
Copyright © (2016) Leonardo-Finmeccanica S.P.A. & Instituto Tecnológico de Informática Permesso concesso a AISE di

pubblicare e utilizzare

Designing a System Engineering Environment in a

structured way

Anna Todino

Ivo Viglietti

 Bruno Tranchero

Rubén de Juan Marín
Instituto Tecnológico de Informática

Valencia, Spain

Leonardo-Finmeccanica Aircraft Division

Torino, Italy

Abstract— Defining and designing a System Engineering

Environment in a complex industrial context is not a

trivial task. Experiences, best practices, internal rules,

company procedures and applicable standards, all play a

role in the definition of a development process covering

the different phases of development of a complex

product. Engineers from various industrial domains

need to develop complex systems in accordance with

System Development Life Cycle Processes, defined

within domains themselves, to assure project success in

terms of time-to-market and product quality. These

success criteria require reducing the development costs

and applying an appropriate Design to Cost

methodology to the different engineering projects, and

the use of best practices is a mean to achieve this goal.

Best practices consist of cross-domain and/or cross-

project engineering methods and their application in the

development of systems, where a specific engineering

method addresses a preferred workflow by means of

tools, involved artefacts and required interoperability

between tools. Since the choice of a development tool can

have some influence on the resulting system design, the

characteristics of such tool must be clearly understood

before the selection is made, and often the selection of

tools is demanded to the ICT department, that

sometimes is not completely aware of the system

development engineers’ needs. The idea is to reduce the

development costs by reducing the time required to

select the tool-set using ICT skill, process knowledge and

applying cross-project engineering methods in order to

specify and select the best solution. In this paper is

presented a solution that is one of the outcomes of the

CRYSTAL Research Project, for selecting a System

Engineering Environment that satisfies the development

process needs and supports engineering methods, which

are formalized through SPEM 2.0.

This solution is based on the Platform Builder Modeler,

which allows to instantiate and validate a System

Engineering Environment that includes tool-chain, IT

infrastructure and data, dedicated to accomplish a

selected development process.

Keywords—development process; SPEM 2.0; System

Engineering Environment; Engineering Methods; Engineering

tool functions, IOS capability, Tool taxonomy, Tool Integration;

Tool-chain

I. INTRODUCTION

Within the industrial domains, it is a common practice to
have a well-defined development process in order to
manufacture a given product. A product development
process defines a workflow of activities and related work
products. A product development process is always
supported by a proper System Engineering Environment
(SEE) that is a framework which defines software, in terms
of software tools used for development, hardware where the
SEE is deployed, and data in terms of work products, models
and other information relevant to the specific activities
defined in the product development process. So the
definition and configuration of a proper SEE is an essential
part of a development process. One of the difficulties lies in
the fact that depending on the available resources and on the
skills of process engineers, it is not always straightforward to
define a SEE.

The CRYSTAL Platform Builder (PB) is a solution based
on the availability of an engineering methodology and the
related engineering tools and also on an already defined
development process, to support the definition and
configuration of an instance of the SEE to be used by
company engineers to manufacture the product. This
approach starts from an existing product development
process, which is the combination of a development process
and of a product specific use case, and from Engineering
Methods (EM) applicable within the engineering
methodology and defined during the CRYSTAL project.
This article is mainly composed by two sections:

• Concepts and meta-models: this is an overview and
specification of concepts and meta-models dealing
with PB methodology

• Platform Builder Modeler: this is an overview of the
implemented solution based on the specified
methodology.

Copyright © held by the authors.

Copyright © (2016) Leonardo-Finmeccanica S.P.A. & Instituto Tecnológico de Informática Permesso concesso a AISE di

pubblicare e utilizzare

II. CONCEPTS AND META-MODELS

A. State of the Art

Nowadays even if the definition and formalization of the
system development environment is presented as a set of
consolidated formal steps, for example included in System
development plan document, at industrial level no meta-
models are available to describe a SEE. The topic is
challenging and this is also demonstrated by the several
research initiatives in the fields; for instance DevOps -
toolchain group [7] is a tentative to collaborate about tool-
chain taxonomy, in order to classify tools, following
software development life cycle phases. Tool-chain
taxonomy is also addressed by CRYSTAL PB approach
where standardization and formalization of tools and tool-
chain information and features is one of the major goals.
Another example is the SafeCer project
(http://www.safecer.eu), an ARTEMIS JU project, which
provides CTF (Certification Tool Framework) that is a
software platform that aims to integrate the different tools in
a unique framework and allows building a tool-chain for
certification purposes.

While SafeCER allows building a tool-chain for
certification purposes, the CRYSTAL PB Modeler allows
instantiating and validating a SEE, that includes tool-chain,
IT infrastructure and data, dedicated to accomplish a
selected development process and it is based on tool
descriptors that formalize tool information within
CRYSTAL PB.

B. PB Approach Workflow

The PB approach is based on process activities definition
and relevant EM to be applied. Generally in a system life
cycle process, activities to be performed for developing a
system are defined together with work products to be
produced and roles skilled to perform activities. This
information is used by the PB approach to instantiate a SEE,
to support the identified process in terms of engineering
methods selected for an identified use case context, and to
select proper tools to be used in the identified engineering
methods. This approach requires the definition of a proper
meta-model to facilitate the description of the process and
for enabling the mapping between process activities,
engineering methods and functions provided by tools. While
a development process describes activities to be performed in
an engineering process, engineering methods describe how
to perform the different activities addressing engineering tool
functions to be applied. Fig. 1 shows the complete workflow,
identified in the CRYSTAL project, to configure and
instantiate a SEE. Actually the PB scope encompasses only
three phases of the complete workflow and implemented in
the PB Modeler solution. For each phase different inputs and
outputs are outlined:

• Tailoring phase: where the development process is
described and formalized generating the Tailored
Process.

• Configuring phase: where the tailored process is used
to select tools and configure the best-fit tool-chain.

• Validation phase: where the tool-chain is evaluated
against some business and technical constraints
within the organization context.

Many different types of data must be classified and
formalized in order to be used within different phases. This
task was performed in the CRYSTAL project, where meta-
models and data-models where defined. The result of the
Tailoring phase is a Tailored Process, describing activities to
be performed and engineering methods to be applied to
develop a product according to the specified Use Case. The
Tailored Process will contain information required to enable
configuring a SEE using the PB Modeler. In the SEE
configuring phase, using a catalogue of the available tools
and their functionalities, a PB user will be able to define the
best SEE solution for the Tailored Process in the given
context. The Validation phase facilitates the configuration of
a consistent and usable SEE. In the validation phase the SEE
configuration shall be adapted to satisfy requirements and
constraints for instantiating the SEE on the company IT
infrastructure, thus producing the optimal solution in the
provided company/organization context. Project data
encompasses all information to set-up the SEE for a specific
Tailored Process and project and it addresses mainly
information relevant to user management and product
management.

Fig. 1. SEE configuration and instantiation workflow

C. PB Conceptual Meta-model

Data and information, involved in the PB workflow, are
represented in the PB conceptual meta-model (Fig. 2), where
elements and their relationships for configuring the SEE are
depicted. Some elements are aggregation of formalized data
and they are defined as catalogues: Activity catalogue,
Engineering Methods (EM) catalogue, Tool catalogue and
Engineering Tool Functions (ETF) catalogue. All identified
catalogues were populated to be used in different PB phases.
Other PB elements specify data needed for PB method
implementation. Herein each element of PB conceptual
meta-model is defined. The main input for PB Modeler is the
use case defining the project and the system to be developed
in a defined business context. This includes also work
products and activities to be performed in respect of business
process and it is usually documented in natural language and
not formalized. Use case information, relevant for the PB
scope, is formalized in a process, which describes activities,
roles, artifacts and engineering methods to be applied.

Copyright © (2016) Leonardo-Finmeccanica S.P.A. & Instituto Tecnológico de Informática Permesso concesso a AISE di

pubblicare e utilizzare

The process, herein also called Tailored Process, is used
to describe all activities and engineering methods to be
applied for the business context and for the specific use case.
An activity is a concrete work identified within a
development process and it represents a general unit of work
assignable to specific user, with a role, able to perform it. An
activity is a set of actions that consume time and resources
and whose performance is necessary to achieve, or contribute
to, the realization of one or more outcomes (artefact). An
activity depends on the identified system life cycle process
and it is specified within system development process.
Indeed Tailored Process specifies which activities are
selected for the specific use case, and the system
development process, indicated by the

Fig. 2. PB conceptual meta-model

use case, is tailored with selected activities and detailed with
Ems. While activity describes a task within a process, EM
specifies how the activity has to be performed and in detail it
describes a method which can accomplish a given identified
result by defining steps to perform it and also artefacts that
are produced or consumed. An Engineering method is
formalized using ETFs that should be applied to satisfy it.
On the other hand, a tool, that is any software application,
can be described through the functionalities that it provides.
A set of tool’ functionalities, also said ETFs, are used to
define a tool in a formalized way and this helps to select a
tool to satisfy EMs.

The core of the PB method is the mapping between
engineering methods and engineering tool functions. In order
to fulfil this mapping, the Engineering tool function
taxonomy is crucial. Indeed engineering method will be
specified using engineering tool function as well, in this way
the mapping between engineering methods and engineering
tool functions make semi-automatic the selection of tools.
Engineering tool function identification and categorization
was made in extensive but not exhaustive way in the
CRYSTAL project. For different examined use cases,
engineering tool functions were listed and formalized in ETF
catalogue to be recognized in the definition of Tool
Catalogue and EM catalogue.

The SEE model [4] is configured using both tool
information and tailored process information, and it is a

collection of descriptors of tools and their relationships (tool-
chain) through interoperability. In this article,
interoperability stands for Interoperability Specification
capability (IOS Capability) which is a specialization of ETF.

D. Process Activity and EM classification

The tailored process has to be defined in order to
formalize the development process taking into account EMs
to be applied during a system development. In the PB
method this tailoring phase is facilitated by categorization of
activities and EMs. Analyzing the needed information to be
used for tailoring phase, the PB method has adopted the
Software & Systems Process Engineering Meta-Model
(SPEM) and identified some SPEM elements to formalize a
process in the PB scope using a reference method library [1].
The tailored process, defined as a delivery process,
encompasses activities, which groups EMs. Activities and
EM are related to task element in the SPEM meta-model.

The CRYSTAL reference method library includes
activities and engineering methods to be used during the
tailoring process phase. The activities and EMs
categorization was based on different domain use cases. The
difficulty to make this classification and definition depends
on the fact that the definition of activity is interpreted by
engineers. Basically, using the activity definition and the
SPEM task definition element, an activity is classified using
a name and a description [5], considering that an activity
describes a task to be performed within a system engineering
life cycle process. Also for EM classification (refer to Table
1) is used the SPEM task element but in this case to describe
it, the EM definition is applied: an EM describes tasks to be
applied to satisfy an activity with support of tools.

TABLE I. EM

Engineering Method Example

Name Name of the EM as
unique identifier.

(Verb + Object)

 Insert Requirements

Description Short description
about the EM to be
applied.

Identified requirements are
inserted and described into a
Requirements database.

Work Products
(Artefacts)

List of Artefacts
handled by EM.

• Database-of- requirements

• Textual-description

Guidance Generic type of tool. Requirements repository tool

Steps

List of steps to
perform the EM.

• Create a new requirement

• Describe requirement

Using this classification of activities and EMs a reference
method library can be populated and it is considered as the
activity and EM catalogue.

E. ETF taxonomy

As anticipated in the PB conceptual meta-model
paragraph, the engineering tool function taxonomy is crucial

Copyright © (2016) Leonardo-Finmeccanica S.P.A. & Instituto Tecnológico de Informática Permesso concesso a AISE di

pubblicare e utilizzare

for the PB Modeler. To help a PB Modeler end user to
configure a SEE, the selection of tools is facilitated through
the mapping between ETF provided by tools and those ETF
required by engineering methods.

An ETF is a detailed function of a task that will be
performed by means of a tool. Analysing use-cases proposed
in CRYSTAL and engineering methods, a sort of ETF
classification was identified. ETF has to be identified in a
unique way and it can be used in different tools and also
required by different engineering methods. Since a definition
of ETF is necessary, we have identified different data to be
specified to characterize ETF, and Table 2 shows the main
attributes to be specified. In the PB conceptual meta-model,
ETF are specialized as IOS capability and internal tool
function. The difference between IOS capability and internal
tool function is the type of ETF: if it is a proper internal
function or if the function addresses interoperability with
another tool. An ETF is classified as internal tool function if
it manages data and it is not related directly to adapt data to
provide/consume to/from another tool. It is any functionality
provided by a tool that performs a functional operation
within tool itself.

On the other hand, IOS capability is a ETF that
implements interoperability with a different tool, in order to
adapt data, to be provided or consumed, and that will be
managed by another tool. Every type of interoperability
between tools can be considered and interoperability
specification can be defined for each kind of tool. Within the
CRYSTAL project, IOS is referring Open Services for
Lifecycle Collaboration (OSLC) specification [3].

TABLE II. ETF ATTRIBUTES

Name Description

ID Unique identifier for the ETF

Name Name of the ETF

Description Short description about the ETF.

Type This field states if this ETF is an IOS service or an internal
tool function.

Artefacts Specify artefacts handled by ETF

Tool-class Tools that can provide this ETF

F. Tool and Tool-chain Taxonomy

In the PB scope, tool properties formalization is
important to facilitate tool selection. Indeed in configuring
phase, tools that fit the EM requirements are presented and
an end-user is able to select a suitable solution. Tool
selection facility based on EM coverage, needs the tool
categorization based on ETF classification. Different
properties to describe a tool are listed in Table 3.

The formalization of a software tool based on ETFs shall
be represented as a generic software (SW) component of
tool-chain, refer to Fig. 3, where elements’ relationships are
depicted. Often, tool vendors give an overview of tools’

functionalities and system requirements for its deployment in
an informal way, through brochure or web site, and
sometimes Tool vendors provide a formal description using
manifest files. A tool descriptor collects in a formalized way
all needed information to describe and to characterize
software tool’s functionalities, system requirements and
extension relationships. This improves and facilitates the tool
selection based on a non-ambiguous functionality.

TABLE III. TOOL PROPERTIES

Name Description

Id Unique identifier for the tool.

Name Name of the Tool. Used for listing purposes.

Version This field supports defining and distinguishing
between different versions of the same Tool.

Vendor Identifier of the Vendor.

Description Short description about the feature provided by this
Tool

Open-source Indicates if the Tool is open-source or not.

License Type of license

Extended-by This field is used when the vendor of a tool knows that
this tool is extended by another. Used for stating the
use of IOS adapters (IOS service).

Extends This field is used when the vendor of a tool knows that
this tool extends the features of other tools. Used for
stating the use of IOS adapters (IOS service).

SW-functions List of ETFs provided by this tool (Internal tool
function).

IT-requirement Specifies the IT requirements of the tool.

A software component is defined to describe any kind of
software, both system or application software: tool
application, database, server, adapter, service, and so on. A
generic software component represents information to
identify any software implementation to be installed in a
computer machine.

Copyright © (2016) Leonardo-Finmeccanica S.P.A. & Instituto Tecnológico de Informática Permesso concesso a AISE di

pubblicare e utilizzare

Fig. 3. Tool descriptor as a generic SW Component

G. SEE Meta-model

The PB approach mainly addresses the instantiation of a
SEE which is configured through the PB Modeler tool based
on, and extending Eclipse Process Framework Composer
(EPF) [2]. All the needed information have to be described
and formalized as specified by the PB approach in order to
make the SEE configuration feasible in a semi-automatic and
assisted way.

The SEE is a set of information that specifies: which
process is used for system development, which engineering
methods are applied within the selected process, which
software tools and their characteristics are foreseen for the
needed and identified tool-chain links to satisfy engineering
methods. All these information are collected and specified in
the SEE meta-model as shown in Fig. 4. A SEE model is the
result of grouping and relating selected information from
identified catalogues.

Fig. 4. SEE meta-model

In the SEE model, the tool-chain associated to the
process is the main information. In the configuration phase,
the tools selection is based on some required constraints that
can be technical or business constraints. Technical
constraints are relevant to tool characteristics, such as
provided ETFs (IOS and internal tool functions), and IT
constraints, such as availability of machines and network for
SEE deployment and installation requirements (system
requirements). Business constraints are relevant to the type
of contract, if there exists, with Tool Vendor and company,
the specific Tool type of contract: such as type of license,
maximum number of users, and duration of contract.
Technical and Business constraints are used in the PB
Modeler to support tools selection in order to configure and
validate the SEE model.

III. PLATFORM BUILDER MODELER

The PB Modeler is the implemented solution of
described PB methodology based on EPF Composer, for
authoring the process using SPEM language, and some
added plugins to configure and validate the SEE.

A. Core Features

Core features correspond to the main features of the PB

Modeler tool implemented to address the PB workflow:

1. Tailor the process;

2. Configure the SEE;

3. Validate the SEE;

4. Generate the description of the SEE.

1) Tailor the process

This feature allows defining the resources that are needed
for describing the development process, tailored for the
specific use case. This is done using a graphical user
interface to add data that encompass the PB meta-model for
covering the relevant aspects. The PB meta-model
specification is based on the SPEM meta-model, from which
it selects relevant concepts for the Business Process, and it is
enriched by concepts that are relevant to the SEE needs. This
phase includes:

• The definition of activities sequence and activities
themselves,

• The definition of work products,

• The definition of roles to perform activities and

• The application of engineering methods (EM) to
perform an activity.

Generally these functionalities are already provided by a
process authoring tool, nevertheless what is missing is a
guideline and ontology to properly define activities and also
engineering methods in a standard way. To facilitate the

Copyright © (2016) Leonardo-Finmeccanica S.P.A. & Instituto Tecnológico de Informática Permesso concesso a AISE di

pubblicare e utilizzare

tailoring phase using an authoring tool, a CRYSTAL
Reference Library was defined, containing at least the
ontology about process activities (activity catalogue) and
also for standardization of other meta-model identified
elements, such as roles, work products and engineering
methods (EM catalogue). The tailored process is the output
of this phase and it is the main input of the following
configuration phase.

2) Configure the SEE

The configuration phase groups all the functionalities that
are necessary to formalize a SEE. This requires the enriched
meta-model that includes the elements that are needed for
defining a tool-chain, interoperability aspects and the
deployment environment that is addressed in the IT
infrastructure definition. The tool-chain is composed by
software tools and the IT infrastructure is composed by
network set-up, repositories and services that are the
backbone for the selected tools. This phase includes the
following functionalities:

• Import a tailored process (the tailored process as
defined in the tailoring phase is used as input);

• Describe the general tool-chain in terms of tool
function properties and IOS properties;

• Select tools, available tools in the business domain;

• Specify the IT infrastructure;

• Define repositories for the work products (data
structure).

3) Validate the SEE

The validation of the SEE is performed on the configured
environment that includes the tool-chain and the IT
infrastructure and project data. In order to validate the
configured tool-chain, the following inputs are required:

• the IT infrastructure as currently available in the
company and defined using the PB meta-model;

• a selection of tools in the catalogue as available in the
company (available tools).

The validation considers the tool-chain adaptability
against the existing IT infrastructure, the evaluation of tools
availability, and checking that defined IOS links are valid.
The SEE has to be validated taking into account also the
technological and business constraints (specific constraints
on allowed vendors, standards, license type and if needed
cost, in order to validate the data infrastructure, it is required
to have the defined data structure in terms of work products
and relevant repositories and to check its compatibility on
the available IT infrastructure; e.g. the user management
information includes the maximum number of users and
which users are able to manage data, check the repository
configuration and the network accessibility.

4) Generate the description of the SEE

After the validation, a SEE descriptor is generated. Such
descriptor is a model and it contains information about the

tool-chain and services to be deployed in the selected IT
infrastructure. Project data useful to set-up the SEE will be
generated starting from the required data infrastructure.
Project data includes repository information and user
management information.

B. Additional features of PB

The PB is mainly used for providing a model of a SEE,
based on process activities to be performed in a product
development. In addition to core functionalities, some
features were as well implemented since they are
propaedeutic to the Platform Builder goal. Indeed, such
additional features produce outputs (EM, ETF and Tool
catalogues, and also company IT infrastructure description)
that are necessary as inputs to the different PB phases:

• Manage the Tool Catalogue: create a catalogue and
describe tools in the catalogue applying the tool
descriptor meta-model and tool properties.

• Manage the IT infrastructure: describe the IT
infrastructure as it is currently in the company
(available IT infrastructure) using the proper meta-
model.

• Manage stakeholders: describe users and roles of the
company’s employees.

• Manage ETF and EM catalogues thought respective
identified meta-models.

C. Operational View

In this section, tailoring, configuration and validation
phases are detailed in order to describe user’s operations. As
depicted in Fig. 5, each identified phase in PB workflow
depends on the previous phase: for example configuring
phase depends on the tailoring phase which means that in
order to configure the SEE, the Tailored Process has to be
available before starting the configuration phase.
Furthermore the validation phase depends on the result of
configuration phase, because validation is done on the
configured SEE. A Process Architect is in charge of tailoring
the process activities and it has knowledge on its company
business domain, while a SEE Architect is in charge of
configuring the SEE and it has mainly knowledge on
information technology department.

Copyright © (2016) Leonardo-Finmeccanica S.P.A. & Instituto Tecnológico de Informática Permesso concesso a AISE di

pubblicare e utilizzare

Fig. 5. UML use case diagram of PB

The manage Library use case is a pre-tailoring phase. It
is part of authoring phase in order to prepare the CRYSTAL
reference Library where are defined generic catalogues for
activities and engineering methods.

1) Tailoring the process

This phase is intended to describe all the tasks needed to
tailor the process in terms of operations to perform. Tasks to
be performed are relevant to the description of a
development process and to manage information in a
formalized way to be used to configure the SEE. In Fig. 2
tailoring phase side, there are elements to define a
development process using information of a process for
developing a given product in a defined CRYSTAL use case.
The Process Architect has to describe the development
process and apply EMs during the tailoring process phase.
To facilitate this task, when using a process authoring tool,
process guidance, activities catalogue and EM catalogue are
provided. During the tailoring phase, the following steps
have to be performed:

• definition of the sequence of the process activities as
well as the activities themselves;

• definition of roles to perform activities;

• definition of engineering methods applied to the
process.

Any process authoring tool has to provide at least these
steps that are also depicted in Fig. 6.

Fig. 6. UML use case diagram of tailoring a process

In order to facilitate the steps of the tailoring phase, it is
necessary to provide a catalogue for each kind of identified
elements in the process definition (such as process activity
and roles) in a standardized way, and this is accomplished in
the CRYSTAL reference library that specify an activity
catalogue. Furthermore, an improvement concerns the
definition of a catalogue of EMs to be applied. Generally,
authoring tools provide interfaces to describe the product
development process, but the Process Architect needs also
guidelines to perform this task and information that can help
to describe the process. Tailoring steps could be based on
already existing authoring tools, extending them with the
catalogue that define some needed elements addressed in the
process. User interfaces, that should be defined to author a
product development process covering also aspects relevant
to SEE configuration, will be used to describe:

• Activities of the process and relevant elements

• Engineering methods to be applied.

2) Configuring the Platform

This phase encompasses all the tasks to be done by the
SEE Architect for configuring the SEE in terms of operations
to be performed. In Fig. 2 configuration phase side, there are
all the elements and their relationships. The configuring
phase is the core of PB method in terms of functionalities to
describe the SEE. Basically, it is centred on the creation of a
new SEE model related to a Tailored Process. After this step,
the SEE Architect is able to configure the tool-chain (refer to
Fig. 7) for each selected EM that is defined in the Tailored
Process. This tool-chain configuration is based on mapping
between EMs and ETFs and then between ETFs and tools
which support identified ETFs. A SEE Architect has to select
tools in order to satisfy the process activities and the applied
EMs This task is supported by the ETF Catalogue and the
Tool Catalogue. Furthermore, it has to describe the IT
infrastructure (configure IT infrastructure use case) and
formalize project data (configure project data use case)
dealing with development process work products and
roles/users of SEE. In the configuration phase the following
activities have to be performed:

• Assign to the EM used in each process activity of the
Tailored Process the required ETFs (IOS capability

Copyright © (2016) Leonardo-Finmeccanica S.P.A. & Instituto Tecnológico de Informática Permesso concesso a AISE di

pubblicare e utilizzare

and internal ETF). This maps each EM to as many as
required ETFs (map EM to ETFs use case)

• Select tools that will provide the ETF, thus becoming
part of the tool-chain; the tool will be selected from
the Tool Catalogue (select Tool use case)

• Establish the Tool interconnections (through IOS
capabilities) in order to establish the needed tool
interactions.

• Define the IT infrastructure needed for the tool-chain
deployment, deriving it from the tools being used,
foreseen users and needed services.

• Specify the permissions over the artefacts that each
role has in each tool.

Fig. 7. Configuring the tool-chain

Once this process is finished, the SEE Architect has
defined the tool-chain that will be used in the product
development process and the IT infrastructure needs. IT
infrastructure identification depends on selected tools to
build-up a tool-chain, and some IT infrastructure properties
could be described implicitly in Tool Descriptors. Fig. 8
shows what has to be identified for the IT infrastructure
definition. IT infrastructure deals with all needed elements to
build-up the backbone of the tool-chain and it encompasses
services, repositories, network properties and user
management.

The Data Structure identification, Fig. 5, depends on
Artefacts required by the development process and it could
be a simple list of Artefacts or more complex data structure.
Data structure deals with work products involved in the
process activities and project data includes data structure and
also other information about roles/users and relevant
properties to define access constraints, servers, repositories
and also network information. For preparing project data, the
SEE Architect needs information on IT infrastructure such as
selected repositories and user access constraints.

Fig. 8. Configuring IT infrastructure

3) Validate the SEE configuration

In order to validate the SEE configuration that satisfies
the development process objectives, the validation phase
consists mainly in validating the tool-chain by comparing it
with some criteria imposed by:

• the tailored process

• IT requirements and data infrastructure,

• Technological and business constraints such as

applicable standards, specific constraints on

allowed vendors, licence types and cost.

The SEE configuration validation could be implicitly
made during the tool selection. Indeed some filter criteria can
be applied to Tool Catalogue to propose a sub-set of tools
that satisfy such criteria. For example, availability, license
type and cost are filter criteria applicable to Reference
Technological Platform (RTP) Tool Catalogue. Furthermore,
IOS services coherence and IT infrastructure adaptability are
validation criteria. The following figure shows validation
tasks in order to validate the SEE configuration.

Fig. 9. UML Use Case diagram - Validation

The validation of a configured SEE implies:

• checking tool availability, which means selected

tools are present and available in the company to

deploy the tool-chain.

Copyright © (2016) Leonardo-Finmeccanica S.P.A. & Instituto Tecnológico de Informática Permesso concesso a AISE di

pubblicare e utilizzare

• checking the IOS services coherence: verifying that

tool-chain links are valid.

• adapting, if necessary, the IT Infrastructure within

the company organization: compare the required IT

infrastructure’s properties against the existing

company’s IT Infrastructure.

4) Generate the description of SEE

After these configuration and validation phases, the
configured and validated SEE is the output that basically is a
model to describe the configuration to be instantiated. The
PB generates as output model the SEE configuration
descriptor, which includes the tool-chain descriptor, the IT
infrastructure descriptor and also a description of Project
data.

IV. CONCLUSIONS

This paper describes the implemented Platform Builder
method including identified and formalized meta-models for
those relevant elements needed for SEE instantiation. It also
describes the PB Modeler, that is a software tool that allows
formalizing development processes and assisting SEE
instantiation, which includes both process and tools
information (such as Reference Technology Platform
components). More in detail, the SEE model includes
information related to:

• the required tools for the design of the desired

product

• the Information Technology (IT) infrastructure

where these tools are to be deployed

• data to be manipulated during the product

development process.

The presented solution has been validated on many

CRYSTAL industrial scenarios and it proven to be able to

allow cost and complexity reduction for the activity of

selecting the proper SEE for a given development process.

ACKNOWLEDGMENT

The research leading to these results has received funding

from the research project CRYSTAL (Critical System

Engineering Acceleration), funded from the ARTEMIS

Joint Undertaking under grant agreement n. 332830 and

from ARTEMIS member states Austria, Belgium, Czech

Republic, France, Germany, Italy, Netherlands, Spain,

Sweden, United Kingdom.

We would also like to thank our CRYSTAL partners among

whom Pietro Braghieri (FBK), Luis Andreu (ITI),

Guilherme Baungarten (OFFIS), whose active participation

and collaboration in PB related subjects were essential for

the achievement of the results.

REFERENCES

[1] Object Management Group, "Software & Systems Process Engineering

Meta-Model Specification Version 2.0," 1 April 2008. [Online]. Available:

http://www.omg.org/spec/SPEM/2.0/PDF. [Accessed 30 March 2015].

[2] The Eclipse Foundation, “Eclipse Process Framework Project (EPF),”

2015. [Online]. Available: http://eclipse.org/epf/.

[3] OSLC, “Open Services for Lifecycle Collaboration,” 2015. [Online].

Available: http://open-services.net/.

[4] “CRYSTAL deliverable - Meta-model specification - V2,” 2015.

[Online].

[5] “CRYSTAL deliverable – Platform Builder specification - V2,” 2016.

[Online].

[6] “CRYSTAL deliverable – Platform Builder prototype - V2,” 2016.

[Online].

[7] DevOps - toolchain group http://code.google.com/p/devops-toolchain/

