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Abstract

In this work, we investigate the use of twin
graphs as an alternative to model optical
backbone networks, as recently proposed in
the literature [PCS13]. Twin graphs are suit-
able for resilient and cost-effective optical net-
works, because of the following property: any
single node failure causes no impact on the
pairwise hopcounts in the remaining network;
and no other graphs with fewer links satisfy
this property [FP97].

In recent works, a special family of 2-connected
graphs called twin graphs has been proposed to model
optical backbone topologies due to interesting proper-
ties with respect to fault tolerance, resilience, cost (in
number of links) and scalability [PCS13]. Twin graphs
belong to the class of 2-geodetically-connected graphs,
which means that each of them provides at least two
node-disjoint geodesics (i.e., shortest paths with re-
spect to the number of links), for all non-adjacent node
pairs. Moreover, no other graphs with fewer links sat-
isfy this property [FP97].

Thus, in topologies modeled as twin graphs, the sur-
vivable routing through shortest paths ensures that
both the working and the backup paths are geodesics
for any pair of non-adjacent nodes. So, compared
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Figure 1: After any single node removal in a twin
topology, there is always a backup path which has the
same length of the working path. In a ring topology,
the backup path can be much larger than the working
path, since the length of both these paths have always
to sum up the length of the ring.

to other 2-connected topologies, such as rings, twin
graphs can tolerate single failures more efficiently,
without drastic changes in network performance (see
Fig. 1). In addition to their topological characteristics,
the feasibility of twin graphs as optical backbone net-
work topologies should be assessed by considering their
wavelength requirements [BB97]. The minimum num-
ber of wavelengths required to support a given traffic
demand corresponds to the solution of the Routing
and Wavelength Assignment (RWA) problem [MG02],
which is one of the most important problems in the
optical network design.

In this work, we analyze the modelling of optical
backbone networks as twin graphs in comparison with
real-world optical backbone networks, in order to ver-
ify the advantages and disadvantages of this new model



compared to existing networks. For this purpose, we
have considered two sets of networks: the set of all
twin graphs with 9 up to 17 nodes, which totalizes
742 graphs, and a set of real-world optical backbone
networks (reported in Pavan et al. [PMRP10]) with
number of nodes also in the range from 9 up to 17.
These sets of networks and their number of nodes (n)
and average degree are presented in Tables 1 and 2,
respectively.

Table 1: Set of twin graphs (all twin graphs from 9 to
17 nodes).

n Amount by n Average degree
9 5 3.11
10 9 3.20
11 13 3.27
12 23 3.33
13 35 3.38
14 63 3.43
15 102 3.47
16 182 3.50
17 310 3.53

Table 2: Set of real-world networks with 9 up to 17
nodes.

Network n Average degree
VIA Network 9 2.67
Bren 10 2.20
RNP 10 2.40
CESNET 12 3.17
vBNS 12 2.83
Italy 14 4.14
NSFNET 14 3.00
Austria 15 2.93
Mzima 15 2.53
ARNES 17 2.35
Germany 17 3.06
Spain 17 3.29

For each network in these sets, we have computed
the following topological characteristics, which corre-
spond to metrics from graph theory: number of nodes,
maximum degree, minimum degree, average degree,
link density, diameter, average distance, link connec-
tivity, node connectivity, algebraic connectivity, aver-
age link betweenness, maximum link betweenness, and
minimum link betweenness. All these computations
where performed using the IGRAPH package avail-
able for the software R. The definition of maximum
link betweenness is given as follows.

Let G = G(V,E) be a graph with u, v ∈ V . Denote
by σuv(e) the number of geodesics from u to v that go

through a link e ∈ E and σuv the total number of
geodesics from u to v. Then, the betweenness of link
Be, is given by [GN02]:

Be =
∑
u6=v

σuv(e)

σuv
(1)

and the maximum link betweenness is maxe∈E B
e.

Furthermore, we have computed the number of
wavelengths for each network in these sets. This
computation was carried out using the methodology
present in Cousineau et al. [CPC+12]. These results
are shown in Fig. 2.

The results were analyzed as function of the graph
theory metrics in order to infer correlation between
these data. Among all metrics considered, the max-
imum link betweenness showed the best linear corre-
lation with the number of wavelengths. For this rea-
son, and also for lack of space, we only present here
the results obtained for the number of nodes and the
maximum link betweenness, which are shown in Fig. 3.

Assuming that the number of wavelengths is a way
to evaluate the network cost, twin graphs appeared as
a viable alternative to model networks that have cost
at least as good as real-world networks. As shown in
Fig. 2, twin graphs tend to require fewer wavelengths
than real-world networks with same order.
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Figure 2: Number of wavelengths given the number of
nodes for twin graphs and real-world networks.

For twin graphs the linear correlation coefficient (ρ)
between the number of wavelengths and the maximum
link betweenness was 99.5%, confirming the positive
association suggested by Fig. 3. This result high-
lights a strong influence of the maximum congestion
on a physical topology link with the number of wave-



lengths. Real-world networks also showed similar be-
havior, with ρ = 98.3%.
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Figure 3: Number of wavelengths given the maximum
link betweenness for twin graphs and real-world net-
works.

In summary, our studies have pointed out some ad-
vantages of using twin graphs as a model for design-
ing optical backbone networks. This graph class has
proved to be efficient in terms of resilience and cost,
including the use of wavelengths. The correlation be-
tween the maximum link betweenness and the num-
ber of wavelengths observed in twin graphs can be ex-
ploited in algorithms for solving the RWA problem.
For future work, we are working on lower and upper
bounds for the number of wavelengths based on the
maximum link betweenness. We will also explore the
behavior of twin graphs in the presence of multiple
failures.
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