
txtUML?

Gergely Dévai, Tibor Gregorics, Melinda Tóth, Domonkos Asztalos, Dávid
János Németh, Gábor Ferenc Kovács, Boldizsár Németh, Zoltán Gera, András

Dobreff, Balázs Gregorics, András Nagy, Martin Budai, Zsolt Kulik, and
Kristóf Kanyó

Eötvös Loránd University, Faculty of Informatics, Budapest, Hungary,
deva@elte.hu

Abstract. The name txtUML stands for textual, executable, translat-
able UML. It is an Eclipse-based tool built on top of JDT, Xtext/Xbase
and Papyrus UML.
The tool is designed for textual model editing. This makes storage, ver-
sion control, compare and merge processes, editing and searching easier
and more efficient. The tool supports two textual syntaxes for modeling:
the standalone syntax, which is designed to be clean and short, and al-
ternatively, the txtUML Java API, which can be used to define models
as standard Java programs.
The tool supports the generation of graphical UML diagrams from the
textual descriptions: class and state machine diagrams. The layout of the
diagrams can be controlled by a simple textual diagram layout language.
Models can be seamlessly integrated into Java programs: they can be exe-
cuted and debugged. Generated state machine diagrams can be animated
during model execution to further enhance comprehension of model dy-
namics.
Compatibility with other tools is ensured by generating standard UML
models in EMF-UML2 format. This representation is the input for our
model compiler, which generates C++ code.

Keywords: executable modeling, textual modeling, UML

1 Introduction

This demonstration presents the framework txtUML, which stands for textual,
executable, translatable UML. It is a tool for software development according to
the executable UML paradigm [8].

The project was started in 2014, and the development is done by the Model-
Driven Development Research Group of Eötvös Loránd University, Budapest.
It is open source [17] on GitHub under the Eclipse Public License [2]. The
development is supported by Ericsson Hungary and the tool is currently used
in pilot projects at the company. The txtUML framework is distributed as a set
of Eclipse plugins. Installation instructions and detailed user documentation is
available on the project website [16].

? This work is supported by Ericsson Hungary.



2 Similar Tools

This subsection presents open source UML tools with model execution capabil-
ities or textual syntaxes.

BridgePoint [13] uses an early fork of UML extended with a proprietary
action language. It uses graphical modeling for class and state modeling, and
textual modeling on the action code level. It is now maintained by a company
named OneFact and has been open sourced [4]. In contrast to BridgePoint,
txtUML supports textual modeling for all layers of the modeling language and
visualizes the model via generated diagrams. Furthermore, txtUML is compatible
with the latest UML standard.

Papyrus UML [14] is an Eclipse UML framework that aims at providing cus-
tomizable graphical editor support for the full UML standard. Papyrus has an ex-
tension, called Moka [10], which contains an interpreter that executes fUML [12]
models and animates diagrams. This interpreter is based on the reference im-
plementation of fUML and is not designed for high performance. By contrast,
txtUML’s model execution is based on on-the-fly translation to Java to provide
better performance.

Alf [11] is an OMG standard defining textual syntax for fUML. An Alf editor
is being integrated into Papyrus [15] in order to provide a textual model editing
alternative. As state machines are not part of fUML and Alf, this modeling layer
is currently not handled by the solution.

Moliz [9] is a testing and debugging framework for fUML activities. It defines
a test specification language and extends the fUML reference implementation
with debugging and tracing capabilities. The execution traces are used to decide
if a given test case passes or fails. This project also uses graphical model editors
and the aforementioned fUML reference implementation.

Umple [5], eTrice [3] and the Papyrus UML-RT [1] are modeling environ-
ments for both graphical and textual model editing. Unlike txtUML, these tools
lack an abstract action language: Umple allows modeling code mixed in Java,
PHP, C++ and Ruby and its code generator emits code in these languages, while
eTrice allows action code in Java or C written in the models as string literals
which are propagated to the generated code. UML-RT uses the same strategy
with C++. None of the approaches allows execution and debugging on the model
level. The diagram generation methodology is also different: The referenced tools
use autolayout algorithms, while txtUML allows the user to define the layout of
diagrams using a concise DSL.

3 Textual Syntaxes

Textual modeling has many advantages over editing models in graphics [7]. Most
importantly, model storage, version control, compare and merge functionalities
can be provided by off-the-shelf, reliable tools. Text editors are more advanced
and stable compared to currently available open source graphical model editors,
and it is often faster to input text than graphics. The txtUML tool provides two
textual syntaxes for modeling:



– X txtUML: Standalone syntax designed to be short and clean. It is supported
by an Xtext-based editor [18].

– J txtUML: In this case, the model is a standard Java program, which uses
the txtUML Java API. Therefore this is an embedded language in Java.

The standalone syntax is easier to use, especially for users not familiar with
Java. On the other hand, the Java syntax can be used in any Java development
environment so that a project using this syntax will not depend on a new editor
and a new language. The two syntactic variants are closely related: In fact,
XtxtUML models are on-the-fly translated to JtxtUML models while they are
edited in Eclipse. This is the basis for model execution.

signal ButtonPress;

class Machine {

initial Init;

state Off;

state On;

transition Initialize {

from Init;

to Off;

}

transition SwitchOn {

from Off;

to On;

trigger ButtonPress;

}

transition SwitchOff {

from On;

to Off;

trigger ButtonPress;

}

}

class ButtonPress extends Signal {}

class Machine extends ModelClass {

class Init extends Initial {}

class Off extends State {}

class On extends State {}

@From(Init.class)

@To(Off.class)

class Initialize extends

Transition {}

@From(Off.class)

@To(On.class)

@Trigger(ButtonPress.class)

class SwitchOn extends

Transition {}

@From(On.class)

@To(Off.class)

@Trigger(ButtonPress.class)

class SwitchOff extends

Transition {}

}

Fig. 1. Two syntactic variants of the txtUML language
(Left: Standalone syntax, Right: Embedded language in Java)

Figure 1 shows an example model both in standalone and Java syntax. The
model defines one signal (ButtonPress) which will trigger transitions in the state
machine of the class Machine. Inside the class, its states and transitions are
defined. For example, the ButtonPress signal triggers a transition from the Off
state to the On state.

The design of the two language variants follows a pattern: Kinds of the model
elements are shown by keywords (signal, class, transition) in the standalone



syntax, while the Java version uses inheritance from Signal, ModelClass and
Transition. These classes are provided by the txtUML Java API. Properties of
the transitions are expressed by Java annotations (e.g. @From) in Java, while
attribute-like syntax with keywords (e.g. from) is used in the standalone version.

The txtUML language covers a subset of UML. We summarize the supported
elements below:

– Component modeling : Interfaces containing signals; ports; connectors

– Class modeling : Classes with attributes and operations; simple binary asso-
ciations; compositions; (single) inheritance

– State modeling : Simple and composite states; transitions triggered by signals;
guards; choice states

– Behavior modeling : Action code can be written in operations of classes, en-
try and exit actions of states and effects of transitions. Supported base types
are int, double, boolean and String with the usual arithmetic and logic ex-
pressions, variables and assignment. Control structures (loops, branches),
attribute access and operation calls are supported. UML-specific actions:
creation and deletion of objects; linkage and unlinkage via associations and
connectors; reading links; sending signals; accessing signal data in entries,
exits and effects.

4 Diagram Generation

While textual modeling is practical for editing models, graphical diagrams are
better for understanding them. For this reason txtUML can generate standard
UML diagrams from the models in the format of the Papyrus UML frame-
work [14]. As of release 0.4.1, class diagrams and state machine diagrams are
supported. We are working on composite structure diagrams at the time of writ-
ing this paper.

txtUML allows users to influence the layout of the generated diagrams by
textual diagram descriptions. A simple DSL, realized by Java annotations, is
defined for this purpose. The most important layout statements are the following:

– @Above, @Below, @Left and @Right define that two given diagram elements
are placed next to each other vertically or horizontally.

– @North, @East, @South and @West place the two given diagram elements
in two different half-plains of the diagram, but gives no further constrains
on the distance of the elements.

– @TopMost, @BottomMost, @EastMost and @WestMost place the given ele-
ments on the corresponding side of the diagram.

– @Row, @Column and @Diamond can layout multiple elements at once in
the given shape.

– @Show declares that the given elements have to appear on the diagram, but
gives no further constraint on their placement.



class MicrowaveOven;

class Lamp;

class Magnetron;

composition LampsOfOven {

container MicrowaveOven oven;

1..* Lamp lamp;

}

composition MagnetronOfOven {

container MicrowaveOven oven;

1 Magnetron magnetron;

}

Fig. 2. Example model with classes and composite associations

class MicrowaveDiagram

extends Diagram {

@TopMost(

MicrowaveOven.class)

@Row({

Lamp.class ,

Magnetron.class})

class MicrowaveLayout

extends Layout {}

}

Fig. 3. Diagram layout description and generated diagram of the model in Figure 2

In order to produce a diagram layout according to the given constraints,
txtUML applies different graph algorithms and heuristics. We refer the reader
to [6] for the details of this solution.

The left side of Figure 3 shows a diagram layout description for the class
model in Figure 2. It requests the MicrowaveOven class to be on the top of the
diagram and that the other two classes form a row. This setup is realized by the
generated diagram in the right of the Figure.

5 Execution and Model Compilation

No matter which syntactic variant of txtUML is selected to implement a model,
it can be seamlessly integrated into Java programs. The txtUML Java API can
be used to create objects of classes in the model, link them via the associations



(if needed) and send signals to them. Such a Java main function, executing the
(completed) model of Figure 2, is shown in Figure 4.

public static void main(String [] args) {

ModelExecutor.Settings.setExecutorLog(true);

MicrowaveOven oven = Action.create(MicrowaveOven.class);

Action.start(oven);

Action.send(new DoorOpened (), oven);

Action.send(new DoorClosed (), oven);

Action.send(new Start (), oven);

Action.send(new DoorOpened (), oven);

ModelExecutor.shutdown ();

}

Fig. 4. Executing a model from Java code

The usual Java debugging functionalities of Eclipse (breakpoints, stepping,
viewing values of variables etc.) are available for txtUML model code as well,
also for the standalone syntax. While the model is executed or debugged, it is
possible to animate the generated state machine diagrams, as shown in Figure 5.

Fig. 5. Animated state machine diagrams

If the target platform is not compatible with Java, then model compilers
have to be used. As the first step of the transformation, we turn txtUML models
into EMF-UML2 models, which is the de facto standard format of UML in the
Eclipse environment. This can be used as platform-independent input for code
generators.



The txtUML project includes a work-in-progress code generator for C++. It
can generate single and multithreaded C++ programs, and users can configure
which classes of the model should run in which thread.

References

1. Mixed textual/graphical modelling in Papyrus-RT. https://wiki.polarsys.org/
images/0/04/TextualModelingForModelingDays.v2.pdf

2. Eclipse Public License - v 1.0.
https://www.eclipse.org/legal/epl-v10.html

3. eTrice. http://www.eclipse.org/etrice/
4. Executable Translatable UML Open Source Editor. https://www.xtuml.org
5. Forward, A., Badreddin, O., Lethbridge, T.C.: Umple: Towards Combining Model

Driven with Prototype Driven System Development. In: Rapid System Prototyping
(RSP), 2010 21st IEEE International Symposium on. pp. 1–7. IEEE (2010)

6. Gregorics, B., Gregorics, T., Kovács, G.F., Dobreff, A., Dévai, G.: Textual Diagram
Layout Language and Visualization Algorithm. In: Model Driven Engineering Lan-
guages and Systems (MODELS), 2015 ACM/IEEE 18th International Conference
on. pp. 196–205. IEEE (2015)

7. Grönniger, H., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.: Textbased Mod-
eling. In: 4th International Workshop on Software Language Engineering (2007)

8. Mellor, S.J., Balcer, M., Jacoboson, I.: Executable UML: A foundation for model-
driven architectures. Addison-Wesley Longman Publishing Co., Inc. (2002)

9. Mijatov, S., Langer, P., Mayerhofer, T., Kappel, G.: A Framework for Testing UML
Activities Based on fUML. In: Proceedings of the 10th International Workshop
on Model Driven Engineering, Verification and Validation (MoDeVVa) co-located
with 16th International Conference on Model Driven Engineering Languages and
Systems (MODELS 2013). pp. 1–10 (2013)

10. Moka. http://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution
11. Object Management Group: Action Language for Foundational UML (ALF), stan-

dard, version 1.0.1. http://www.omg.org/spec/ALF/ (2013)
12. Object Management Group: Semantics of a Foundational Subset for Executable

UML Models (fUML), standard, version 1.1.
http://www.omg.org/spec/FUML/1.1/ (2013)

13. OneFact: BridgePoint xtUML tool. http://onefact.net
14. Papyrus. https://www.eclipse.org/papyrus/
15. Seidewitz, E., Tatibouet, J.: Tool Paper: Combining Alf and UML in Modeling

Tools – An Example with Papyrus –. In: OCL 2015–15th International Workshop
on OCL and Textual Modeling: Tools and Textual Model Transformations Work-
shop Proceedings. p. 105 (2015)

16. txtUML: Textual Executable Translatable UML.
http://txtuml.inf.elte.hu/

17. txtUML: Textual Executable Translatable UML – Open source repository.
https://github.com/ELTE-Soft/txtUML

18. Xtext. http://www.eclipse.org/Xtext/


