REIFIER: Model-Driven Engineering of
Component-Based and Service-Oriented
JEE Applications

Jérome Rocheteau' and David Sferruzza?
! ICAM / 35, avenue du Champ de Manceuvres, 44470 Carquefou, France
jerome.rocheteau@icam.fr
2 LINA - UMR CNRS 6241 / F-44322 Nantes Cedex 3, France

david.sferruzza@univ-nantes.fr

Abstract. This paper aims at presenting REIFIER, a tool for prototyp-
ing modules of JEE applications by the means of a model-driven develop-
ment. Web services are defined as parametric components which enables
to express web service patterns, to verify them formally and to reuse
them in other contexts. Although REIFIER requires developers to imple-
ment components compliantly to a lightweight API, it provides modelers
design flexibility and verification support of their web service models.
https://www.youtube.com/playlist?list=PLirnq05cc9voQv_9NDQrRw9zalsydYjOL

Introduction

ICAM drives 50 applied research projects per year in various application fields
either as a supplier of companies within their inner short-term projects or as
partner in long-term collaborative projects. In the information technology field,
projects mainly lead to develop prototypes based on web services, web technolo-
gies and mobile technologies in order to highlight innovative features. Adopted
approach mostly consists in a 4-step methodology: (1) need and requirement
analysis that encompasses state-of-the art and reverse engineering of existing
solutions, (2) modelling, (3) prototype development and proof-of-concept, (4)
skills and knowledge transfer. In fact, models are central to this approach: on
the one hand, they correspond to the outputs of the two first steps and, on the
other hand, they correspond to the input of the two last ones. It has been noticed
that the average time spent for developing the prototype (including bug fixes) is
at least twice that of spent to modelling — whereas prototyping merely consists of
transforming models into source codes. The opposite would be better: to spend
more time in modelling and to save time in verifying model implementations.
Thus, since 2014 and for its own applied research activities, ICAM began to
develop a prototype, called REIFIER, able to automatically generate the source
code of JEE applications from a specific model of web services. A domain-specific
language for web services has been designed in order to deal both with data and
process models within the same model. Data model corresponds to entities with
properties, inheritance and many-to-one relationships to other entities. Processes

https://www.youtube.com/playlist?list=PLirnqO5cc9voQv_9NDQrRw9zaOsydYj0L

corresponds to parametric components defined by their inputs and outputs. The
latter can be split, on the one hand, into atomic components, each of them linked
to a computational unit manually developed and provided throughout libraries
and, on the other hand, into compound components that stand for computa-
tion flows. Web services can therefore be seen as component specializations over
specific entities. We argue that such a meta-model makes possible to define web
service patterns which tends to reduce the number of atomic components in-
volved in developments, and therefore the number of bugs introduced during
developments, as formal verification is made possible thanks to the component-
based formalization.

REIFIER’s novelty thus consists in applying theorem proving techniques to
web engineering and in demonstrating that it is relevant. This paper is organized
as follows: The section [[ldetails the meta-model of web services and its associated
verification operations (naming uniqueness, type system hierarchy, component
consistency). The section [2| presents the programming interface required for de-
veloping atomic components that ease their verification. The section |3| explains
how JEE applications are generated from such models. Finally, the section [
compares our approach to others found in the literature.

1 Meta-Model

The meta-model of web services is defined by the means of the syntactic cate-
gory model in the figure [I} It has been designed in order to match needs and
requirements about verification. It does not aim to become another standard
but rather to support mapping from and to web service meta-models like RAML
and Swagger for instance. This category model is specified as a product type of
4 attributes: a name, a list of entities that stands for the data model, a list of
components that stands for the process model and the web services that compose
both entities and processes.

Firstly, entities are represented by the syntactic category entity which is de-
fined by its name and a list of properties. An entity can optionally inherit from
another entity as specified by its attribute « entity:entity? ». A property merely
consists of its name and its type; a type being either a primitive type (string,
boolean, integer, etc) or an entity. Primitive-type properties corresponds to the
strict definition of entity properties whereas entity-type properties corresponds
to many-to-one relationships between the entity that they belong to and the
entity that they reference. This data meta-model consist in the minimal and
common one among UML object-oriented data models (class diagrams), rela-
tional data models and conceptual ones (entity/association diagrams).

Secondly, components defined by the component as the sum type of abstract
components or compound components. Both types of components are defined by
their name, their lists of inputs and outputs and a list of parameters. Moreover,
compound components own a list of concrete components. The latter correspond
to abstract or compound components specialized with some valuated parame-

model = (name:name,entities:entity* ,components:component*® services:service*)

service = (name:name,path:name,methods:method*)
method > component[protocol:protocol,request:message,response:message|
message = (content-type:string,content-encoding:string,headers:string™®, type:type)
protocol ::= get | post | put | delete | head | options | trace | connect
component ::= abstract | compound
abstract = (name:name,inputs:variable* outputs:variable*, parameters:variable*)
concrete = (component:component,parameters:parameter*)

compound > abstract[components:concrete*]

parameter > variable[term:term]

term ::= variable | constant
variable = (name:name,type:type)
constant = (type:itype,value:object)
name ::— abstract-name(name:string)

| concrete-name(name:string)
| compound-name(names:name*)
entity = (name:name,stored:boolean,entity:entity?,properties:property™®)
property = (name:name,type:type,required:boolean,indexed:boolean)
type ::= void | string | boolean | integer | float | date | entity

Fig. 1. Meta-Model of Web Services

ters. The name of abstract component stands for the Java qualified name of its
implementation.

Finally, a web service — formalized by the syntactic category service — is de-
fined by its name, its path and a list of methods. The syntactic category method
extends that of concrete components i.e. it specializes a given abstract or com-
pound component, by valuated parameters. Such methods then consist of wrap-
pers around concrete components with a given method protocol the signature of
its required requests and that of its provided responses.

Verification Model verification focuses on names, entities and components. Ver-
ifying names consists in detecting naming collisions i.e. different elements in a
given model have the same name. It is also verified that only inputs and outputs
of abstract or compound components can be parametric names; neither entity,
component, service nor parameter names can partially be defined by a param-
eter. Moreover, some naming conventions are verified: for instance, each entity
(resp. component, service) name has the model name concatenated with "enti-
ties" (resp. "components", "services") as a namespace. This naming convention
verification ensures that no conflict will happen during source code generation
i.e. a single file will be generated twice for two different model elements. If an
entity (resp. a component) does not verify such a condition, it is assumed that
it points to an existing third-party entity (resp. component) and a verification
is therefore performed in order to ensure that this entity (resp. this compo-
nent) is provided by a library. Verifying entities consists in checking that the

type system is well-founded i.e. that no cycle exists over entity inheritance rela-
tionships. Verifying components as well as methods of services consists, firstly,
in checking that abstract component implementations meet their specifications
(see section [2)) secondly, in checking compliance between input and output types
of inner components of compound components and, thirdly, in checking that
every parameters of a concrete component must be declared by its inner compo-
nent. It is also verified that inner component output exists within a compound
component that overrides the output of one of its previous inner components.
Moreover, every services must embed only components without any free variables
or non-valuated parameters.

2 Programming Interface

An application programming interface (API) for developing implementations of
abstract components is provided by the means of a Java library that contains:

— 2 Java interfaces: Component and Resource,
— 5 Java annotations: Parameter, Input, Output, Request and Response.

This API involves that of the Java servlets. The Resource interface merely
consists in two methods setUp and tearDown able to initialize and finalize ob-
jects. The first method setUp is applied to a servlet context as parameter. This
APIT therefore enables resource implementations to provide some real resources
throughout servlet context sessions. Such resources can be shared between sev-
eral components while initializing them.

In fact, the Component interface specifies three methods setUp, tearDown
and doProcess. Whereas the first method setUp consists of initializing objects of
classes that implements this interface, the second one corresponds to its dual i.e.
it consists in destroying these objects. The first method is applied to a servlet
context and a servlet configuration which makes possible to retrieve some re-
sources previously inserted into the servlet context attributes. Hence resources
can be shared between several components. As for the third method doProcess, it
defines the computation of such components. Abstract component implementa-
tions can then process HTTP requests and responses such that it makes possible
to wrap them into HTTP servlets in order to build computation flows.

The five annotations provided by the REIFIER API bridge the gap between
component specification and their implementations. In fact, they are used to ver-
ify that component implementations meet their specification. These annotations
all concern either fields or local variables within component implementations.
They are all defined by a name and a type that must comply the REIFIER type
system. This means that types are either primitive types or entities that are
defined by qualified names of Java classes or interfaces. Types can also be refer-
ences to parameters of these component implementations which type is a Java
class. The latter corresponds exactly to parameter terms that are variables in
the REIFIER meta-model. That is why these annotations could ease verification
of abstract components as REIFIER type system is embedded into component

implementation annotations. However, this correspond to a shallow verification
as the compliance between annotations and the fields or local variables that they
concern is not verified.

This APT encourages developers to provide fine-grained and focused compo-
nents throughout their libraries as compound component and service implemen-
tations are automatically generated from a given model as well as web service
descriptions. However, it does not tackle side-effects, asynchronous method calls,
first-order pre/post conditions within component implementations, as this API
has been designed to be the more lightweight possible for developers.

3 Model to Text Transformation

Code generation is performed thanks to a Maven plugin and generated JEE
applications rely on the REIFIER API library, Hibernate core library and on
Hibernate Search library when plain text search is enabled for some indexed
properties of entities (i.e. when the indexed attribute of an entity property is set
to true). These libraries remains the required dependencies involved by the source
code generation. It reads a XML file that describes a model compliant with the
meta-model presented in the section [I} Models are then built and verified before
being serialized by the means of a template engine as follows:

Firstly, entities are created as Java classes. The name of these classes is pro-
vided by the name of the entity. Private fields are declared within such classes
from the entity properties, the name of fields is provided by that of properties and
its Java type is defined either by Java primitive type wrappers that associated
to REIFIER primitive types or by Java classes that are generated from entities.
A specific field called id of type long per stored entity (i.e. those which attribute
stored is set to true in a given model) is inserted that stands for the identifier
or primary key of these entity occurrences. These Java fields are annotated by
annotations that are provided by the Java persistence API, the Hibernate API
and the Hibernate Search API accordingly. Public setters and getters for such
Java fields are inserted within these Java classes. The latter do no hold nei-
ther constructor nor other specific methods. These classes correspond to data
structures only. Moreover, a XML file is also created that specifies a Hibernate
object-to-relational mapping between these Java classes and SQL tables from
stored entities.

Secondly, compound components are created as Java classes that implements
the Component interface provided by the REIFIER API. Private fields and asso-
ciated setters and getters are inserted within these classes from the parameters
of their components. The setUp method constructs every inner components and
calls their respective setUp methods. In the same way, the doProcess method
(resp. tearDown method) merely calls inner component doProcess methods (resp.
tearDown methods). Moreover, every methods of services are created the same
manner as Java classes that implements the Component interface; their Java class
name is provided by their service name with their protocol name as suffix.

Thirdly, services are created as Java classes that extend the HttpServlet class.
A private field is declared per method, the protocol name provides this field
name. The Java type of such fields is defined by the generated class of these
methods. Finally, the XML file web.xml that specifies, on the one hand, the
previous servlet context listener and, on the other hand, both the available paths
and their associated HTTP servlets is generated. This achieved the model-to-text
transformation that reifies the JEE application.

In addition, a Java class that stands for a HTTP client is created per service
thanks to the Apache HTTP client library. Every HTTP clients have a string
field that corresponds to the server name of the generated JEE application. They
all have two methods setUp and tearDown with no parameter for initializing and
finalizing them. They also have a Java method per REIFIER method; its return
type is defined by that of the REIFIER method response and, potentially, such
Java methods have an argument defined by the REIFIER method request.

4 Related Work

This work follows the recommendation from [6], §6] that meta-model approaches
are suitable for server-side code generation instead of a meta-programming one.
Moreover, the meta-model presented in the figure [I] share the same concepts
with that of [4]. In fact, web services are defined as pairs composed of a process
and a behavior. Processes correspond either to an action (single-step process)
or a composite one (multiple-steps process). In addition, single-step process are
specified by their behavior that consist in inputs and outputs but also in pre-
conditions and effects. Although our web service definition takes into account
inputs and outputs, it lacks of higher order specifications as preconditions and
effects.

A interesting way to embed preconditions or effects into our approach can
be drawn out from [5]. In fact, a innovative web engineering methodology is
designed that starts by extracting requirements from mockups i.e. quick designs
of application use cases and end-user screens. Then, some refinements can be
introduced into extracted models with the concept of tags. Tags help to specify
application features such as some operations over data structures, navigation,
search queries, specific actions, etc. This tag system seems lightweight for de-
velopers or modelers and this could be applied to our work through out Java
annotations for atomic component implementations.

This work is highly related to that of [I] with the Declare tool and those
from [2] to [3] with the M3D tool, the latter extending the previous one. In
fact, M3D generates web application code source from a 4-layer meta-model:
information layer by the means of UML class diagram, service layer by the means
of BPMN, presentation layer by the means of ad hoc meta-model and a process
layer by means of Declare an event constraint language based on the temporal
logic LTL. Code generation is achieved using a model-to-text approach with the
Xpand language. These tools aim at providing developers the higher flexibility
possible as well as the better support possible — the less to develop and verify but

the easiest to customize. This exactly is REIFIER development main guideline.
Our work specially focuses on the design-time support (see [I, § 3.1]) even if
still requires to explicitly express services and it does not yet support formal
verification. These tools have a lot in common with respect to these guidelines.
However, they differ one to another at some extent. The main difference consists
in the fact that M3D generates web applications i.e. both server-side and client-
side applications whereas REIFIER only generates web services i.e. server-side
applications although it used to generate both sides on its earlier versions.

Conclusion

REIFIER has been successfully applied to the development of several JEE appli-
cations. It has been noticed that the set of abstract component implementations
reaches both quantity and quality stability over the time. It then reduces the
lines of code manually written and, therefore, the number of bugs. It tends to
reduce development time for server-side JEE applications and to dispatch effort
differently: less for developers, more for designers.

Three main prospects are here sketched: The first prospect corresponds to an
ongoing work at ICAM and consists in building other model-driven approaches
on the top of REIFIER thanks to model-to-model transformations. This is investi-
gated for service-oriented management systems of sensor and actuator networks.
The second and third prospects are investigated during David Sferruzza’s PhD
thesis. It firstly consists in turning models into parametric models in order to
define explicit design patterns. It secondly consists in strengthen verification by
the means of formal methods; an axiomatic semantics for components that could
reach this goal has been designed.

References

1. van der Aalst, W., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing
between flexibility and support. Computer Science - R&D 23(2), 99-113 (2009)

2. Bernardi, M.L., Cimitile, M., Di Lucca, G., Maria Maggi, F.: M3D: a tool for the
Model Driven Development of Web Applications. In: Fletcher, G.H.L., Mitra, P.
(eds.) Proceedings of the Twelfth International Workshop on Web Information and
Data Management, WIDM 2012, Maui, HI, USA, November 02, 2012. pp. 73-80.
ACM (2012)

3. Bernardi, M.L., Cimitile, M., Maggi, F.M.: Automated development of constraint-
driven web applications. In: Proceedings of the 31st Annual ACM Symposium on
Applied Computing. pp. 1196-1203. ACM (2016)

4. Lautenbacher, F., Bauer, B.: Creating a meta-model for semantic web service stan-
dards. pp. 376-381. INSTICC Press (2007)

5. Rivero, J.M., Grigera, J., Rossi, G., Robles Luna, E., Montero Simarro, F., Gaedke,
M.: Mockup-driven development: Providing agile support for model-driven web en-
gineering. Information & Software Technology 56(6), 670-687 (2014)

6. Scheidgen, M., Efftinge, S., Marticke, F.: Metamodeling vs Metaprogramming: A
Case Study on Developing Client Libraries for REST APIs. Lecture Notes in Com-
puter Science, vol. 9764, pp. 205-216. Springer (2016)

	Reifier: Model-Driven Engineering of Component-Based and Service-Oriented JEE Applications

