
SAC-OCL: A Tool for A Semi Automatic

Co-evolution of OCL Constraints

Djamel Eddine Khelladi1, Reda Bendraou1,2, Marie-Pierre Gervais1,2

1 Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, F-75005, Paris, France.
2 Université Paris Ouest Nanterre La Defense, F-92001, Nanterre, France.

{firstname.lastname}@lip6.fr

Abstract. Object-Oriented Models (OOM) are widely used in Model-
Driven Engineering (MDE). As a complement, OCL constraints are used
to specify business rules and detailed aspects of the business domain.
Automatically co-evolving OCL constraints w.r.t. the evolved OOM is
challenging since alternative resolutions can be applied but also a reso-
lution cannot be applied to any arbitrary constraint. In this paper, we
present SAC-OCL an Eclipse-based tool to semi automatically co-evolve
OCL constraints when an OOM evolves. In contrast to existing tools,
SAC-OCL proposes alternative resolutions for an impacted OCL con-
straint and proposes only the appropriate resolutions that can be applied
on the impacted constraint. Our evaluation on six case studies shows an
average correct co-evolution rate of 92%.

1 Introduction

In Model-Driven Engineering, Object-Oriented Models (OOM) play an essential
role to capture the di�erent aspects of a system [5]. This covers the system's
architecture, its data structure or its design and GUI classes. A OOM alone
is insu�cient to capture all the relevant aspects and information of a domain
speci�cation [11]. To overcome this limitation, the Object Constraint Language
(OCL) [12] is used to de�ne constraints on top of OOMs. For instance, the
Uni�ed Modeling Language (UML) [14] metamodel (an OOM) in version 2.4.1
contains more than 750 OCL constraints expressing well-formedness rules.

Whenever an OOM is evolved, its OCL constraints may become invalid and
need to be co-evolved accordingly. However, existing tools have so far overlooked
two main issues: 1) the existence of multiple and semantically di�erent resolu-

tions, and 2) a resolution can be applicable only to a subset of OCL constraints.
1) An impacted OCL constraint by an OOM evolution can be resolved with

syntactically and/or semantically di�erent resolutions. For instance, the change
"multiplicity generalization of a property p from a single value to multiple values"

requires the OCL constraints to work on a collection of values, e.g. by introducing
an iterator. Alternative resolutions must be considered since multiple iterators
with di�erent semantics exist, e.g. forAll(), exists() etc.

2) A given resolution strategy is not always applicable for all OCL constraints.
Figure 1 illustrates this issue. It depicts an evolution of an OOM where the prop-
erty score is pushed from the superclass Course to the subclass Project. The



2 D. Khelladi et al.

Fig. 1: An evolution and co-evolution example.

two constraints become invalid because score is no more accessible in Course.
The �rst constraint that uses the pushed property score through the reference
courses, can be co-evolved by introducing an If expression that �rst checks
whether courses references an instance of the subclass Project so that score

is accessible. In contrast, the second OCL constraint whose context (i.e. the
element on which an OCL constraint is speci�ed) is de�ned on the pushed prop-
erty score, is co-evolved di�erently by updating its context. Clearly, a resolution
strategy cannot be applied for all impacted OCL constraints by the same change.
Existing tools [3, 2, 10, 9, 1] neither consider the two above issues, nor interact
with the user.

In [8] we addressed these issues by presenting an e�cient approach for a
semi automatic co-evolution of OCL constraints. We proposed a set of resolu-
tions while considering alternative resolutions per impacted OCL constraint. We
identi�ed with a systematic analysis three in�uencing factors that we rely on to
propose the appropriate resolutions that can be applied to an impacted OCL
constraint. To detect the OOM's evolution we use our previous tool [6, 7].

This paper presents SAC-OCL a tool that supports our previous work with
a graphical user interface in the form of an Eclipse plugin. It allows to co-evolve
OCL constraints that are impacted by the OOM's evolution. To demonstrate
the usefulness of SAC-OCL, we validate it on six open-source case studies. The
results show that we are able to co-evolve the impacted OCL constraints near
to the user intent by reaching an average correct co-evolution rate of 92%.

2 Tool's Description

The conceptual framework of SAC-OCL has been already published in [8]. In this
section we present an overview of its main aspects. Figure 2 shows the work�ow
phases of the tool: 1 detecting OOM's evolution, 2 identifying impacted OCL

constraints, 3 proposing alternative and the appropriate resolutions for each

impacted OCL constraint, and 4 applying automatically the resolutions.
The entry point of our tool is the detected OOM's changes during evolution

1 . We start by loading the evolution trace and the speci�ed OCL constraints



SAC-OCL: A Tool for A Semi Automatic Co-evolution of OCL Constraints 3

Fig. 2: Overall approach and the SAC-OCL work�ow.

Table 1: Impact Identi�cation on OCL constraints.

OOM Elements OCL Constraints References To AST Nodes

e1 OCL1, ... ref1, ref2, ...

to be parsed. Phase 2 runs an impact analysis to identify the impacted OCL
constraints that need to be co-evolved. After that, the appropriate resolutions
are proposed for each impacted constraint 3 . The user con�rms the resolution
to be applied for each impacted constraint among the proposed alternative ones.
Finally, the selected resolutions are automatically performed in phase 4 .

2.1 OOM's Evolution

During evolution two types of changes are considered in phase 1 : a) Atomic

changes that are additions, removals, and updates of a metamodel element, and
b) Complex changes that consist in a sequence of atomic changes combined
together [4]. Our previous tool AD-ROOM [6] considers all atomic changes and
seven complex changes:move property, pull property, push property, extract super

class, �atten hierarchy, extract class, and inline class [4].

2.2 Identi�cation of Impacted OCL Constraints

To identify the impacted OCL constraints we run an impact analysis at the level
of the Abstract Syntax Tree (AST) of the OCL constraints (phase 2 ). Before
identifying where an AST is impacted, we compute the Table 1 that lists for
each metamodel element e, all OCL constraints using e with references to the
AST nodes using e. Those references will be further used in the resolution step.

Thus, for each change on an OOM element ei, we access the impacted OCL
constraints and we access exactly the impacted AST nodes. Note that during
the co-evolution, Table 1 is updated accordingly w.r.t. the applied resolutions.
For instance, when a rename element e occurs, it is also renamed in the table.

2.3 Resolutions and Selection Process of the Appropriate Ones

In [8] we �rst conducted a systematic analysis that allowed us to identify three
in�uencing factors that must be considered to propose the appropriate resolu-



4 D. Khelladi et al.

Fig. 3: Process of selecting the appropriate resolution strategies per impacted
part of a constraint and per metamodel change.

tions for an impacted OCL constraints. The three factors are highlighted in the
framebox here under.

1. The OOM change of an element e.
2. Location of the impacted element e in an OCL constraint:

(a) e is used in the context of an OCL constraint
(b) e is used in the OCL expression through a navigation path.

3. The context of the impacted constraint, to know from which class the
impacted element is accessed.

We then proposed a set of resolutions to co-evolve the impacted OCL con-
straints (can be found in [8]). When de�ning each resolution we already specify
under which in�uencing factors each resolution will be proposed. Each resolution
is implemented as a transformation function that updates the AST by adding,
removing, or updating nodes.

When an OCL constraint is impacted by an OOM change, the process of
Figure 3 is used to select a subset of the appropriate resolutions to be proposed
to the user (phase 3 ). It starts with all the available resolutions from Table
?? and excludes a subset of resolutions based on the in�uencing factors. The
�rst factor we consider is the metamodel change that excludes resolutions that
are not associated to the given change (step 1). After that the two last factors
are similarly considered (step 2 and 3) to further reduce the set of appropriate
resolutions. This process is followed for each impacted part of an OCL constraint.

3 Implementation

The tool is implemented as an Eclipse IDE plugin to ease its use by software
engineers who are already familiar with development IDEs like Eclipse. It sup-
ports the co-evolution of OCL constraints de�ned in an OCL �le on both Ecore
[15] and UML CD [14] models. The core functionalities are implemented with
Java (4568 LoC) interfacing with our AD-ROOM [6] plugin.

Figure 4 part 1 shows the OOM to be evolved. Figure 4 part 2 shows the
OCL constraints to be co-evolved. In a �rst step, the OOM evolution (atomic and
complex changes) are taken as input with the OCL constraints. After performing
the impact analysis, the impacted OCL constraints are highlighted to the user



SAC-OCL: A Tool for A Semi Automatic Co-evolution of OCL Constraints 5

Fig. 4: Screenshot of the Eclipse plugin Tool SAC-OCL.

as well as the impacting reason (i.e. the OOM change) for a prompt and a better
understanding, as shown in Figure 4 part 3. Figure 4 part 4 shows the subset
of the proposed resolutions that the user chooses from in a dropdown menu for
each impacted OCL constraint. The user's e�ort is to select the resolutions to
be applied automatically afterwards (phase 4 ). See the demonstration video:
https://youtu.be/qLn2u0J2Wow.

4 Evaluation

We evaluated our tool on six open-source case studies that are Ecore metamod-
els (OOMs) with their associated OCL constraints from the OMG speci�cation,
namely: the UML Class Diagram (UML CD), the Structured Metrics metamodel
(SMM), the Uni�ed Pro�le for DoDAF/MoDAF (UPDM), the National Informa-
tion Exchange Model (NIEM), the EXPRESS Information Modeling Language
(EXPRESS), and the Requirements Interchange Format (ReqIF).

The evaluation process consisted in comparing how the OCL constraints
were manually co-evolved in practice against how the same OCL constraints are
co-evolved with our tool. In the experiment, the authors play the user role. We
aimed at co-evolving the OCL constraints as close as possible to the co-evolution
in practice, for an objective comparison. We highlight the obtained results.



6 D. Khelladi et al.

Table 2: Correct Co-evolution Percentage (%).

UML CD SMM UPDM NIEM EXPRESS ReqIF

Syntactically correct co-evolution % 72% 83% 100% 100% 100% 100%

Semantically correct co-evolution % 80% 83% 100% 100% 100% 100%

Table 2 presents the results of the measured co-evolution percentage. For four
case studies, we reached 100% co-evolution percentage, whereas in UML CD and
SMM, we had respectively 72%, 80% and 83% of co-evolution percentage. An
average of 92% (syntactically) and 93% (semantically) correct co-evolution is
reached in our evaluation. These results show that our approach can e�ciently
support the user with a co-evolution near to her intent and needs.

However, some constraints where co-evolved di�erently in our approach than
in practice. We further investigated these cases in particular for UML CD and
SMM case studies. We noticed that those cases were due to a refactoring that
changed their semantic either by removing/adding a part in the constraint. Or
by replacing some elements in the original constraint with other elements that
are di�erently typed. For example, constraint 1 is impacted by the renaming of
GeneralizableElement to PackageableElement. It is co-evolved by our approach
as follows from (1) to (2) by propagating the rename. However, in practice the
context of constraint (1) was changed to the subclass Classifier instead of apply-
ing a rename. Therefore, the semantic is slightly di�erent since the applicability
scope of the new constraint is reduced to elements of type Classifier.
context GeneralizableElement inv: not self.allParents()−> includes(self) - (1)
context PackageableElement inv: not self.allParents()−> includes(self) � (2)

5 Related Work

Here we give a succinct related work to OCL co-evolution. Demuth et al. [2]
proposed an approach for OCL co-evolution based on templates. They provided
11 templates that de�ne a �xed structure for OCL constraints. Hassam et al.
[3] proposed to co-evolve OCL constraints using QVT [13] a transformation lan-
guage. Similarly, Markovic et al. [10] proposed to refactor, based on QVT, OCL
constraints annotated on UML class diagrams when these last evolve. Kusel et
al. [9] discussed the impact of metamodel evolution on OCL expressions and
proposed to resolve impacted expressions. Cabot et al. [1] focused on the meta-
model change delete element. In particular, they aimed at removing only a sub
part of the OCL constraint that is using the deleted element.

All existing approaches [2, 3, 10, 1, 9] consider only the metamodel change as
a factor to propose a resolution. Thus, they de�ne for each metamodel change
only a unique resolution. In contrast, we propose alternative resolutions while
considering three in�uencing factors instead of one, i.e. the OOM change.

6 Conclusion

We presented SAC-OCL a tool for a semi automatic co-evolution of OCL con-
straints de�ned on OOMs. SAC-OCL is designed to consider alternative res-



SAC-OCL: A Tool for A Semi Automatic Co-evolution of OCL Constraints 7

olutions and to propose the appropriate resolutions for each impacted OCL
constraint. It is implemented as a plugin for the Eclipse IDE a wide-spread
development environment for software developers. The evaluation illustrates our
tool's ability to co-evolve OCL constraints near to the user intent while releasing
the burden of manual co-evolution from the user.
Acknowledgment. The research leading to these results has received funding
from the industrial innovation Project MoNoGe under grant FUI - AAP no. 15.

References

1. J. Cabot and J. Conesa. Automatic integrity constraint evolution due to model
subtract operations. In Conceptual Modeling for Advanced Application Domains,
pages 350�362. Springer, 2004.

2. A. Demuth, R. E. Lopez-Herrejon, and A. Egyed. Supporting the co-evolution
of metamodels and constraints through incremental constraint management. In
MODELS, pages 287�303. Jan. 2013.

3. K. Hassam, S. Sadou, V. L. Gloahec, and R. Fleurquin. Assistance system for
ocl constraints adaptation during metamodel evolution. In CSMR, pages 151�160.
IEEE, 2011.

4. M. Herrmannsdoerfer, S. D. Vermolen, and G. Wachsmuth. An extensive catalog
of operators for the coupled evolution of metamodels and models. In B. Malloy,
S. Staab, and M. v. d. Brand, editors, SLE, pages 163�182. Jan. 2011.

5. J. Hutchinson, J. Whittle, M. Rounce�eld, and S. Kristo�ersen. Empirical assess-
ment of mde in industry. In ICSE'11, pages 471�480. ACM, 2011.

6. D. E. Khelladi, R. Bendraou, and M.-P. Gervais. Ad-room : a tool for automatic
detection of refactorings in object-oriented models. In The 38th ICSE, 2016.

7. D. E. Khelladi, R. Hebig, R. Bendraou, J. Robin, and M.-P. Gervais. Detecting
complex changes during metamodel evolution. In CAISE'15, pages 264�278, 2015.

8. D. E. Khelladi, R. Hebig, R. Bendraou, J. Robin, and M.-P. Gervais. Metamodel
and constraints co-evolution: A semi automatic maintenance of ocl constraints. In
International Conference on Software Reuse, pages 333�349. Springer, 2016.

9. A. Kusel, J. Etzlstorfer, E. Kapsammer, W. Retschitzegger, J. Schoenboeck,
W. Schwinger, and M. Wimmer. Systematic co-evolution of ocl expressions. In
11th APCCM 2015, volume 27, page 30, 2015.

10. S. Markovic and T. Baar. Refactoring OCL annotated UML class diagrams. Softw
Syst Model, 7(1):25�47, Feb. 2008.

11. G. Mezei, T. Levendovszky, and H. Charaf. An optimizing ocl compiler for meta-
modeling and model transformation environments. In Software Engineering Tech-

niques: Design for Quality, pages 61�71. Springer, 2006.
12. OMG. Object constraints language (ocl). www.omg.org/spec/OCL/, 2015.
13. OMG. Query/views/transformations (qvt). www.omg.org/spec/QVT/, 2015.
14. OMG. Uni�ed modeling language (uml). www.omg.org/spec/UML/, 2015.
15. D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro. EMF: eclipse modeling

framework. Pearson Education, 2008.


