
ModifRoundtrip: A Model-Based tool to reuse
legacy transformations

Paola Vallejo1, Jean-Philippe Babau2, and Mickaël Kerboeuf2

1 Universidad EAFIT
2 Université de Bretagne Occidentale, Lab-STICC, CNRS, UMR6285

pvallej3@eafit.edu.co,

{babau,kerboeuf}@univ-brest.fr

Abstract. The legacy transformations dealing with domain specific data
gathers important expertise. Nevertheless, in many cases, have to be
rewritten in order to make them apply to semantically equivalent but
structurally incompatible data. According to the complexity of the trans-
formation, rewriting them can quickly become a difficult and error-prone
task. We propose a coevolution approach to enable the reuse of legacy
transformations instead of their rewriting. In this approach, the data
conforming to the reuse context coevolve into data conforming to the
legacy transformation context. Legacy transformation is applied and the
result is migrated back to the reuse context.
In this paper, we introduce ModifRoundtrip, a plug-in for the Eclipse de-
velopment environment. It promotes the reuse of legacy transformations,
providing guidance for the user during reuse process. Reuse process is
done automatically, but ModifRoundtrip provides interaction points to
the user to indicate custom reuse scenarios. A tool demonstration video
is available at: https://youtu.be/iAPul2httyE.

Keywords: Coevolution, DSML, Legacy transformation, Reuse.

1 Introduction

Domain Specific Modeling Languages (DSML) support high-level abstractions
and require few low-level details to specify a given domain. They are usually
instrumented with dedicated transformations. Some of them are generic, some
others are domain specific. In both cases, there are variants of the transforma-
tions that have already been implemented in other domains which are structural
variants sharing common concepts. Based on those observations, when a trans-
formation for a DSML is needed, instead of writing it, the reuse of a legacy trans-
formation represents a promising way to build safely and quickly the equipment
of a DSML [1]. However, even if legacy transformations are available, reusing
them within the scope of a given DSML raises two problems: the adaptation of
DSML data structures (user oriented) into legacy transformation data structures
(computation oriented); and the extraction of a subset of relevant concepts for
the targeted transformation, from the large set of concepts defining the DSML.

2 Reusing legacy transformations with ModifRoundtrip

As data handled by the transformation to be reused and data handled by the
DSML are structurally different, the reuse of the transformation implies to adapt
DSML models in order to put them under the scope of the transformation. And,
more important, to adapt the resulting models to put them under the DSML
scope. Making tools facilitating transformations in both directions is essential.

In this paper we present ModifRoundtrip [2], an Eclipse plug-in that pro-
motes the reuse of legacy transformations, reducing manipulation of models.
The remainder is structured as follows: Section 2 presents related work con-
cerning model coevolution as a way to adapt models. Highlights of the tool are
presented in section 3. Section 4 briefly describes the architecture of the tool.
Finally, section 5 presents the conclusions and the ongoing work.

2 Background

In this paper, we assume that all the data that are required by the targeted
transformation are available in the DSML even if they are structured differ-
ently. Considering this condition, we use the principles of metamodel evolution
and model coevolution to automate the navigation between semantically close
DSMLs by means of model migrations. ModifRoundtrip operation relies on these
principles [3] (fig. 1). Refactoring and Migration keep and update a subset of the
concepts of the DSML. ModifRoundtrip produces a migrated model (mm) from
the initial model (im); then the transformation produces the result (pm). Finally,
Reverse Migration migrates back it into the DSML context (rm). The elements
that had been removed during Migration are automatically and as much as pos-
sible recovered without undoing the transformation’s action. Elements created
by the transformation are also integrated with initial elements.

TMMRefactoring

Migration

DSML/Reuse context Legacy transformation contextCo-evolution

Reverse Migrationrm
Transformation

pm
Transformation

mmim

DMM

metamodels
DMM: DSML
TMM : transformation

models
im : initial
mm: migrated

Transformation
Conformance
Workflow

pm: processed
rm : reversed

Fig. 1. Model migrations for the reuse of a legacy transformation

With ModifRoundtrip, the user indicates the coevolution operators (remove,
rename, hide, etc.) to be applied to the DSML in order to make it match the
transformation metamodel. Using this operators does not require specific knowl-
edge about model transformations. The migration in Epsilon Flock [4] integrates
a conservative copying algorithm and user-defined migration rules. EMFMigrate
concentrates on metamodel evolution and coevolution, however it is used by [5]
in the frame of metamodel evolution and transformations coevolution. Bento [6]
supports the development and the execution of reusable transformations, based
on the use of generic templates. Genericity [7] increases the level of abstraction by

Reusing legacy transformations with ModifRoundtrip 3

defining metamodels containing the minimal requirements for applying a trans-
formation. transML [8] allows the development of model transformations fol-
lowing a MDE approach (transformations are viewed as models). MTBE [9] and
MTBD [10] propose solutions for simplifying the implementation of model trans-
formations by using a visual support. Edapt3 coevolve models after metamodel
transformations by means of customizable migration code. ModifRoundtrip aims
at reusing existing transformations, adapting the models but the transforma-
tions. The distinguished feature of ModifRoundtrip is that, unlike the methods
described above, our tool produces editable migration specifications, avoiding
the migration code completion by the user. This become an usable solution for
non-experts in model migration or programming languages. As the SyVOLT tool
[11], ModifRoundtrip hides formal details from the user and place essential user
interactions at the beginning of the reuse roundtrip.

3 Highlights

ModifRoundtrip is released as an open source software. It relies on the Eclipse
Modeling Framework (EMF) and Xtext4 for defining the modif models and for
realizing refactoring specification editors. Git5 is used as version control sys-
tem. The plug-in and source code of ModifRoundtrip can be found at http:

//pagesperso.univ-brest.fr/~vallejoco/Modif/pages/indexModif.html.

Integration with Eclipse. ModifRoundtrip takes advantage of the EMF ecosys-
tem to specify and validate models. Users can stay within the Eclipse environ-
ment, when they develop the tooling for a specific domain. ModifRoundtrip
provides an Eclipse Perspective, containing three views and two buttons (fig. 2).
Views allow to edit specifications and visualize the current state of the reuse
process. Buttons allow to create projects and to start the reuse process.

Formalization. The ModifRoundtrip’s reuse process formal details are hidden
from the user. The tool behavior is formally defined in [12]. Once the differences
between the DSML and the transformation metamodel are specified by the user,
the roundtrip reuse process is started. It automatically creates all required arti-
facts and provides the result to the user within the Eclipse environment.

Input metamodels independence. The metamodels are designed by using
Ecore (EMF). ModifRoundtrip operation is not dependent on specific input
metamodels. Nevertheles, at now, the legacy transformation to be reused must
be written with the Java language respecting the generated EMF interface.

Customizable reuse. Obtaining processed models according to specific user
needs, depends on the input model given to the legacy transformation. Mod-
ifRoundtrip provides editable migration specifications. Allowing users to produce
different input models for the reused transformation, from the same migration
specification. User can also apply the tool to portions of the model.
3

https://www.eclipse.org/edapt/
4

https://eclipse.org/modeling/emf/ and https://eclipse.org/Xtext/
5

https://github.com/

4 Reusing legacy transformations with ModifRoundtrip

1

Project explorer

2

3

4

1

2

3

4

Model Editor

Console

Buttons

Fig. 2. Eclipse plug-in of ModifRoundtrip

Traceability. ModifRoundtrip identifies model instances by means of Univer-
sally Unique IDentifiers (UUID), it allows to trace instances evolution through
the reuse process. Furthermore, instances created by the reused transformation
can be associated with initial model instances.

Scalability. ModifRoundtrip has been used to reuse transformations in the real
and complex Orcc context, a compiler for dataflow applications defined by 70
classes, 100 references and 50 attributes. It underlined how the development of
the transformations for a given DSML can be improved by using our tool [3]. It
can be tested on other domains regardless of the complexity of the metamodel.

GUI or API. ModifRoundtrip can used by means of a Graphical User Interface
(GUI) or by calling the functions defined in the provided ModifRoundtripAPI.
ModifRoundtrip can be used to perform separately: Refactoring, Migration or
Coevolution. The ModifRoundtripAPI provides also functions to create, load
and save models and refactoring specifications.

4 Architecture

The ModifRoundtrip Eclipse plug-in is divided into three components: 1) The
User Interface, primary based on the Rich Client Platform (RCP) provided by
Eclipse. 2) The modif specification editor, defined by means of Xtext. 3) The
reuse process behavior, implemented by using Java and the EMF facilities. The
reuse process comprises the modules (1) to (10) in figure 3. Squares annotated
with numbers represent computation, squares annotated with letters represent
produced and consumed data and squares with dotted lines represent user in-
teractions. ModifRoundtrip’s modules are orchestrated by a Java program. This
program makes sure all components communicate and execute in the right order,
and allows roundtrip to run fully automatically at the push of a button. We have
used available model-driven development technologies as much as possible, both
to develop and as a part of ModifRoundtrip itself. In what follows, we briefly
visit each ModifRoundtrip computational component to describe its function.

(1) Input definition. The GUI is started by clicking the Run button of the
ModifRoundtrip’s plug-in. It allows user to specify the elements needed to reuse
a legacy transformation. a© points the metamodel describing the transformation

Reusing legacy transformations with ModifRoundtrip 5

metamodels models

pm: processed
rm : reversed

specifications

DMM-to-TMM : refactoring
im-to-mm : migration
tm-to-pm : dependency

Computation
User interface

Refactor

(1)

(2)

mm

 Reverse
Migrate

pm

im

mm-to-pm

(4)

logrm

(6)

DMM Legacy transformation

Modif Specification
Generation

TMM

Migration Specification
Generation

Reuse

e

(9)

Input
definition

a b c d

DMM-to-TMM

(3)Modif
Specification

edition

TMM’ f

Compare
(5)

g
im-to-mm

(7)
Migration

Specification
edition

Migrate(8) (10)

i
j

k l

h

AMM: DSML
TMM : transformation
TMM’: refactored

im : initial
mm : migrated

Workflow
Customization

Fig. 3. Architecture of the ModifRoundtrip tool

to be reused, b© represents the metamodel describing the reuse context (DSML
in which transformation will be reused). c© is the input models and d© is the
transformation to be reused. Figure 4 illustrates the GUI. Figure 5 illustrates
an example of the use of ModifRoundtrip by means of the API.

Fig. 4. ModifRoundtrip GUI

modifRoundtrip =
new ModifRoundtrip<DMM, TMM>();
EObject rm =
modifRoundtrip.reuseTransfo(
im, DMM, TMM, DMM_to_TMM,
TMM_, className, transfo,
autoMigration,
...
serialize);

Fig. 5. ModifRoundtripAPI

(2) Modif Specification Generation. We have developed a language for
specifying the differences between the two metamodels of the input. A basis
Modif specification template e© is automatically generated, then the user indi-
cates how to refactor the DSML in order to make it match the transformation.
It is done by using the proposed refactoring operators.

(3) Modif Specification Edition. In the modif specification, the user indi-
cates only the operators needed to transform the DSML into the transformation
metamodel. As we consider transformation metamodel has only dedicated con-
cepts, and adding elements is not needed, the used operators are basically: re-
move, rename, hide and flatten. Modif specification editor facilitates the edition
of modif specifications by highlighting key words, checking syntax and suggesting
the operators to applied. Figure 6 depicts an example of the modif syntax.

6 Reusing legacy transformations with ModifRoundtrip

Fig. 6. Modif textual syntax Fig. 7. Migration editor

(4) Refactor and (5) Compare. Refactor takes the modif specification e©
and apply it to the DSML b©. It produces a refactored metamodel f©. Then
Compare, verifies that f© fully match with a©, if that’s the case, the reuse process
will start. If they do not entirely match, ModifRoundtrip notifies the user about
where the matching’s violation occurs (at now, in terms of deletion and rename).
Then, the user edits the modif specification and Refactor is executed.

(6) Migration specification Generation and (7) edition. Migration speci-
fication g© is automatically generated from the modif specification and the initial
model. Technical details of the translation from modif specification to migration
specification can be found in [13]. By keeping in mind the goal of reducing the
skills required to define custom model migrations, we developed a user interface
(Fig. 7) allowing the user to indicate specific modifications. If not customization
is defined, the migrations is applied automatically. The user may act over its
elements to indicate additional deletion.

(8) Migrate. It migrates the input model c© into a model h© in the context of
the legacy transformation. Migration depends on the migration specification and
it is performed by a model independent engine implemented in Java. This engine
handles migrations in which one element of the migrated model is produced from
one and only one element of the initial model.

(9) Reuse. The transformation is reused without user intervention, it takes the
migrated model h© as input and it produces a processed model i© along with
a dependencies graph j©. The dependencies graph keeps a trace about how the
elements are modified or created by the transformation.

(10) Reverse Migrate. It applies the reverse operators of the migration spec-
ification operators. Reverse of rename is applied on the processed model i© in
order to produce the reversed model k©. Then, reverse of complex operators as
remove and hide are applied on k©, in order to extended it with the elements
of the initial model c© that have been removed. It is based on the natural join
concept of data bases. Then, each recovered element is related to its associated
elements (as in the initial model). If the associated elements are not in c©, then,
the recovered element is related to the elements that were created or modified
from the associated elements. This information is provided by the dependen-
cies graph. At the end, the model k© is validated in order to respect the type

Reusing legacy transformations with ModifRoundtrip 7

constraints imposed by the metamodel a©. This activity is automatic and trans-
parent for the user if the migration does not involve creation, merge or instances
division. The result model k© keeps the modifications provided by the reused
transformation, integrating initially removed elements and respecting the struc-
tural constraints of the DSML b© in which the transformation is reused. The
user is notified by means of a log file l© about those elements that could not be
included into the final result, so it can evaluate its pertinence and to add them
in order to produce different results.

5 Conclusion and future work

This article presents a MDE-based tool for reusing legacy transformations. It
provides a user interface that allows the user to deal with context-related con-
cepts hiding all the intermediate models and transformations involved. The main
motivation of this tool is to provide a methodology and a tooling set to assist
users to reusing legacy transformations. Accordingly, we provide a modeling lan-
guage that allow to express the modifications (to be applied) at a convenient level
of abstraction and to interface with modeling environments. This tool allows to
separate concerns of representation from core data semantics. In future work we
aim at providing more operators and facilities to reuse legacy transformations
defined in other languages.

References

1. Frakes, W. et al.: Software Reuse: Metrics and Models. ACM Comput. Surv. (1996)
2. Modif, http://pagesperso.univ-brest.fr/~vallejoco/Modif/pages/indexModif.html

3. Vallejo, P. et al.: Improving Reuse by means of Asymmetrical Model Migrations:
An Application to the Orcc Case Study. In: MODELS 2015 (2015)

4. Rose, L. et al.: Epsilon Flock: a model migration language. In: Software and System
Modeling 13(2) (2014)

5. Di Ruscio, D. et al.: A methodological approach for the coupled evolution of meta-
models and ATL transformations. In: ICMT2013 (2013)

6. Cuadrado, J. et al.: Reusable Model Transformation Components with bentõ. In:
ICMT2015 (2015)

7. Rose, L. et al.: Genericity for model management operations. In: Software and Sys-
tem Modeling 12(1) (2013)

8. Guerra, E. et al.: Engineering model transformations with transML. In: Software
and System Modeling 12(3) (2013)

9. Varró, D.: Model Transformation by Example. In: MODELS 2006 (2006)
10. Sun, Y. et al.: Model Transformation by Demonstration. In: MODELS 2009 (2009)
11. Lúcio L. et al.: SyVOLT: Full Model Transformation Verification Using Contracts.

In: CEUR Workshop Proceedings, P&D@MoDELS (2015)
12. Kerboeuf, M. et al.: Formal framework of recontextualization by means of depen-

dency graphs. Tech. report (2015)
13. Vallejo, P.: Reuse of legacy code for DSML tools in the context of MPSoC. PhD

thesis, Université de Bretagne Occidentale (2015)

