Operators for Template-Based MDE

Matthieu Allon!

University of Lille - CRIStAL Lab. (UMR CNRS 9189)
France, Villeneuve d’Ascq
Matthieu.Allon@etudiant.univ-1illel.fr

Abstract

In MDE, design of systems can be improved and accelerated thanks to
reusable models which are made available in model repositories or libraries.
This paper focuses on the construction and exploitation of “off-the-shelf” model
template bases. Model templates are parameterized models which are adaptable
to various application contexts. Due to their parameterization, model templates
have their own modeling space. In this paper, we present the main modeling ac-
tivities that underlie this space, their dedicated engineering processes and their
actors, and we contribute to the model reuse improvement by detailing new tem-
plate operators for the described modeling activities. A software environment is
shown to illustrate template based engineering in Eclipse.

Keywords: Model Templates, Model Reuse, Model Space, Template Engineer-
ing.

1 Introduction

In MDE, model reuse is a big challenge that aims to facilitate the capitaliza-
tion of design efforts and logics (“off-the-shelf” model component libraries [12]),
then to accelerate system design and improve their quality. In existing work, the
main approaches are either based on reuse of composable model pieces, or on pa-
rameterized models which are adaptable to various application contexts [2,7,11].
We contributed to this research by studying model parameterization techniques
such as the one offered by the UML “Template” construct. Templates differ from
composable model pieces due to template parameterization which clearly identi-
fies what is required for a reusable model: parameterization acts as an interface
specifying what is required [14]. We have defined two approaches that allow the
design of systems by assembling templates through parameterization [3,14,15].

Starting from these works, we focus now on the construction and exploitation
of model template bases and the related engineering processes. Our objective is
to increase the capacities for creating, composing and reuse templates within
such bases by proposing new template operators. Resulting model spaces must
be systematically characterized to master and exploit their structuring proper-
ties. After a reminder on model templates (Section 2), we present our vision of
model template spaces (Section 3) and the related operators (Section 4). Then,
we describe a software environment in Eclipse to construct and exploit model
template spaces in UML (Section 5).

2 Aspectual Templates in UML

UML Templates [1] allow to capture modeling constructs which expose some
of their constituents as parameters. Such constructs can be classes or packages
(but not only). To specify its parameterization, a template owns a signature,
which is a list of formal parameters where each one designates an element that
is part of the templated model. It is the intent of templates to be reused. For
template application, the standard defines a specific “template binding” rela-
tionship which allows to specify how the content of a base model is derived from
a template through the substitution of its parameters.

In UML, template parameters form an unstructured set of model elements
so that the construct is general and permissive enough to render much of model
parameterization needs such as the modeling of generic classes (such as C++
templates) [16], the capture of Design Patterns [17], View [10] or Aspect Ori-
ented Modeling [13]. In [18], we proposed a compatible enhancement of UML
templates (Aspectual Templates). It consists in enforcing templates to have a
full model as parameter (parameter model) to improve their consistency, no-
tably for aspectual usages, but also to better specify the model of systems to
which the functionalities will apply. Following this, the binding mechanism has
been adapted to enable substitution of the model parameter by a conforming
substructure of the base model.

Figure 1 gives an example of such an enhanced template: the observer pattern
template is applied to a base model (the CarHiringSystem application context)
for installing functionalities between an agency and a client for observing car
availability. Each substitution in the binding follows the same mechanism as the
one described for the Subject and Agency bound elements: Subject is bound to
Agency, so all constituents of Subject are injected in Agency.

One can observe that (1) the template parameters (see the superimposed
dashed box) form the parameter model and (2) its structure is well-preserved by
the substituted elements in the binding.

ObserverPattern i_ S _'-? of _0;5_ ﬁ_ ;s_e_rv_e; : CarHiringSystem
|) Client [Agency Car__
Sohiect —————— = name:String |¢jiendname:String |ac [number:String
ubjec S phone: String [0..* | address:String | 0--| model: String
register(o : Observer) obs <Subject -> Agency, l l

unregister(o : Observer)| 0. [————|
notify%) ¢) update() obs -> ac, CarHiringSystem

Observer -> Client> -
Client __Agency | Car
name:String |¢jjengname:String c [number:String
..

a
phone: String |o. address:String 0.5 model: String
update() register(o : Client)

unregister(o : Client)
notify()

Fig. 1: Template application

The previous template construct and application mechanism allow to design
complex systems from assemblies of templates but also to obtain richer templates
from existing ones.

3 Template Based Model Engineering
On the basis of the previous model template technique, specific modeling
spaces with their engineering practices and automatic processes emerge. Fig.2

shows an illustration of such a modeling space with involved actors and activities
around a model repository containing templates and models that they share.

Model
Template Induction (D) Template Decomposition (C) Template C ition (B) ization (A)

bindings | ' T
v [T L i [
Template Designer i i I binding I bindin,
riev

N
popylate populat retr‘eve

O Q :
.. .Model retrieve \\\ T retieve |
Repository opuizte M
|

binding

Application Modeler

Fig. 2: Template Based Model Engineering

In this modeling space, designers of model templates are mainly concerned
with “design for reuse” and the constitution of libraries. They have to identify
candidate models of functionnalities and render them as model templates for en-
abling their reuse. Several activities (see Fig.2) are of interest for this engineering
task :

— New template creation by the parameterization of unparameterized models
from the selection of model constituents (activity (A)).

— Composition of existing templates in order to build richer ones, by template
merging or template-to-template binding (activity (B)).

— Decomposition of a previously identified complex template which leads to
identify finer ones (activity (C)).

— Induction of new templates from previously designed models of systems
which share common functionalities (activity (D)).

Application modelers are much concerned with “design by reuse” methodol-
ogy (right of Fig.2). From template designers, they get the possibility to exploit
model templates for their application needs in a safe manner through “template
binding”. This latter allows complex system construction by successive applica-
tion of templates.

All these practices must be controlled in an homogeneous and consistent
manner. This requires a precise formalization and characterization of model tem-
plates as well as their relationships and dedicated operators.

4 Aspectual Template Operators

To support activities described previously, we can think of many useful tem-
plate operators. To our knowledge, there are approaches using templates [2,8,9]
and other offer model operator [4,5,7]. However, neither approach offers oper-
ators on templates, i.e. operators considering model parameterization. Table 1
gives the studied operators, with their functional signature (operands and re-
sult), their meaning description and their related activity.

In our previous work, we deeply studied the operators for applying templates
through substitutions of their parameters that are the apply [14] and the instan-

Table 1: Studied Operators

Modelin
Operators Signature Explanation o g
Activities
Promote AT x Core constituents — AT |New template with template constituents L
Parameterization
promoted to the parameter model.
Restrict |AT x Parameter constituents — AT |New template with parameters which are
restricted to not parameterized template
constituents.
Appl, New t late by injecting t lat -
PPy AT x AT x Substitution Set — AT oW tempiate by fjecting tempiate con Composition
stituents in a second template.
Instantiate New template by replacing template con-
stituents by selected other constituents in a
second template.
Merge AT x AT — AT New template by merging two templates.
Extract AT x Core constituents — AT New template by extracting constituents| Decomposition
from a template.

tiate [3] operators, while the merge operator corresponds to the UML one [1].
We are currently studying the remaining ones.

Fig.3 illustrates the promote operator that can be used for adapting aspectual
template parameters for new application contexts. This is done by giving a pa-
rameter status to template constituents. The restrict operator performs dually:
it allows to remove model elements in the parameter model.

promote (ObserverPattern, {obs, Observer}) = ObserverPatternPrime
ObserverPattern rg;bje_c; -i ObserverPatternPrime i_g;b;e_c; T)l:s_ ﬁ‘}
Subject — Subject |\ 0 ——J
register(o : Observer) ~ |obs * Observer register(o : Observer) ~ |obs i} Observer|
:ZG?YQ(I)Ster(O : Observer) O.. Updatel) :g{:yg(l)ster(o : Observer) O.. Update()

Fig. 3: Promote Operator

Both previous operators are useful to allow a template designer to create
various versions of a template, i.e. templates with the same constituents, but
with different parameter models. This is interesting for applications designers
to compose a template ! with a model which does not need a binding with all
parameter constituents. Concerning the third new operator, extract, it allows a
template designer to obtain a part of template, which can be useful to extract,
for instance, design patterns from others (e.g. a singleton from a factory).

5 EMF technology

We are implementing a software environment dedicated to template based
model engineering in Eclipse, with plugins based on the official EMF (Eclipse
Modeling Framework), UML and OCL plugins. They offer core functionalities
to specify and verify templates well-formedness and their binding in a compliant
way with UML thanks to a specific profile. In addition, these plugins provide
original facilities to support other modeling tasks targeting templates or user
assistance (e.g. signatures and bindings inference and automatic completion). All
these functionalities are reusable for modeling tools handling model templates.

IFor instance, representing a design pattern.

In our case, they are experimented through an in-progress case study? in a CASE
tool prototype® (see Fig. 4).

&) ObserverPattern.uml 53 &) CarHiringSystemContext.uml 53
4 &) platform:/resource/Demo/ObserverPattern.uml 4 &) platform:/resource/Demo/CarHiringSystemContext.uml
4 B <<AspectualTemplate>> <Package> ObserverPattern 4 B3 <Model> CarHiringSystemContext
4 &' <Template Signature> 4 B <Package> CarHiringSystem
©: <Connectable Element Template Parameter> value 4 4, <<InstantiationBinding>> <Template Binding>
£ <Classifier Template Parameter> T @: Observer -> Client
£ <Classifier Temolate Parameter> Observer ~ @+ Subiect -> Aaency -

RS
] »
[

[] Properties | @ UML Viewer - CarHiringSystemContext.uml 53

Package Cariningsystam
&= & fcage O b @
5 T —— Subect s>
— — ackage Obsarvarpattem <valueT Observa Suliect, s
Vbinhday { Sting | | cake : Integer
+phone 1 String 3 Construtor + Inkeger
Fadrass : String T rrodel : String
Firarcter (Agency 3) 1 vad
0. 0
clients ac 2= feccccccaaa
\ L <<instantiate>>
<Observer -> Client
Ay Subject-> Agency
e S Value > capacity
+ capacity : int obs -> clients
g
Fadd (Car <) 1 void
" Gelete (Car c) + vad

Fig. 4: Tooling - Instantiate operator example

Following main features are currently under study to support plain template
based engineering;:

— An engine for determining inclusion and typing relationships between tem-
plates and their constituents. Such relationships should permit template hi-
erarchical structuring, useful to template-based activities. We are developing
this by exploiting our generic submodel engine [6].

— A richer set of template operators. Currently, only parameterization, merg-
ing, instantiation and aspectual binding with their checking, completion and
inference facilities are available. Other operators are under study.

— Template searching capacities in model repositories. Using the relationships
above, a searching system similar to the one described in [19] but specific
to templates can be developed. From a selected template, this system will
enable to find similar templates according to its constituents into repositories
and hierarchically present them.

6 Conclusion

In this paper, starting from our previous work, we sketch the model template
modeling space and its associated engineering. This work presents new operators,
a general method for developing and using the templates, and describes a work-
in-progress tool to support the management and use of templates.

Defining the envisioned set of operators raises a large number of issues, and
first results with the in-progress case study shown that there are still many open
questions: the operator semantics and usages, their algebraic properties and
composition. However, more Fundamental issues need to be investigated to the
help of full template-based modeling and engineering, especially the questions
of model inclusion and model typing within the same meta-modeling space [6].

2The case study concerns the modeling of a REST News Server using design pat-
terns.
%http://www.cristal.univ-1ille.fr/caramel/MBE_Template/

http://www.cristal.univ-lille.fr/caramel/MBE_Template/

This work will contribute to better theoretical understanding and generalization
of templates for the quest of model reuse and model space structuring.

References

1.

2.

* N

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

UML 2.4.1 Superstructure Specification, 2011.
http://www.omg.org/spec/UML/2.4.1/.

O. Alam, J. Kienzle, and G. Mussbacher. Concern-oriented software design. In
International Conference on Model Driven Engineering Languages and Systems,
pages 604-621. Springer, 2013.

M. Allon, G. Vanwormhoudt, B. Carré, and O. Caron. Isolating and Reusing Tem-
plate Instances in UML. In 12th European Conference on Modelling Foundations
and Applications, Vienna, Austria, 2016.

P.A. Bernstein. Applying Model Management to Classical Meta Data Problems.
In CIDR, volume 2003, pages 209-220, 2003.

G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, and M. Sabetzadeh. A
manifesto for model merging. 2006.

B. Carré, G. Vanwormhoudt, and O. Caron. From subsets of model elements
to submodels: A characterization of submodels and their properties. Software €
Systems Modeling, 2013.

S. Clarke. Extending standard UML with model composition semantics. 2002.

S. Clarke and R.J. Walker. Generic aspect-oriented design with theme/UML.
Aspect-oriented software development, pages 425-458, 2005.

J. de Lara and E. Guerra. From types to type requirements: genericity for model-
driven engineering. Software & Systems Modeling, pages 453-474, 2013.

D. D’Souza and A.C. Wills. Catalysis: Objects, Components, and Frameworks with
UML. Object Technology Series. Addison-Wesley, 1998.

D. Del Fabro and J. Bézivin. Generic model management: from theory to practice.
In First International Workshop on Towers of Models - TOWERS 2007, pages 1-9,
2007.

M. Herrmannsdorfer and B. Hummel. Library concepts for model reuse. FElectronic
Notes in Theoretical Computer Science, pages 121-134, 2010.

J. Kienzle, W. Al Abed, F. Fleurey, J.M. Jézéquel, and J. Klein. Aspect-oriented
design with reusable aspect models. In Transactions on Aspect-Oriented Software
Development, volume VII, pages 272—-320. Springer, 2010.

A. Muller. Construction de systémes par application de modéles paramétrés. PhD
thesis, University of Lille 1, 2006.

A. Muller, O. Caron, B. Carré, and G. Vanwormhoudt. On some properties of
parameterized model application. In Model Driven Architecture—Foundations and
Applications, pages 130-144. Springer, 2005.

C. Pérez and J. Bigot. Increasing Reuse in Component Models through Genericity.
Formal Foundations of Reuse and Domain Engineering Lecture Notes in Computer
Science, 5791:21-30, 2009.

G. Sunyé, A. Le Guennec, and J-M. Jézéquel. Design Patterns Application in
UML. In Proceedings of 14" European Conference on Object-Oriented Program-
ming (ECOOP’2001), pages 44—62. Springer, 2000.

G. Vanwormhoudt, O. Caron, and B. Carré. Aspectual templates in UML: En-
hancing the semantics of UML templates in OCL. Software & Systems Modeling,
April 2015.

G. Vanwormhoudt, B. Carré, O. Caron, and C. Tombelle. Recherche de sous-
modeles. In CIEL 2014, Troisiéme Conférence en IngénieriE du Logiciel, pages
126-130. HAL, 2014.

	Operators for Template-Based MDE
	Introduction
	Aspectual Templates in UML
	Template Based Model Engineering
	Aspectual Template Operators
	EMF technology
	Conclusion

