
Towards Concern-Oriented Design of
Component-Based Systems

Jörg Kienzle
McGill University
Montreal, Canada

Email: joerg.kienzle@mcgill.ca

Anne Koziolek, Axel Busch, Ralf Reussner
Karlsruhe Institute of Technology

Karlsruhe, Germany
Email: {koziolek, busch, reussner}@kit.edu

Abstract—Component-based software engineering (CBSE) is
based on defining, implementing and composing loosely coupled,
independent components, thus increasing modularity, analyzabil-
ity, separation of concerns and reuse. However, complete sepa-
ration of concerns is difficult to achieve in CBSE when concerns
crosscut several components. Furthermore, in some cases, reuse
of components is limited because component developers make
certain implementation choices that are incompatible with the
non-functional requirements of the application that is being
built. In this paper we outline how to integrate CBSE and
concern-oriented reuse (CORE), a novel reuse paradigm that
extends Model-Driven Engineering (MDE) with best practices
from aspect-oriented software composition and Software Product
Lines (SPL). Concretely, we outline how to combine the Palladio
Component Model (PCM) capable of expressing complex soft-
ware architectures with CORE class and sequence diagrams for
low-level design. As a result, multiple solutions for addressing
concerns that might even crosscut component boundaries can be
modularized in a reusable way, and integrated with applications
that reuse them using aspect-oriented techniques. Additionally,
thanks to CORE, component developers can avoid premature
decision making when reusing existing libraries during imple-
mentation.

I. INTRODUCTION

With the ever increasing complexity of software, tradi-
tional approaches of building software from scratch become
more and more inefficient in terms of productivity and cost.
Component-based software engineering (CBSE) [1] is a reuse-
promoting way of developing software that is based on defin-
ing, implementing and deploying loosely coupled, independent
components. Each component forms a modular and cohesive
unit and provides clearly defined functionality, encapsulated
behind provided interfaces. In case the implementation of
the component depends on functionality provided by other
components, these dependencies are documented with required
interfaces. Ideally, when building an application with CBSE,
only application-specific components have to be implemented
from scratch, and general functionality is provided by reusing
existing components from the component repository. A run-
ning application is obtained by selecting the appropriate com-
ponents based on their interfaces, assembling them following
a well-defined software architecture, and deploying them onto
computational, communication and storage resources.

CBSE has multiple advantages. For example, it promotes
modularity [2] and separation of concerns [3], as components
can be designed by different developers, potentially using
different programming languages, and implementation details

hidden behind well-defined interfaces. Since components can
be developed independently, developers can work on compo-
nents according to their specific business or technical knowl-
edge, isolating them from the complexity and unrelated details
of the remaining part of the application, and allowing them to
focus on the development tasks that they are experts in.

Another advantage of CBSE is that thanks to the provided
and required interfaces, replaceability is promoted. A required
component can be replaced by other compatible ones that
implement the same functionality in different ways. This in
turn increases maintainability, since component implementa-
tions that are no longer suitable can be substituted easily.

Furthermore, the explicit software architecture present in
CBSE forms an additional layer of structuring that makes
it possible to reason about software at a higher level of
abstraction. In particular, model-driven engineering (MDE)
approaches can be applied at the software architecture level to
analyze, verify and predict desired properties of applications
under development. For example, automated MDE-based ap-
proaches such as [4] can exploit the degrees of freedom that
component substitution and flexible allocation strategies offer
to perform multi-criteria design exploration.

However, although CBSE constitutes an important step
forward, reuse in the context of CBSE is in practice not
as straightforward. For example, substitutability and reuse of
components, in particular COTS components, is sometimes
difficult to achieve [1]. Even if the provided functionality and
required dependencies match, the non-functional requirements,
e.g., performance or memory/power consumption, can prevent
reuse in a particular application context. This is most often
due to the fact that bottom-up development approaches such
as CBSE force developers to make most implementation
choices at development-time when the requirements of the
reuse context are unknown.

Moreover, separation of concerns is difficult to achieve in
CBSE when the concern does not align with the structure
imposed by the software architecture [5]. This is predomi-
nantly the case for concerns that are inherently distributed,
as by their very nature their functionality crosscuts multiple
computational resources. Since classic CBSE is designed in
such a way that the unit of reuse is the component, concerns
that crosscut component boundaries can not easily be pack-
aged. This hinders reuse, and additionally prevents the rigorous
application of information hiding principles.



Last but not least, CBSE does not provide support for
explicitly expressing the fact that there are often many so-
lutions and possible software architectures to address specific
functional or non-functional development issues. As a result,
a software architect that wants to put together an application
by reusing components from the component repository might
directly select a specific solution, i.e., set of components and
architecture, and oversee potential alternatives.

In this paper we outline how to integrate CBSE and concern-
oriented reuse (CORE), a novel reuse paradigm that extends
Model-Driven Engineering (MDE) with best practices from
separation of concerns, goal modelling and Software Product
Lines (SPL). With its explicit variation, customization and
usage interfaces, advanced software composition based on
aspect-orientation, and support for delayed decision making,
CORE has the potential to enhance CBSE to overcome the
shortcomings mentioned above.

The remainder of the paper is structured as follows. Sec-
tion II illustrates the problem with a motivating example.
Section III presents the most important concepts of CORE,
compares CORE with CBSE, and outlines the main integration
challenges. Section IV explains concretely how we envision to
integrate the Palladio Component Model (PCM) [6], a mod-
elling formalism capable of expressing complex software ar-
chitectures with performance, cost and reliability impacts, into
the existing CORE framework reference implementation that
supports low-level design with class and sequence diagrams.
The last section presents a perspective on the potential benefits
that a successful CORE/CBSE integration might provide in a
long run.

II. MOTIVATING EXAMPLE

Let us assume a software architect develops a web store. The
web store is comprised of four main components, namely a
store, a basket, checkout and shipping component.
These components operate together when a customer processes
an order: Store interacts with basket, while basket
forwards its content to checkout (for payment). Finally,
checkout triggers shipment.

Payment is a recurring issue in many commercial appli-
cations, and hence it is not surprising that multiple third
parties offer payment processing systems that can be integrated
into component-based systems. Such systems provide essen-
tial payment-related functionality, e.g., payment processing,
which covers standard payment interactions and connection to
multiple payment solutions, i.e., credit cards, PayPal, payment
verification, which keeps track of payment status and provides
reliable confirmation that payment was successful, and billing,
which creates and distributes customer bills.

Including this functionality into the web shop application
affects the software on multiple levels. The software ar-
chitecture changes, since the payment system is constituted
of additional COTS components that need to be considered
during deployment. Furthermore, these new components need
to be connected to the business components according to the
new control flow that includes payment. For instance, after
checkout, but before shipping, payment verification needs to

occur. Similarly, a bill should only be sent out after successful
shipping.

The internal design of some components also needs to be
updated. For example, somewhere within the functionality of
checkout, the payment processing needs to be invoked. This
involves changing the internal behaviour of checkout, but also
adding a required interface to checkout that needs to be linked
to the component that provides payment processing.

While all third-party solutions for payment offer the main
functionalities outlined above, they do so in different ways,
with a varying number of components and interfaces, different
control flows and dependencies on other components, and with
different quality (e.g., performance, reliability, cost).

Integrating CBSE and CORE would make it possible to
express the variability of available solutions, and for each
solution describe the architectural variations, if any, and design
integrations, if any. For each solution, the concern would en-
capsulate the architectural models and detailed design models
specifying the solution, as well as how to apply the solution
within an application. The CORE reuse process would assist
the software developer in choosing a solution, and ensure that
the solution is correctly and consistently integrated with the
application architecture and design. Why this is the case is
explained in the following section, which presents CORE and
how it relates to CBSE in more detail.

III. CORE AND CBSE
A. Background on CORE

In concern-oriented reuse (CORE), software development
is structured around modules called concerns that provide
a variety of reusable solutions for recurring software devel-
opment issues. Techniques from Model-Driven Engineering
(MDE), SPL, and software composition (in particular aspect-
orientation) allow concerns to form modular units of reuse
that encapsulate a set of software development artifacts, i.e.,
models and code, describing relevant properties of a do-
main of interest during software development in a versatile,
generic way [7]. Concerns decompose software into reusable
units according to some points of interest [3], [2] and may
have varying scopes, e.g., encapsulating several authentication
choices, communication protocols, or design patterns. Con-
sequently, the models within a concern can span multiple
phases of software development and levels of abstraction (from
requirements and analysis models, to design models to code).

The main premise of CORE is that recurring development
concerns are made available in a concern library, which covers
most recurring software development needs. Similar to class
libraries in modern programming languages, this library should
grow as new development concerns emerge, and existing
concerns should continuously evolve as alternative algorithmic
and technological solutions become available. Applications are
built by reusing existing concerns from the library whenever
possible, following a well-defined reuse process supported
by clear interfaces [8]. The same idea is applied to the
development of concerns as well: high-level/more specific
concerns can reuse low-level/more generic concerns to realize
the functionalities they encapsulate. In the end, the software



architecture of software developed with CORE takes the
form of a concern hierarchy (directed, acyclic graph), thus
supporting hierarchical modularity [9].

B. Comparing CORE and CBSE

While the description of CORE presented above shows
many similarities with component-based development, one of
the fundamental differences is that the unit of reuse in CORE –
the CORE concern – is broader than the unit of reuse in CBSE
– the component. Similar to SPLs, a CORE concern encapsu-
lates a variety of solutions for a specific domain of interest,
and expresses this variability explicitly in a variation interface
(VI). The VI comprises a feature model [10], which describes
the available functional- and implementation alternatives that
the concern encapsulates as well as their dependencies, if any.
The feature model expresses the closed variability, i.e., the set
of solutions that the designers of the concern have realized.
Standard CBSE does not provide a means to group a set of
functionally equivalent components together, but extensions
have been proposed to express variability within components,
e.g., [11], and modules, e.g., [12].

The CORE VI also describes the impacts that the different
solutions offered by the concern have on high-level stake-
holder goals, system qualities, and non-functional properties
using a variant of the Goal-oriented Requirement Language
(GRL) [13]. Again, standard CBSE does not address non-
functional properties, but extensions have been defined to
address specific quality properties [14]. In particular, the
Palladio Component Model (PCM) [6] that is discussed in
more detail in the next section supports detailed performance,
reliability and cost analysis for software architectures.

In CORE, each solution within a concern must define a
customization interface (CI) that describes how the solution
can be adapted to a specific reuse context. Since each solution
is described as generally as possible to increase reusability,
some structural and behavioural elements are only partially
specified and need to be related or complemented with con-
crete elements from the reuse context. This enables open
variability, similar to what is achieved at the programming
level with generic or template classes. Standard components
support coarse-grained open variability, as they can specify
required interfaces for functionality that must be provided
by the reuse context. Application-specific functionality can
then be integrated during assembly by connecting the required
interface to an application component with a compatible pro-
vided interface. Internal customization of components, while
provided by extended component models such as Fractal [15]
and BlueArX [16], is not supported by standard CBSE. In this
case, object-oriented customization techniques, e.g., generics,
inheritance and call-backs, can be used for customization
purpose.

Last but not least, one important advantage of CORE is
that it does not require a concern user to commit to a specific
solution variant at the moment of reuse. When reusing a
concern, a developer only needs to decide on the reusable func-
tionality that is minimally needed to continue development,
and can re-expose relevant alternatives of the reused concern

in the reusing concern’s interface. This delays decision making
to when more detailed requirements are known and further
decisions can be made. To operationalize delayed decision
making, CORE relies on additive, aspect-oriented software
composition techniques that (re)compose concern realizations
whenever additional decisions are made [17].

Table I summarizes the CBSE and CORE comparison.

Standard CBSE Palladio PCM CORE
Interface for

expressing variability no no
variation interface

feature model

Support for
expressing impacts no

performance
reliability

cost

variation interface
impact model

Interface for
customization

goarse grained
required interface

goarse grained
required interface

customization
interface

Interface for
functionality provided interface provided interface usage interface

Support for
delaying decisions no no yes

TABLE I
COMPARISON OF CBSE AND CORE

C. Integrating CORE and CBSE
The CORE paradigm is general, and in theory any modelling

or programming language can be used to describe properties
of interest for a concern. Concretely, though, a modelling
language that wants to be usable as a realization language
within CORE must, for each model type it provides:

1) clearly identify customization and usage interfaces, and
2) offer a homogeneous model composition operator.
Furthermore, if the modelling language is supposed to

be used in combination with other modelling languages to
describe the realization of a concern following a multi-view
approach, then consistency rules have to be specified between
the views, and compatibility of the composition operators must
be ensured.

IV. PALLADIO INTEGRATION

Palladio [6] is a model-driven approach to CBSE comprised
of the Palladio Component Model (PCM), a metamodel for de-
scribing component-based software architectures, and the Pal-
ladio Bench, an Eclipse-based modelling environment. What
sets Palladio aside from other component-based approaches is
an extensive set of analysis tools for performance, reliability,
and costs evaluation, with includes PerOpteryx, a tool for
multi-criteria design space exploration.

This section outlines the steps involved in integrating Pal-
ladio with the CORE framework. For each Palladio model
type, we discuss what would constitute the customization and
usage interface, and explain how we envision the design of a
homogeneous composition operator.

A. Structural View: Component Repository and Assembly
Just like other component-based approaches, behaviours

(i.e., operations) are modularized structurally in the PCM
with signatures, which have a name, parameters and return
type. Signatures are logically grouped within interfaces. The



unit of reuse in the PCM is the component. There are three
increasingly detailed ways of specifying a component: the
Provides Type defines interfaces comprised of the signatures
a component offers to be used by other components; the
Complete Type extends the Provides Type with the interfaces
that a component requires to realize the provided services. The
Implementation Type goes further and provides an abstract
behavioural description on the implementation of the signa-
tures of a component. Signatures, interfaces and components
are specified in the system-independent component repository
model.

The assembly model describes the inner structure, i.e.,
the conceptual architecture, of composite components and
systems. In an assembly model, an assembly contexts stands
for a component, from which it inherits the provided and
required interfaces as defined in the component repository.
Assembly connectors link a required interface of one assembly
context to a provided interface of another assembly context.

Integration of Structural View with CORE

Structural Customization Interface: As explained in sec-
tion III, CORE concerns are broader units of reuse than com-
ponents. It is therefore natural that a concern can encompass
multiple components, i.e., an entire, though maybe partial,
software architecture. Some of the components encapsulated
in the concern will be basic Palladio components, i.e., they
have provided and required interfaces, and their complete
implementation is also contained inside the concern. However,
in order to be able to capture architectural elements that
crosscut component boundaries, it should be possible to define
partial components, interfaces and signatures that can later be
composed with the architecture of the reuse context. These
elements comprise the architectural customization interface.

For example, imagine a simple Logging concern. From an
architecture point of view, it would be comprised of a standard
Logger component that provides a Log interface that would
allow any other component in the system to write log entries
to a common storage. Having a Logger, though, is not enough.
There must also be at least one component that make use
of the Logger. Structurally, we don’t know much about the
components that use the Logger, apart from the fact that they
should require the Log interface, and that they need to be
connected to the logger. From an architectural point of view,
the Logging concern should therefore also comprise a Logged
partial component that must be composed with components in
the system in order to augment their structure with the required
Log interface and link them to the Logger component in the
assembly. The customization interface for the Logging concern
therefore consists of the Logged partial component.

Structural Usage Interface: The provided interfaces of
Palladio components are the key to executing the component’s
functionality. It therefore makes sense to use them as the ar-
chitectural CORE usage interface. However, as some provided
interfaces of components within a concern should never be
directly connected to components in the reuse context, only
specifically selected provided interfaces should be part of the
usage interface.

For example, assume that the Logger component in our
example above uses a Database component to store the logs.
The provided interface of the Database component should
not be part of the usage interface for the Logging concern.
Information hiding principles [2] dictate that internal design
decisions, in particular those that might change in the future,
should not be visible to the outside world to reduce complexity
and increase maintainability by avoiding unnecessary depen-
dencies. Hence, we propose that the architectural CORE usage
interface of a concern should be constituted of a subset of the
provided interfaces of the components encapsulated within the
concern.

Structural Composition Operator: We envision the defi-
nition of the composition algorithm that combines two struc-
tural architecture models to be straightforward. It essentially
constitutes a symmetric merge of two repositories and two
assembly contexts. The specifics of the merge are highly
similar to what is done in the current CORE reference im-
plementation for merging class diagrams. Components need
to be treated just like classes, and assembly connectors just
like associations. For details, the interested reader is referred
to [18] for CORE class diagram composition.

B. Behavioural View: SEFFs and Usage Scenarios

Palladio uses an abstract behavioural description, called
service effect specification (SEFF), for describing the internal
behaviour of a component at a high level of abstraction.
SEFFs model the abstract control flow of the service provided
by a signature of a component in terms of internal actions
(i.e., resource demands accessing the underlying hardware)
and external calls (i.e., accessing functionality by invoking
signatures in provided interfaces of connected components).
All control flow elements of activity diagrams, e.g., conditional
execution, iterative execution, parallel execution and synchro-
nization, are supported. In order to support quality prediction,
additional information is attached to SEFFs. For example, for
performance prediction, resource demands for internal actions
(in terms of CPU instructions to be executed) can be specified.
Cost and reliability prediction are supported as well.

In addition to the intra-component behaviour specified using
SEFFs, processing rates of hardware nodes can be specified.
Furthermore, domain experts can specify the interaction be-
tween certain user types and the system under development
with a usage model, typically expressed using a variant of ac-
tivity diagrams. Workload annotations can be supplied for each
scenario definition that defines the number of occurrences of
a scenario within a certain time period in terms of probability.
The combined information from resource demands, processing
rates and usage models makes performance prediction of
architectures possible.

Since usage scenarios focus on describing user interaction
and workload with entire systems, we currently believe that it
does not make sense to include usage scenarios in concerns.
Concerns are meant to be reused in many systems, each subject
to their own usage scenarios. Therefore, the remainder of this
subsection focuses solely on integrating SEFFs with CORE.



Integration of Behavioural View with CORE
In the current reference implementation of CORE, the

behavioural design of a concern is modelled using a variant of
sequence diagrams that can describe control flow at the same
level of detail as code, if desired. One single sequence diagram
specifies an interaction that can involve many operations
provided by multiple objects.

When integrating CORE and Palladio, a component imple-
mentor would use CORE sequence diagrams to specify the
functionality of the component with an object-oriented design.
In this case, SEFFs are simply a more abstract representation
of the behaviour of a component that adequately represents
the low-level detailed design described using CORE sequence
diagrams. In other words, the SEFF view and the sequence
diagram view should be consistent. If they are not consistent,
then the Palladio quality estimation tools would not be able to
accurately predict performance, reliability and cost of a design.

Integration Strategy 1 (IS1):: One way of keeping SEFFs
and sequence diagrams consistent is to define consistency rules
or model checking algorithms that the CORE tool would use
to verify consistency periodically. Whenever the consistency
check fails, the modeller would be prompted to adjust the
models. Additionally, model transformations should be defined
to create a SEFF skeleton from an existing CORE sequence
diagram, and vice versa. The former transformation would
support bottom-up development, since it creates an abstract
SEFF representation that is consistent with an already exist-
ing design. The later transformation would support top-down
development, since it generates a skeleton design that corre-
sponds to the high-level behavioural description envisioned by
a software architect and specified in a SEFF.

Integration Strategy 2 (IS2):: Another way to ensure that
SEFFs and sequence diagrams are consistent is to combine
the information from SEFFs and sequence diagrams into one
model. To this aim, we need to identify the information
encoded in the SEFF metamodel that is not currently present
in the CORE sequence diagram metamodel. The control flow
structures in CORE sequence diagrams are at least as expres-
sive as the ones in SEFFs, so they can replace the SEFF
control flow structures. Similarly, whether an invocation of
an operation of a class is a internal or external action can be
determined by checking in the architecture model whether the
operation is part of a class that belongs to the same component
or not. On the other hand, performance, reliability and cost
information, e.g., resource demands and failure rates, are only
present in SEFFs. The sequence diagram metamodel would
therefore need to be augmented so that the quality information
from SEFFs can be attached to the right model elements of
the sequence diagram.

SEFF Customization and Usage Interface: We believe
that the customization and usage interface of SEFFs, in anal-
ogy with what is done for CORE sequence diagrams, should
be inherited from the customization and usage interface of the
structural view.

SEFF Composition Operator: If SEFFs and sequence
diagrams were integrated by combining them into one model
(IS2), then the current sequence diagram composition operator

can be used as is to also compose the sequence diagrams with
additional quality estimation information. This is true because
the composition is solely based on the control flow.

If SEFFs are kept separately from the sequence diagrams
(IS1), then a separate composition operator for SEFFs needs
to be defined. Just like for any other behavioural modelling
notation, the order and sequencing of model elements that
represent internal and external actions in SEFFs is important.
Hence, the composition operator for SEFFs would have to
support the composition of behaviour from one SEFF before,
after, around or in parallel of some behaviour in the other
SEFF. Since CORE is based on additive composition, complete
replacement of behaviour does not need to be supported.
Instead, a limited form of substitution has to be provided,
where the original behaviour is moved to some place within
the substituting behaviour. The details of how this can be
accomplished with CORE sequence diagrams are presented
in [19], and for general sequence diagrams in [20].

When implementing the SEFF composition operator, care
must be taken that the composition is compatible with the
sequence diagram composition already present in the CORE
reference implementation. Otherwise, when composing two
concerns one could end up with an output that has inconsistent
SEFFs and sequence diagrams, even in the case where the
SEFFs and sequence diagrams of each input concern are
initially consistent. Since the SEFF control flow structures are
a subset of the control flow structures available in sequence
diagrams, it should be fairly easy to create a compatible SEFF
composition operator by adapting the algorithm of the existing
sequence diagram composition operator.

SEFF Integration Strategy Discussion: From the consid-
erations above it seems like it would be easier to choose IS1,
i.e., combine sequence diagrams and SEFFs into one model.
First, there would be no need to define a new composition
operator, since the existing sequence diagram composition
operator suffices. Second, concern realization models would be
simpler, as there would not be two separate views describing
the same behaviour at different levels of abstraction that must
be kept consistent.

However, one of the advantages of Palladio is that it
enables rapid design exploration. During development, SEFFs
can be used to capture intended behaviour of architectural
components at a high level of abstraction even before they
exist. In doing so, it is possible to predict quality properties of
the solution architecture under development before the detailed
design of each individual component has been elaborated. If
we want to continue to use Palladio for this purpose, then
SEFFs have to be supported in CORE independently of CORE
sequence diagrams.

C. Deployment View

The Palladio deployment view covers the specification of
the execution environment and the allocation of software com-
ponents on resources of this execution environment, e.g., pro-
cessors, servers, hard disks, communication links. Resources
are annotated with information used for quality prediction,
e.g., processing and failure rates. At the current state of



research we believe that it is not necessary to integrate the
Palladio deployment view into CORE. The reason for this is
that currently, concerns only encapsulate software components.

Integrating the structural and behavioural views of Palladio
into CORE as described above allows developers to define
reusable software architectures and implementations that can
be composed with an application architecture to yield a final
system with an architecture that includes the components
defined in the reused concern. Developers would then create a
deployment view for this final system architecture, i.e., define
resources and deploy the components onto them.

Adding deployment models to CORE concerns could make
sense if a concern would also encapsulate reusable hardware.
In that case, resource specifications for these hardware compo-
nents should be provided in the concern, and different ways of
allocating provided software components and functionality to
these resources could be expressed with deployment models.

V. CONCLUSION

This paper presented a road map on how we are planning
to integrate two highly complementary modelling approaches,
Palladio and CORE. Palladio and the Palladio bench tools en-
able modellers to specify component-based software architec-
tures and predict their quality by means of abstract behavioural
specifications annotated with performance, reliability and cost
information. CORE, in particular the current CORE reference
implementation, provides facilities for encapsulating a variety
of design solutions, and modelling the detailed designs of the
solutions with class and sequence diagrams.

By integrating the Palladio architecture model with the
CORE reuse mechanisms and low-level design models as
described in this paper, reuse of existing architectural solutions
is greatly simplified. First, different architectural solutions
to the same development issue are easier to find, as they
are grouped within a concern and their variability expressed
with CORE feature models. Furthermore, the Palladio quality
estimation tools for performance, reliability and cost, and the
CORE impact models for any other relevant non-functional
qualities enable informed decision making and even tradeoff
analysis between the proposed solutions. Once a specific
solution is chosen, the CORE customization interface clearly
designates the architectural and design elements of the solution
that need to be connected to application-specific elements.
Once the developer specifies the mapping, the aspect-oriented
composition operators of CORE take care of composing the
chosen concern with the application. This includes adding
interfaces to application components and linking them to
components provided by the reused solution, and modifying
the internal application design to invoke the services provided
by the solution at the appropriate places. Finally, thanks to
CORE’s support for delayed decision making, the developers
of reusable architectural concerns can internally reuse other
architectural and design concerns without having to make
premature or default decisions regarding non-functional imple-
mentation alternatives. Ultimately this will increase reusability
of the solutions, as the commitment to a specific implementa-

tion can be made once the requirements of the reuse context
are known.

While the approach proposed in this paper has multiple
advantages, it is also rather heavyweight, mainly because
MDE and/or aspect-oriented programming has to be used
for the detailed design of all solutions encapsulated within
a concern. If MDE technology is going to be used exclusively
at the architecture level for design exploration and quality
prediction purpose, a more lightweight approach consisting of
introducing a new concern-like grouping unit into the Palladio
component model could be envisioned as outlined in [21].

REFERENCES

[1] C. Szyperski, D. Gruntz, and S. Murer, Component Software: Beyond
Object-Oriented Programming, 2nd ed. New York, NY: ACM Press
and Addison-Wesley, 2002.

[2] D. L. Parnas, “On the criteria to be used in decomposing systems into
modules,” Communications of the ACM, vol. 15, no. 12, pp. 1053–1058,
Dec. 1972.

[3] E. W. Dijkstra, A discipline of programming. Prentice-Hall Englewood
Cliffs, 1976, vol. 1.

[4] A. Koziolek, H. Koziolek, and R. Reussner, “PerOpteryx: automated
application of tactics in multi-objective software architecture optimiza-
tion,” in QoSA-ISARCS 2011. ACM, 2011, pp. 33–42.

[5] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr., “N degrees of
separation: Multi-dimensional separation of concerns,” in ICSE 1999.
IEEE, 1999, pp. 107 – 119.

[6] R. Reussner et al., Modeling and Simulating Software Architectures -
The Palladio Approach. MIT Press, 2016, to appear.

[7] O. Alam, J. Kienzle, and G. Mussbacher, “Concern-oriented software
design,” in MODELS 2013. Springer, 2013, pp. 604–621.

[8] J. Kienzle, G. Mussbacher, O. Alam, M. Schöttle, N. Belloir, P. Collet,
B. Combemale, J. DeAntoni, J. Klein, and B. Rumpe, “VCU: The Three
Dimensions of Reuse,” in ICSR 2016, ser. LNCS, no. 9679. Springer,
June 2016, pp. 122–137.

[9] M. Blume and A. W. Appel, “Hierarchical modularity,” ACM Trans.
Program. Lang. Syst., vol. 21, no. 4, pp. 813–847, Jul. 1999.

[10] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, “Feature-
oriented domain analysis (FODA) feasibility study,” Software Engineer-
ing Institute, Carnegie Mellon University, Tech. Rep. CMU/SEI-90-TR-
21, November 1990.

[11] T. van der Storm, “Variability and component composition,” in Software
Reuse: Methods, Techn., and Tools. Springer, 2004, pp. 157–166.

[12] C. Kästner, K. Ostermann, and S. Erdweg, “A variability-aware module
system,” in OOPSLA ’12. ACM, 2012, pp. 773–792.

[13] M. B. Duran, G. Mussbacher, N. Thimmegowda, and J. Kienzle, “On
the reuse of goal models,” in SDL 2015, ser. LNCS. Springer, 2015,
vol. 9369, pp. 141–158.

[14] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. R. V. Chaudron,
“A classification framework for software component models,” IEEE
Transactions on Software Engineering, vol. 37, no. 5, pp. 593–615, 2011.

[15] J. Muskens and M. Chaudron, Prediction of Run-Time Resource Con-
sumption in Multi-task Component-Based SoftwareSystems. Springer,
2004, pp. 162–177.

[16] J. E. Kim, O. Rogalla, S. Kramer, and A. Hamann, “Extracting, spec-
ifying and predicting software system properties in component based
real-time embedded software development,” in ICSE-Companion 2009,
May 2009, pp. 28–38.

[17] J. Kienzle, G. Mussbacher, P. Collet, and O. Alam, “Delaying decisions
in variable concern hierarchies,” in GPCE 2016. ACM, 2016.

[18] J. Kienzle, W. Al Abed, and J. Klein, “Aspect-Oriented Multi-View
Modeling,” in AOSD 2009. ACM Press, March 2009, pp. 87 – 98.

[19] M. Schöttle and J. Kienzle, “On the challenges of composing multi-view
models,” in GeMOC 2013, ser. CEUR Workshop Proceedings, vol. 1102,
October 2013, pp. 1 – 6.

[20] J. Klein, F. Fleurey, and J. M. Jézéquel, “Weaving multiple aspects in
sequence diagrams,” Transactions on Aspect-Oriented Software Devel-
opment, vol. LNCS 4620, pp. 167–199, 2007.

[21] A. Busch, Y. Schneider, A. Koziolek, K. Rostami, and J. Kienzle,
“Modelling the structure of reusable solutions for architecture-based
quality evaluation,” accepted at CloudSPD 2016.


