small-scaled application
scenario and side-effects by similarities in quality assignments.
Furthermore, we do not consult constraints for objectives, e.g.,
minimal acceptance values as lower bounds. Nevertheless, our
gap investigations were also applicable by considering only
widely spread objective values. Following the idea of Deb et
al. [18], an e-dominance might support the reduction of such
gaps by a better diversity to be maintained in a population.



IV. CONCLUSIONS

Even if existing techniques for fault-tolerant system design
assist the developer in identifying necessary redundancies,
additional best-fitting configurations have to be figured-out.
Our approach guides the developer through the subset of the
remaining design options after a hardware resource fault is
injected. Under the consideration of such a fault scenario,
Pareto-optimal solutions are sampled and decision support to
identify nearest alternates to a faulty configuration is provided
in five process stages. In addition, large gaps in a system’s
quality can be shown with our tooling to find flaws in
redundant system design.

Future Work

We provide lightweight tooling for mass-generating solution
set and gap exploration of Pareto-frontiers. Based on our
previous experience, we plan to integrate our exploration
concept within the Palladio toolset and its add-ons. For full-
fledged architecture modeling [19] we will apply PALLADIO
BENCH? and PEROPTERYX" to define variability in models.
Also the sampling with genetic algorithms is performed there.
Ratings of quality attributes are gathered by the simulation
engine SIMUCOM. We will make use of the results for distance
comparison and gap exploration proposed in this paper.

In particular, the findings of this paper will contribute to the
improvement of our decision structure Architecture Relation
Graph [3] and on-going work in area of hierarchical cluster
analysis. The final selection of which configurations from
the Pareto-frontiers are added to the graph still relies on
trade-off settings preferred by the developer. Such trade-off
analysis is supported by our tool AREVA2°. Based on the
work of Florentz et al. [20] contrary quality properties are
normalized by conversion function and ordered hierarchically
with weightings. This analysis needs to be integrated with the
distance measurements from our tool prototype presented here.

We plan to comprehensively evaluate the integrated tool-
supported approach at whole with a case study. For that, we
will build upon our previous findings in the domain of space
systems [21]. As a real-world case study, we have access to
a system design of a micro-satellite provided by one of our
industrial partners. The system has a high degree of inherent
availability implemented by autonomy mechanisms and a large
number of redundant hardware resources. We will extend our
idea from previous work [22] in enhancing the system by
replication-redundant capabilities as addressed here.
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