
RAUflow: Building Virtual Private Networks with

MPLS and OpenFlow

Santiago Vidal Jorge Rodrigo Amaro Emiliano Viotti
Mart́ın Giachino Eduardo Gramṕın

{santiago.vidal, jorge.amaro, eviotti, giachino, grampin}@fing.edu.uy

Instituto de Computación (INCO)
Universidad de la República (UdelaR)

Montevideo, Uruguay

Abstract

Control and Data Plane separation is a well
established networking paradigm, fuelled by
the raising of Software Defined Networking
(SDN), which foresee the implementation of
complex, valuable network behaviour over
commodity hardware. The Academic Net-
work of Uruguay (in spanish Red Académica
Uruguaya - RAU) comprises several univer-
sities, research centres and government insti-
tutions; RAU is planning a major upgrade,
and SDN is a candidate technology to tackle
present and future requirements. To test
the feasibility of this approach, we built a
RAU2 network prototype composed of NetF-
PGA based routers over 10G optical links.
Over this infrastructure we developed RAU-
flow, a network control application on top
of the Ryu SDN controller, which combines
OpenFlow and MPLS to implement network
services conforming to RAU evolution require-
ments. In this paper we analyze the deploy-
ment and scalability of VPN services over
RAU2 prototype.

1 Introduction

RAU is planning a major upgrade, seeking for a boost
on coverage and capacity, focused on flexibility for the
deployment of new, evolved network services. RAU is
built over typical leased line infrastructure provided

Copyright c© by the paper’s authors. Copying permitted for
private and academic purposes.

Spring School on Networks, Santiago, Chile, 21-11-2016,
published at http://ceur-ws.org

by ANTEL, the public telecommunications operator,
which also provides inter-domain connectivity with the
commercial Internet; RAU is part of RedCLARA1, re-
sponsible for the implementation and management of
the network infrastructure that interconnects the Na-
tional Research and Education Networks (NRENs) of
Latin America, and provides connectivity with global
academic networks such as GÉANT in Europe and In-
ternet2 in USA. RAU is a multi-tenant infrastructure,
shared by universities, research centres and govern-
ment institutions. Therefore, traffic isolation is a ma-
jor requirement, which leads to the implementation of
Virtual Private Networks (VPNs) and/or slicing.

The rest of the paper is organized as follows: in next
section 2 we review some related work, while provid-
ing some insights about the RAUflow application in
section 3. Scalability is analyzed in section 4, closing
with a discussion and some directions for future work.

2 Related work

MPLS is the basic building block for Layer 2 and Layer
3 VPNs; while MPLS data plane is quite simple, and
open source implementations have been around for
more than 15 years2, the control plane has become in-
creasingly complex, and therefore costly. The typical
Label Switch Router (LSR), implements both forward-
ing and control plane in the box, which comprises dis-
tributed routing protocols such as OSPF or IS-IS for
routing information gathering and dissemination, dis-
tributed signaling and label distribution mechanisms
such as RSVP-TE and LDP, and also MP-BGP (Multi
Protocol BGP) for actual VPN routing implementa-
tion, as defined by well established IETF standards.

1Online: http://www.redclara.net/
2Online: http://sourceforge.net/projects/mpls-

linux/, updated by https://github.com/i-maravic/
MPLS-Linux

Table 1: Comparison of RAUflow vs. legacy MPLS
Legacy RAUflow Comment

Traffic Classification Per-node FEC Global edge classification: Open Flow
matching fields

No header processing in core routers
(avoid CPU intensive process and
added delay). Compatibility be-
tween Open Flow and legacy net-
working

Path Computation Distributed Algorithm
(with TE extensions)

Distributed topology database acquisi-
tion, centralized SPF algorithm

Centralized ad-hoc Traffic Engi-
neering algorithms, possible delay
penalty

Label distribution
and LSP signalling

Distributed signalling
(LDP/RSVP-TE)

Centralized, per LSP assignment No need to implement signalling
in network nodes (avoid CPU and
memory intensive process)

Maintenance routine Dynamic trigger / dy-
namic computation and
signalling

Dynamic trigger / centralized computa-
tion and label assignment

Centralized re-optimization, possi-
ble delay penalty

OpenFlow, proposed by McKeown et al. [1] as an
standardized interface to add and remove flow entries
in a generic Ethernet switch with an internal flow-
table, established a foundation for the implementation
of the SDN idea: a vendor-independent protocol which
defines syntax and semantics for the programmability
of the switch by an external/third party controller.
In our previous work [2] we reviewed early efforts to
implement MPLS forwarding, which has been incorpo-
rated as part of OpenFlow specification since version
1.3.

Regarding VPN implementation, the model pro-
posed by Suzuki et al. [3] follows the IETF L3 VPN
specification, implementing the route dissemination in
a per-customer, centralized BGP instance running in
the SDN controller using the Quagga routing suite; in
this proposal, the VPN tunnels are implemented us-
ing VLAN tags, but the authors foresee to migrate to
MPLS.

The Community Connection (CoCo) project3 pro-
poses an on-demand SDN-based Layer 3 VPN imple-
mentation [4], which follows the same approach: MP-
BGP information is exchanged among external “Co-
Co Agents”, while the forwarding is also implemented
using VLAN tags. The deployment is targeted for
sharing resources among the research community, and
therefore is particularly interesting for our use case;
the authors include some scalability evaluation which
partially inspired our work.

The OPEN proposal [5] centralizes all control plane
functionality in the SDN controller, and claims to elim-
inate the need of distributed protocols to implement
MPLS-based services. Our approach is similar, but we
maintain the IGP (OSPF) as a basic building block for
our solution.

3 RAUflow design and implementation

In light of RAU requirements, and considering our
previous experience and related work, we designed

3Online: https://blog.surf.nl/en/coco-an-
exploration-of-software-defined-networking/

Figure 1: Architecture of the RAUswitch

and built our own open-source switch-router, named
RAUswitch (Figure 1), made using a standard x86
motherboard with PCIe bus and NetFPGA4 10G net-
working cards, running the Quagga routing suite over
Linux OS, therefore supporting legacy routing pro-
tocols such as OSPF, which provides dynamic topol-
ogy discovery and routing information dissemination,
which is gathered by the SDN controller to deploy L2
and L3 VPNs5, as described in [2].

RAUflow is a network control application which
permits to define basic services based on MPLS, for in-
stance Layer 2 Virtual Private Wire Service (VPWS),
and Layer 3 VPN services. Besides MPLS forward-
ing (label PUSH, POP and SWAP operations), the
implementation of VPN services requires other fun-
damental functionalities, such as i) traffic classifica-
tion, ii) a path computation mechanism, iii) MPLS
label distribution and Label Switched Path (LSP) sig-
nalling mechanisms, and iv) a maintenance routine
in response to network dynamics. In addition, MAC
ethertype transparency must be supported in L2 ser-
vices, while IP addressing overlapping and transparent
per-customer routing instances must be supported for
L3 VPN services.

Table 1 is a summary of the differences between
RAUflow and legacy MPLS. Note that RAUflow VPN

4Online: http://netfpga.org/
5Updated code and documentation is freely available at:

https://github.com/ProyectoRRAP

Table 2: Layer 2 VPN setup time in ms.
Path Lenght Basic Small Medium

1 58.3 65.0 83.1
2 N/C 100.8 124.0
4 N/C 105.2 124.1
6 N/C 107.8 131.4
8 N/C 109.6 128.6
10 N/C N/C 139.8
12 N/C N/C 133.4

implementation does not use MP-BGP, which is an ex-
tra advantage for three reasons: i) complex BGP con-
figuration is avoided, ii) CPU and memory usage are
reduced, and iii) BGP messaging churn is completely
eliminated.

4 Proof of concept and scalability anal-
ysis

We successfully built and performed functional test-
ing of RAUflow over the RAU2 physical testbed, com-
posed by four RAUswitches connected by a full-mesh
of 10Gbps optical links, also verifying the maintenance
procedure (i.e. re-routing after link failure). The test-
ing scenarios included i) multi-site L3 VPN (one cus-
tomer), ii) multi-site L3 VPN (two customers with
overlapping IP addresses), and iii) point to point L2
Pseudo Wire with VLAN support.

The physical testbed size prevents to run scalability
tests, and therefore we ported the complete environ-
ment6 over the well-known Mininet emulator [6].

In the emulated environment, we deployed three
representative topologies: i) a basic 4-node full mesh
topology, emulating the physical testbed, ii) a small
11-node topology and iii) a medium 45-node topology,
both taken from “The Internet Topology Zoo”7. Over
these topologies, we first re-run the relevant functional
tests, and then we explored the setup time for a new
VPN. The results are shown in Tables 2 and 3. In a
second series of tests, we configure new VPN services
cummulatively, measuring both the RAM consumed
and the setup time. The results are shown in Figures
2 and 3.

Presumably, the main factors which explain these
results are the time consumed by the controller to com-
pute the shortest paths, and the time taken by the con-
figuration of every node in the chosen paths; further
and finer grain experiments are needed to confirm such
intuition, for instance measuring the breakdown of the
controller time across the above mentioned phases.

6Updated code and documentation is freely available at:
https://github.com/santiagovidal/P2015_44

7Online: http://www.topology-zoo.org/

Table 3: Layer 3 VPN setup time in ms.
Path Lenght Basic Small Medium

1 6.3 6.8 19.3
2 N/C 7.8 21.5
4 N/C 9.4 22.3
6 N/C 15.1 23.8
8 N/C 12.0 23.7
10 N/C N/C 26.4
12 N/C N/C 27.5

0 3,000 6,000 9,000 12,000 15,000
0

1

2

3

4

·105

of VPNs

M
em

o
ry

(i
n

K
B

)

Figure 2: Memory consumption per cummulative
VPNs

0 3,000 6,000 9,000 12,000 15,000

0

200

400

600

800

1,000

of VPNs

S
et

u
p

T
im

e
(i

n
m

s)
Layer 2 VPN
Layer 3 VPN

Figure 3: Setup time per cummulative VPNs

5 Conclusion and Future Work

We built a testbed using commodity hardware which
suports MPLS-based network services using a central-
ized, SDN-based control plane. We completely ported
the testbed to an emulated environment, which per-
mits to test scalability and facilitates the development
of new features. Our preliminar scalability assessment
reveals an acceptable behaviour, supporting tens of
thousands of services whit linear growth of setup time
and consumption of controller resources.

A fair quantitative comparison against legacy
MPLS is difficult to execute, since open source MPLS
implementations, which can be emulated under the
same environment as RAUflow, are far less efficient
than industrial ones. Meanwhile, further scalability

testing is being acomplished, while we explore new
services and features, emphasizing that SDN adoption
would definitively be hybrid and progressive, calling
for the emergence of new technical and business mod-
els to facilitate the transition, as stated by Vissicchio
et al. [7].

References
[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,

L. Peterson, J. Rexford, S. Shenker, and J. Turner. Open-
flow: Enabling innovation in campus networks. SIGCOMM
Comput. Commun. Rev., 38(2):69–74, Mar. 2008.

[2] E. Gramṕın, M. Giachino, J. R. Amaro, and E. Viotti. RAU2
testbed: A network prototype for evolved service experimen-
tation. In LANOMS 2015, pages 107–108, Oct 2015.

[3] K. H. SUZUKI Kazuya. An OpenFlow Controller for Reduc-
ing Operational Cost of IP-VPNs. NEC Technical Journal,
8(2):49–52, April 2014.

[4] R. van der Pol, B. Gijsen, P. Zuraniewski, D. F. C. Romão,
and M. Kaat. Assessment of SDN technology for an easy-
to-use VPN service. Future Generation Computer Systems,
56:295 – 302, 2016.

[5] S. Das, A. Sharafat, G. Parulkar, and N. McKeown. MPLS
with a simple open control plane. In Optical Fiber Commu-
nication Conference and Exposition (OFC/NFOEC), 2011,
pages 1–3, March 2011.

[6] B. Lantz, B. Heller, and N. McKeown. A network in a laptop:
Rapid prototyping for software-defined networks. In Proc.
of the 9th ACM SIGCOMM Workshop on Hot Topics in
Networks, Hotnets-IX, pages 19:1–19:6, New York, NY, USA,
2010. ACM.

[7] S. Vissicchio, L. Vanbever, and O. Bonaventure. Opportuni-
ties and research challenges of hybrid software defined net-
works. SIGCOMM Comput. Commun. Rev., 44(2):70–75,
Apr. 2014.

