
Scenario-Based Modeling and Synthesis for

Reactive Systems with Dynamic System

Structure in ScenarioTools ?

Joel Greenyer1, Daniel Gritzner1, Guy Katz2, and Assaf Marron3

1 Leibniz Universität Hannover
greenyer|daniel.gritzner@inf.uni-hannover.de

2 New York University guy.katz@nyu.edu
3 Weizman Institute of Science assaf.marron@weizmann.ac.il

Abstract. Software-intensive systems such as communicating cars or
collaborating robots consist of multiple interacting components, where
physical or virtual relationships between components change at run-time.
This dynamic system structure in�uences the components' behavior,
which again a�ects the system's structure. With the often distributed and
concurrent nature of the software, this causes substantial complexity that
must be mastered during system design. For this purpose, we propose a
speci�cation method that combines scenario-based modeling and graph
transformations. The speci�cations are executable and can be analyzed
via simulation. We furthermore developed a formal synthesis procedure
that can �nd inconsistencies or prove the speci�cation's realizability. This
method is implemented in ScenarioTools, an Eclipse-based tool suite
that combines the Scenario Modeling Language, an extended variant of
LSCs, and graph transformations modeled with Henshin. The particular
novelty is the synthesis support for systems with dynamic structure.

Keywords: reactive systems, dynamic system structure, scenario-based speci�-
cation, graph transformation, analysis, speci�cation inconsistency, realizability,
controller synthesis, Scenario Modeling Language, Live Sequence Charts

1 Introduction

In domains such as manufacturing, transportation, or logistics, we often �nd
critical systems that consist of multiple software-intensive components that col-
laborate in order to control physical processes and react to user input. In systems
like communicating cars, mobile robot systems or adaptive production systems,
the physical or virtual relationships between system components may change at
run-time, for example due to the physical movement of components or users,
or due to changing roles and responsibilities of the system components. This

? Funded by grant no. 1258 of the German-Israeli Foundation for Scienti�c Research
and Development (GIF). See demo video here: https://youtu.be/p9mo6FJvqEE

https://youtu.be/p9mo6FJvqEE


dynamic system structure in�uences the behavior of the software-intensive com-
ponents, and the software can again in�uence the system's structure.

Take for example a Car-to-X communication system: the system structure
can change due to the movement of the cars or the occurrence of obstacles
(change of physical relationships), or due to the assignment of roles, such as
leader and followers in a convoy (change of virtual relationships). A car's soft-
ware must then behave di�erently depending on the speci�c tra�c situation and
the speci�c role of the car in that context. Furthermore, the car's software can
in�uence how the system structure evolves subsequently, either by advising the
driver or by controlling the car directly. On top of this, a car can be involved in
di�erent collaborations at the same time, for example convoy management and
collision avoidance coordination at an obstacle.

This induces substantial complexity compared to static systems: not only do
we need to develop systems with distributed and concurrent software, but the
components' behavior is also context sensitive to and in tight interrelation with
the evolving system structure.

To master this complexity, we propose a speci�cation method that combines
formal scenario-based modeling and graph transformations. This method is im-
plemented in ScenarioTools [7], an Eclipse-based tool suite. It combines the
Scenario Modeling Language (SML) and graph transformations modeled with
Henshin [6,1]. SML is a textual variant of Live Sequence Charts (LSCs) [4], and
extends LSCs with constructs for modeling environment assumptions.

The scenario-based paradigm allows engineers to capture speci�cations in a
way that is very close to how they are naturally conceived and communicated
during the early design. The speci�cations are executable via an extension of the
play-out algorithm [4] and so the interplay of the scenarios can be analyzed for
inconsistencies by simulation. Since simulation can naturally not prove the ab-
sence of �aws, we furthermore developed a formal controller synthesis procedure
that can �nd inconsistencies or prove the speci�cation's realizability.

In this tool demonstration paper, we present the modeling, simulation and
controller synthesis capabilities of ScenarioTools based on a Car-to-X ex-
ample. The modeling approach and a prototype tool were already presented in
previous work [8]. We have since reimplemented the tool suite, switching to the
textual Scenario Modeling Language (SML). The key novelty, however, is that
the synthesis now supports speci�cations of systems with dynamic structure.

2 Example and Modeling Approach

As an example, we present a Car-to-X system that assists drivers in passing a
narrow passage created by road works that block one lane of a two-lane street.
Figure 1 shows a sketch where a car approaching the road works on the blocked
lane must stop and yield to a car approaching from the opposite direction.

The lanes of the street are subdivided into lane areas. One lane area is blocked
by the road works. One scenario from the system's speci�cation (Scenario 1

illustrated in Fig. 1) demands that whenever a car approaches the obstacle on



the blocked lane, it must show either a STOP or GO signal to the driver, and
this signal must be shown before the car �nally reaches the obstacle.

A second scenario (Scenario 2 in Fig. 1) extends the behavior described by
the �rst: it requires that when a car approaches the obstacle on the blocked
lane, it must register at a control station. This obstacle control then must check
whether another car has registered for approach from the opposite direction. If
so, it must disallow the �rst car to enter and the STOP signal must be shown to
the driver. Otherwise, it must allow the �rst car to enter and the GO signal must
be shown. It can be seen here how a non-deterministic choice between showing
STOP or GO in Scenario 1 is now determined by Scenario 2. To specify the
system further, more scenarios are added.

approaching
obstacle on narrow 

passage lane
obstacle control

obstacle control

1

2

approaching an obstacle on the blocked lane

show stop
or go

3

before
obstacle is
reached

Scenario 1 “Dashboard of the car approaching 
on the blocked lane shows STOP or GO”

1

entering
(Dis)Allowed2

register 4

is narrow area
free? (any car 
registered 
from other 
side?) obstacle control

3

5
show stop

or go

Scenario 2 “Control station checks for car approaching 
on the blocked lane whether entering is allowed or not”

approaching
obstacle on 
blocked lane

approaching an obstacle on the blocked lane

Fig. 1. Car-to-X example overview

Listing 1 shows how the two scenarios illustrated above are modeled with
SML in ScenarioTools. The speci�cation CarToX imports an ecore �le that
contains the class model of the system. Here, it de�nes classes for cars, lane areas,
the obstacle control, etc., including their relationships. For simulation and con-
troller synthesis, an object model, which is an instance of this class model, must
be de�ned, with a particular number of cars and obstacles at certain positions.

The speci�cation then de�nes which classes of objects are controllable and
which ones are uncontrollable. Controllable classes are the components for which
we specify the (software) behavior. In our case, this is the car and the control
station for an obstacle that blocks one street lane. Uncontrollable classes model
environment entities that are the source of environment events that the control-
lable components react to. In our case, the class Environment is an abstraction
of the car's sensors. For example, the environment can send a car an event that
it moved to the next lane area or that it approaches a certain obstacle. In the
real system a camera- or GPS-based module may send these events.



1 import "car-to-x.ecore"
2
3 system specification CarToX {
4
5 domain cartox // reference Ecore package
6
7 define Environment as uncontrollable
8 define Car as controllable
9 define ObstacleBlockingOneLaneControl as controllable

10 define Dashboard as uncontrollable
11
12 collaboration ApproachingObstacleOnBlockedLane{
13
14 dynamic role Environment env
15 dynamic role Car car
16 dynamic role Dashboard dashboard
17 dynamic role ObstacleBlockingOneLaneControl obstacleControl
18
19 // Scenario 1
20 specification scenario DashboardOfCarApproachingOnBlockedLaneShowsStopOrGo
21 with dynamic bindings [
22 bind dashboard to car.dashboard
23 ]{
24 message env->car.setApproachingObstacle(*)
25 alternative{
26 message strict requested car->dashboard.showGo()
27 } or {
28 message strict requested car->dashboard.showStop()
29 }
30 message env->car.obstacleReached()
31 }
32
33 // Scenario 2
34 specification scenario ControlStationAllowsCarOnBlockedLaneToEnterOrNot
35 with dynamic bindings [
36 bind obstacle to car.approachingObstacle
37 bind obstacleControl to obstacle.controlledBy
38 bind dashboard to car.dashboard
39 ]{
40 message env->car.setApproachingObstacle(*)
41 message strict requested car->obstacleControl.register()
42 alternative if [obstacleControl.carsRegisteredOnNarrowPassageLane.isEmpty()]{
43 message strict requested obstacleControl->car.enteringAllowed()
44 message strict car->dashboard.showGo()
45 } or if [!obstacleControl.carsRegisteredOnNarrowPassageLane.isEmpty()]{
46 message strict requested obstacleControl->car.enteringDisallowed()
47 message strict car->dashboard.showStop()
48 }
49 }
50
51 assumption scenario ApproachingObstacleOnBlockedLaneAssumption
52 with dynamic bindings [
53 bind currentArea to car.inArea
54 bind nextArea to currentArea.next
55 bind obstacle to nextArea.obstacle
56 ]{
57 message env->car.carMovesToNextArea()
58 interrupt if [obstacle == null]
59 message strict requested env->car.setApproachingObstacle(obstacle)
60 } constraints [
61 forbidden message env->car.carMovesToNextArea()
62 ]
63 } // ... additional collaborations and scenarios
64 }

Listing 1. Part of the Car-to-X SML speci�cation



Next, a speci�cation contains collaborations. A collaboration de�nes roles

that represent collaborating objects in the system. Furthermore, a collaboration
de�nes scenarios that describe requirements on how the controllable objects
must or must not react to environment events (speci�cation scenarios) or they
describe what can or cannot happen in the environment (assumption scenarios).
The two speci�cation scenarios shown in Listing 1 model the scenarios in Fig. 1.

Each scenario describes a valid sequence of message events, where each mes-
sage event is the sending of a message from one object to another. Scenario-
Tools supports alternative, parallel, and loop constructs within the scenarios.
Furthermore, the messages in the scenarios can have the modalities strict and re-
quested. In a nutshell, when a strictmessage is expected by a scenario, no message
event must occur in the system that corresponds to a message in that scenario
that is not currently expected. Such violations are called safety violations.

The modality requested indicates that the message must eventually occur. If
a scenario never progresses at a requested message, this is a liveness violation.
Hence, these modalities allow us to specify safety and liveness properties.

The scenarios also de�ne how the roles used by its messages shall be bound

to objects in the object model. The binding of the sending and receiving roles
of the �rst message are given through the occurrence of the event that initiates
the scenario. The binding of the other roles in the scenario is de�ned through
binding expressions that refer to properties of objects bound to other roles. This
way we can de�ne a behavior that is sensitive to the current system structure.

Listing 1 also shows an assumption scenario that describes that after a car
moved onto a new area, and the area after this now current area has a obstacle,
the car will eventually receive the event that it is approaching that obstacle.

Reference or attribute values of objects can change as a side-e�ect of messages
pre�xed with set. For example, when setApproachingObstacle(obstacle) is received
by a car, the car's value for the reference ApproachingObstacle is set to obstacle.
This way we can specify in the second scenario where the car shall register.

Furthermore, messages can be associated with graph transformation (GT)
rules. Figure 2 shows a rule from the Car-to-X example. A GT rule for a mes-
sage must have at least two parameters that get bound to the sending and
receiving object of the message event. A GT rule serves two purposes. First, it
restricts that messages can only occur when their corresponding GT rule is ap-
plicable in the current object model (for details, see [1]). Second, it can describe
a transformation that speci�es the side-e�ect of that message.

The example GT rule in Fig. 2 expresses that on the occurrence of the event
carMovesToNextArea, the receiving car's inArea link will change to express that
the car moves to the next area relative to its current area. Moreover, the rule
constraints that the event cannot occur, for example, when the next lane area
is occupied an obstacle. Also, the car cannot advance to the next lane area if it
is following a car that still resides on the same lane area. This way, GT rules
associated with environment events also formulate assumptions on when these
environment events can or cannot occur.



«forbid#3»

approaching

followedBy
«forbid#1»

«forbid#4»

currentLane:Lane

Fig. 2. A GT rule that describes when and how a car moves to the next lane area.

3 Simulation and Synthesis

ScenarioTools supports the execution and interactive simulation of the com-
bined scenario- and GT rule speci�cations, based on an extended play-out algo-
rithm [4,3]. The ScenarioTools simulation component is integrated into the
Eclipse debug environment. After each step, the current state of progress of the
di�erent scenarios is highlighted in the SML editor. A graphical state view visu-
alizes the explored states and supports jumping back and forth in the execution.

selection of message event

simulation history graph

alternative selection 
of next message event 

inspect role bindings
active scenarios

enabled messages

SML editor

Fig. 3. The ScenarioTools simulation perspective.

The controller synthesis feature of ScenarioTools allows us to check
whether the speci�cation is realizable or not, i.e., whether an environment that
satis�es the assumption scenarios can force the system into a safety or liveness
violation of the speci�cation scenarios. This works by creating an explicit state
graph of all play-out executions, including the changing object structures, and
running game-solving algorithms on this graph. ScenarioTools also supports
visualizing strategies or counter-strategies that show how the system can or



cannot guarantee to satisfy the speci�cation. Using synthesis for our Car-to-X
example, we can, for instance, �nd out that the software cannot avoid crashes
of cars unless we assume that drivers obey the dashboard signals.

4 Related Work

The two notions at the core of our technique�scenario-based modeling and
systems with dynamic structure�have each been studied extensively. There exist
many scenario-based modeling approaches based on MSCs, UML SDs, and LSCs.
There also exist approaches combining scenarios with other behavior models,
such as state machines or temporal logics. Likewise, there are many approaches
for modeling systems with dynamic structures, especially graph transformations.

The modeling and analysis of LSCs is supported also by the PlayGo [5] tool.
The ScenarioTools approach presented here, however, is unique in its combi-
nation of formal, executable scenario speci�cations with graph transformations
to model the message-based interaction of components in a system, the evolution
of the system structure, and the interrelation between these two aspects.

Another related approach is MechatronicUML [2], which combines state-
based modeling and graph transformations for systems with dynamic structures.
Compared to the state-based modeling of MechatronicUML, the scenario-based
modeling of ScenarioTools targets an earlier design and speci�cation phase.

Acknowledgment: We thank Timo Gutjahr, Florian König, and Nils Glade
for their work on ScenarioTools.

References

1. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced
concepts and tools for in-place EMF model transformations. In: Proc. 13th Int.
Conf. on Model Driven Engineering Languages and Systems. pp. 121�135 (2010)

2. Becker, S., Dziwok, S., Gerking, C., Heinzemann, C., Thiele, S., Schäfer, W., Meyer,
M., Pohlmann, U., Priesterjahn, C., Tichy, M.: The MechatronicUML design method
� process and language for platform-independent modeling (2014)

3. Brenner, C., Greenyer, J., Panzica La Manna, V.: The ScenarioTools play-out of
modal sequence diagram speci�cations with environment assumptions. In: Proc.
12th Int. Workshop on Graph Transformation and Visual Modeling Techniques (GT-
VMT 2013). vol. 58. EASST (2013)

4. Harel, D., Marelly, R.: Come, Let's Play: Scenario-Based Programming Using LSCs
and the Play-Engine. Springer (2003)

5. Harel, D., Maoz, S., Szekely, S., Barkan, D.: Playgo: Towards a comprehensive tool
for scenario based programming. In: Proc Int. Conf. on Automated Software Engi-
neering. pp. 359�360. ASE '10, ACM, New York, NY, USA (2010)

6. Henshin website. https://www.eclipse.org/henshin/
7. ScenarioTools website. http://scenariotools.org
8. Winetzhammer, S., Greenyer, J., Tichy, M.: Integrating graph transformations and

modal sequence diagrams for specifying structurally dynamic reactive systems. In:
System Analysis and Modeling: Models and Reusability, LNCS, vol. 8769, pp. 126�
141. Springer (2014)

https://www.eclipse.org/henshin/
http://scenariotools.org

	Scenario-Based Modeling and Synthesis for Reactive Systems with Dynamic System Structure in ScenarioTools 

